Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Muscle Sample Preparation
2.2. Bioelectrical Impedance Analysis
2.3. Intramuscular Fat
2.4. Total Collagen
2.5. Total Pigments
2.6. Cooking Losses
2.7. Sarcomere Length
2.8. Warner–Bratzler Shear Force
2.9. Color and pH Measurements
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.M.; Schmidt, H.; van de Ven, R.; Hopkins, D.L. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci. 2018, 138, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Mandal, P.K. Current perspectives of meat quality evaluation: Techniques, technologies, and challenges. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 3–17. [Google Scholar] [CrossRef]
- Narsaiah, K.; Biswas, A.K.; Mandal, P.K. Nondestructive methods for carcass and meat quality evaluation. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 37–49. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Rodrigues, S. Advances in sheep and goat meat products research. Adv. Food Nutr. Res. 2019, 87, 305–370. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Navajas, E.A.; Richardson, R.I.; Ross, D.W.; Hyslop, J.J.; Simm, G.; Roehe, R. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Sci. 2010, 86, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat quality evaluation based on computer vision technique: A review. Meat Sci. 2019, 156, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Bonin, M.; e Silva, S.D.L.; Bünger, L.; Ross, D.; Feijó, G.L.D.; da Costa Gomes, R.; Rennó, F.P.; Santana, M.H.D.A.; de Rezende, F.M.; Ítavo, L.C.V.; et al. Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy. Meat Sci. 2020, 163, 108077. [Google Scholar] [CrossRef]
- Cafferky, J.; Sweeney, T.; Allen, P.; Sahar, A.; Downey, G.; Cromie, A.R.; Hamill, R.M. Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum. Meat Sci. 2020, 159, 107915. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.W.; Zeng, X.A.; Xie, A. Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: A review. J. Food Eng. 2014, 132, 1–13. [Google Scholar] [CrossRef]
- Cheng, J.H.; Nicolai, B.; Sun, D.W. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Sci. 2017, 123, 182–191. [Google Scholar] [CrossRef]
- Silva, S.R.; Afonso, J.; Monteiro, A.; Morais, R.; Cabo, A.; Batista, A.C.; Guedes, C.M.; Teixeira, A. Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition. Animal 2018, 12, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Zollinger, B.L.; Farrow, R.L.; Lawrence, T.E.; Latman, N.S. Prediction of beef carcass saleable yield and trimmable fat using bioelectrical impedance analysis. Meat Sci. 2010, 84, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.B.; Galvani, D.B.; Montanholi, Y.R.; Bertemes-Filho, P.; Venturini, R.S.; Martins, A.A.; da Silva, L.P.; Pires, C.C. Assessing the composition of the soft tissue in lamb carcasses with bioimpedance and accessory measures. Meat Sci. 2020, 169, 108192. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000.
- Cross, H.R.; Carpenter, Z.L.; Smith, G.C. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973, 38, 998–1003. [Google Scholar] [CrossRef]
- Wierbicki, E.; Cahill, V.R.; Kunkle, L.E.; Klosterman, E.W.; Deatherage, F.E. Effects of castration on the biochemistry and quality of meat. J. Agric. Food Chem. 1955, 3, 244–249. [Google Scholar] [CrossRef]
- Boccard, R.; Buchter, L.; Casteels, E.; Cosentino, E.; Dransfield, E.; Hood, D.E.; Joseph, R.L.; MacDougall, D.B.; Rhodes, D.N.; Schön, I.; et al. Procedures for measuring meat quality characteristics in beef production experiments. Livest. Prod. Sci. 1981, 8, 385–397. [Google Scholar] [CrossRef]
- Honikel, K.O. How to measure the water holding capacity of meat? Recommendation of standardized method. In Evaluation and Control of Meat Quality in Pigs; Tarrant, P.V., Eikelenboom, G., Monin, G., Eds.; Martinus Nijhoff Publisher: Leiden, The Netherlands, 1987; pp. 129–142. [Google Scholar]
- Cross, H.R.; West, R.L.; Dutson, T.R. Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Sci. 1981, 5, 261–266. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- CIE Colorimetry, 2nd ed.; Publication CIE No. 15.2; Commission Internationale de l’Eclairage: Vienna, Austria, 1986.
- AMSA Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012.
- Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Meat quality of Nguni, Bonsmara and Aberdeen Angus steers raisedon natural pasture in the Eastern Cape, South Africa. Meat Sci. 2008, 79, 20–28. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Ward, L.; Kirby, N.; Dunshea, F.R. Enhancing meat measurement approaches. In A.MQA.0013 Final Report; Meat and Livestock Australia Limited: North Sydney, NSW, Australia, 2015. [Google Scholar]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate pH on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Maher, S.C.; Mullen, A.M.; Kerry, J.P.; Moloney, A.P. The influence of biochemical differences on the variation in tenderness of M. longissimus dorsi of Belgian Blue steers managed homogenously pre and post-slaughter. Meat Sci. 2005, 69, 215–224. [Google Scholar] [CrossRef]
- Torrescano, G.; Sánchez-Escalante, A.; Giménez, B.; Roncalés, P.; Beltrán, J.A. Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat Sci. 2003, 64, 85–91. [Google Scholar] [CrossRef]
- Ahnström, M.L.; Enfält, A.C.; Hansson, I.; Lundström, K. Pelvic suspension improves quality characteristics in M. semimembranosus from Swedish dual purpose young bulls. Meat Sci. 2006, 72, 555–559. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 2009, 12, 279–289. [Google Scholar] [CrossRef]
- Slanger, W.D.; Marchello, M.J. Bioelectrical impedance can predict skeletal muscle and fat-free skeletal muscle of beef cow primal cuts. J. Anim. Sci. 1994, 72, 3124–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, N.T.; Rasmussen, A.J.; Boggaard, C.; Nielsen, T. Apparatus and Method for Measuring the Content of Intramuscular Fat in Carcasses or Parts Thereof. PCT International Patent Application DK 97-0779, 1 July 1997. [Google Scholar]
- Damez, J.L.; Clerjon, S. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. Meat Sci. 2013, 95, 879–896. [Google Scholar] [CrossRef] [PubMed]
- Altmann, M.; Pliquett, U. Prediction of intramuscular fat by impedance spectroscopy. Meat Sci. 2006, 72, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Madsen, N.T.; Borggaard, C.; Rasmussen, A.J.; Christensen, L.B. On-line measurement of intramuscular fat/marbling in beef carcasses using electric impedance. In Proceedings of the 45th International Conference of Meat Science and Technology, Yokohama, Japan, 1–6 August 1999. [Google Scholar]
- Marchello, M.J.; Slanger, W.D.; Carlson, J.K. Bioelectrical impedance: Fat content of beef and pork from different size grinds. J. Anim. Sci. 1999, 77, 2464–2468. [Google Scholar] [CrossRef] [Green Version]
- Lepetit, J.; Salé, P.; Favier, R.; Dalle, R. Electrical impedance and tenderisation in bovine meat. Meat Sci. 2002, 60, 51–62. [Google Scholar] [CrossRef]
- Swatland, H.J. Anisotropy and post mortem changes in the electrical resistivity and capacitance of skeletal muscle. J. Anim. Sci. 1980, 50, 67–74. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Wang, D. Preliminary investigation of high resolution impedance spectroscopy for measuring shear force. In Proceedings of the 58th International Congress of Meat Science and Technology, Montreal, QC, Canada, 12–17 August 2012; Volume B-27, pp. 1–4. [Google Scholar]
- Byrne, C.E.; Troy, D.J.; Buckley, D.J. Postmortem changes in muscle electrical properties of bovine M. longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Sci. 2000, 54, 23–34. [Google Scholar] [CrossRef]
- Callow, E.H. The electrical resistance of muscular tissue and its relation to curing. In Annual Report of Food Investigations Board; HMSO: London, UK, 1936; p. 57. [Google Scholar]
- Bendall, J.R.; Swatland, H.J. A review of the relationships of pH with physical aspects of pork quality. Meat Sci. 1988, 24, 85–126. [Google Scholar] [CrossRef]
- Swatland, H.J. Near-infrared birefringence and transmittance of pork in relation to pH, sarcomere length, cold-shortening, and causes of paleness. Food Res. Int. 1995, 28, 153–159. [Google Scholar] [CrossRef]
- Damez, J.L.; Clerjon, S. Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 2008, 80, 132–149. [Google Scholar] [CrossRef]
- Guerrero, L.; Gobantes, I.; Oliver, M.A.; Arnau, J.; Guardia, M.D.; Elvira, J.; Riu, P.; Grèbol, N.; Monfort, J.M. Green hams electrical impedance spectroscopy (EIS) measures and pastiness prediction of dry cured hams. Meat Sci. 2004, 66, 289–294. [Google Scholar] [CrossRef]
Trait | Mean | SD | Minimum | Maximum | CV (%) |
---|---|---|---|---|---|
LW (kg) | 355.5 | 35.0 | 291.0 | 433.0 | 9.8 |
Dressing (%) | 60 | 1.32 | 56 | 62 | 2.2 |
HCW (kg) | 210.3 | 18.2 | 176.7 | 249.9 | 8.7 |
LM physicochemical traits | |||||
IMF (%) | 7.48 | 3.54 | 1.65 | 16.53 | 47.3 |
Total collagen (mg/g) | 7.52 | 1.19 | 4.74 | 9.43 | 15.8 |
Cooking losses (%) | 18.0 | 2.59 | 13.2 | 23.4 | 14.4 |
Sarcomere length (µm) | 1.83 | 0.21 | 1.48 | 2.23 | 11.4 |
WBSF (kg/cm2) | 5.51 | 0.99 | 3.72 | 7.62 | 18.0. |
Total pigments (mg/g) | 3.01 | 0.82 | 1.57 | 4.40 | 27.2 |
L* | 31.0 | 3.89 | 25.1 | 41.8 | 12.5 |
a* | 13.27 | 2.63 | 8.23 | 16.87 | 19.8 |
b* | 8.99 | 1.47 | 3.49 | 12.1 | 16.3 |
pH48 | 5.95 | 0.24 | 5.55 | 6.61 | 4.0 |
BIA parameters | |||||
Rs (Ω) | 86.8 | 21.2 | 58.6 | 138.1 | 24.5 |
Xc (Ω) | 108.9 | 34.1 | 65.1 | 161.5 | 31.4 |
Z (Ω) | 139.4 | 39.5 | 89.7 | 212.1 | 28.4 |
Total Collagen (mg/g) | Total Pigments (mg/g) | Cooking Losses (%) | Sarcomere Length (µm) | WBSF (kg/cm2) | L* | a* | b* | pH48 | |
---|---|---|---|---|---|---|---|---|---|
IMF (%) | −0.869 | 0.386 | −0.707 | 0.830 | −0.798 | 0.642 | 0.424 | 0.708 | −0.540 |
Total collagen (mg/g) | −0.252 | 0.647 | −0.740 | 0.697 | −0.565 | −0.367 | −0.654 | 0.476 | |
Total pigments (mg/g) | −0.212 | 0.193 | −0.417 | 0.223 | −0.047 | 0.315 | −0.334 | ||
Cooking losses (%) | −0.556 | 0.569 | −0.432 | −0.468 | −0.604 | 0.414 | |||
Sarcomere length (µm) | −0.569 | 0.487 | 0.338 | 0.603 | −0.362 | ||||
WBSF(kg/cm2) | −0.457 | −0.439 | −0.700 | 0.640 | |||||
L* | 0.230 | 0.460 | −0.319 | ||||||
a* | 0.282 | −0.280 | |||||||
b* | −0.471 |
Rs (Ω) | Xc (Ω) | Z (Ω) | |
---|---|---|---|
IMF (%) | 0.854 | 0.835 | 0.851 |
Total collagen (mg/g) | −0.709 | −0.705 | −0.716 |
Cooking losses (%) | −0.605 | −0.598 | −0.607 |
Sarcomere length (µm) | 0.748 | 0.803 | 0.795 |
WBSF (kg/cm2) | −0.778 | −0.747 | −0.763 |
Total pigments (mg/g) | 0.388 | 0.361 | 0.374 |
L* | 0.541 | 0.567 | 0.565 |
a* | 0.421 | 0.426 | 0.431 |
b* | 0.610 | 0.569 | 0.590 |
pH48 | −0.460 | −0.489 | −0.486 |
TRAIT | Intercept | Rs | Xc | Z | k-Fold-R2 | RMSE | RPD |
---|---|---|---|---|---|---|---|
IMF (%) | −5.117 | 0.129 | 0.014 | 0.793 | 1.631 | 2.2 | |
Total collagen (mg/g) | 10.529 | −0.0215 | 0.513 | 0.839 | 1.4 | ||
Cooking losses (%) | 24.041 | 0.041 | −0.075 | 0.346 | 2.096 | 1.2 | |
Sarcomere length (µm) | 1.291 | 0.0049 | 0.644 | 0.127 | 1.7 | ||
WBSF (kg/cm2) | 8.612 | −0.0358 | 0.605 | 0.631 | 1.6 | ||
Total pigments (mg/g) | 1.709 | 0.015 | 0.134 | 0.762 | 1.1 | ||
L* | 23.958 | 0.064 | 0.308 | 3.232 | 1.2 | ||
a* | 8.528 | −3.149 | −4.015 | 5.129 | 0.223 | 2.318 | 1.1 |
b* | 5.338 | 0.042 | 0.360 | 1.174 | 1.3 | ||
pH48 | 6.382 | 0.300 | 0.377 | −0.484 | 0.287 | 0.202 | 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, J.; Guedes, C.; Santos, V.; Morais, R.; Silva, J.; Teixeira, A.; Silva, S. Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle. Foods 2020, 9, 836. https://doi.org/10.3390/foods9060836
Afonso J, Guedes C, Santos V, Morais R, Silva J, Teixeira A, Silva S. Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle. Foods. 2020; 9(6):836. https://doi.org/10.3390/foods9060836
Chicago/Turabian StyleAfonso, João, Cristina Guedes, Virgínia Santos, Raul Morais, José Silva, Alfredo Teixeira, and Severiano Silva. 2020. "Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle" Foods 9, no. 6: 836. https://doi.org/10.3390/foods9060836
APA StyleAfonso, J., Guedes, C., Santos, V., Morais, R., Silva, J., Teixeira, A., & Silva, S. (2020). Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle. Foods, 9(6), 836. https://doi.org/10.3390/foods9060836