Demanding New Honey Qualitative Standard Based on Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Microorganisms
2.3. Determining the Antibacterial Activity
2.4. Determining the H2O2 Content
2.5. Determining the Protein Profile of Honey Samples
2.6. Statistical Analysis
3. Results
3.1. Antibacterial Activity of Commercial Honey Samples
3.2. H2O2 Content of Commercial Honey Samples
3.3. Antibacterial Activity and H2O2 Content of Local and Medical-Grade Honey Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rasad, H.; Entezari, M.H.; Ghadiri, E.; Mahaki, B.; Pahlavani, N. The effect of honey consumption compared with sucrose on lipid profile in young healthy subjects (randomized clinical trial). Clin. Nutr. 2018, 26, 8–12. [Google Scholar]
- Geißler, K.; Schulze, M.; Inhestern, J.; Meißner, W.; Guntinas-Lichius, O. The effect of adjuvant oral application of honey in the management of postoperative pain after tonsillectomy in adults: A pilot study. PLoS ONE 2020, 15, e0228481. [Google Scholar]
- Ghazali, W.S.; Romli, A.C.; Mohamed, M. Effects of honey supplementation on inflammatory markers among chronic smokers: A randomized controlled trial. BMC Complement. Altern. Med. 2017, 17, 175. [Google Scholar]
- Ab Wahab, S.Z.; Hussain, N.H.N.; Zakaria, R.; Kadir, A.A.; Mohamed, N.; Tohit, N.M.; Norhayati, M.N.; Hassan, I.I. Long-term effects of honey on cardiovascular parameters and anthropometric measurements of postmenopausal women. Complement. Ther. Med. 2018, 41, 154–160. [Google Scholar]
- Goharshenasan, P.; Amini, S.; Atria, A.; Abtahi, H.; Khorasani, G. Topical application of honey on surgical wounds: A randomized clinical trial. Complement. Med. Res. 2016, 23, 12–15. [Google Scholar]
- Fox, C. Honey as a dressing for chronic wounds in adults. Br. J. Community Nurs. 2002, 7, 530–534. [Google Scholar]
- Ramsay, E.I.; Rao, S.; Madathil, L.; Hegde, S.K.; Baliga-Rao, M.P.; George, T.; Baliga, M.S. Honey in oral health and care: A mini review. J. Oral Biosci. 2019, 61, 32–36. [Google Scholar]
- Semprini, A.; Singer, J.; Braithwaite, I.; Shortt, N.; Thayabaran, D.; McConnell, M.; Weatherall, M.; Beasley, R. Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open 2019, 9, e026201. [Google Scholar]
- EU Council. Council Directive 2001/110/CE Concerning Honey. Off. J. Eur. Communities 2002, L10, 47–52. [Google Scholar]
- Codex Alimentarius Commission. Codex Standards for Honey. Codex Stan 12-1981, Rev. 1 (1987), Rev. 2 (2001); Codex Alimentarius Commission: Rome, Italy, 2001. [Google Scholar]
- Valachova, I.; Bucekova, M.; Majtan, J. Quantification of bee-derived defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech J. Food Sci. 2016, 34, 233–243. [Google Scholar]
- Fujiwara, S.; Imai, J.; Fujiwara, M.; Yaeshima, T.; Kawashima, T.; Kobayashi, K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 1990, 265, 11333–11337. [Google Scholar]
- Bachanova, K.; Klaudiny, J.; Kopernicky, J.; Simuth, J. Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 2002, 33, 259–269. [Google Scholar]
- Shen, L.; Liu, D.; Li, M.; Jin, F.; Din, M.; Parnell, L.D.; Lai, C.Q. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria. PLoS ONE 2012, 7, e47194. [Google Scholar]
- Sojka, M.; Valachova, I.; Bucekova, M.; Majtan, J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J. Med. Microbiol. 2016, 65, 337–344. [Google Scholar]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci. Rep. 2017, 7, 7340. [Google Scholar]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial activity of different blossom honeys: New findings. Molecules 2019, 24, E1573. [Google Scholar]
- Majtan, J.; Bohova, J.; Prochazka, E.; Klaudiny, J. Methylglyoxal may affect hydrogen peroxide accumulation in manuka honey through the inhibition of glucose oxidase. J. Med. Food 2014, 17, 290–293. [Google Scholar]
- Bucekova, M.; Juricova, V.; Monton, E.; Martinotti, S.; Ranzato, E.; Majtan, J. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1. Food Chem. 2018, 240, 1131–1136. [Google Scholar]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar]
- Adams, C.J.; Manley-Harris, M.; Molan, P.C. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 2009, 344, 1050–1053. [Google Scholar]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar]
- French, V.M.; Cooper, R.A.; Molan, P.C. The antibacterial activity of honey against coagulase-negative staphylococci. J. Antimicrob. Chemother. 2005, 56, 228–231. [Google Scholar]
- Bouzo, D.; Cokcetin, N.N.; Li, L.; Ballerin, G.; Bottomley, A.L.; Lazenby, J.; Whitchurch, C.B.; Paulsen, I.T.; Hassan, K.A.; Harry, E.J. Characterising the mechanism of action of an ancient antimicrobial, manuka honey, against Pseudomonas aeruginosa using modern transcriptomics. mSystems 2020, 5, e00106-20. [Google Scholar]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar]
- Majtan, J.; Majtan, V. Is manuka honey the best type of honey for wound care? J. Hosp. Infect. 2010, 73, 305–306. [Google Scholar]
- Bucekova, M.; Valachova, I.; Kohutova, L.; Prochazka, E.; Klaudiny, J.; Majtan, J. Honeybee glucose oxidase —Its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Naturwissenschaften 2014, 101, 661–670. [Google Scholar]
- Bartakova, K.; Drackova, M.; Borkovcova, I.; Vorlova, L. Impact of microwave heating on hydroxymethylfurfural content in Czech honeys. Czech J. Food Sci. 2011, 29, 328–336. [Google Scholar]
- Hebbar, H.U.; Nandini, K.E.; Lakshmi, M.C.; Subramanian, R. Microwave and infrared heat processing of honey and its quality. Food Sci. Technol. Res. 2003, 9, 49–53. [Google Scholar]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P.; Litwińczuk, A. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. J. Food Sci. Technol. 2016, 53, 2092–2098. [Google Scholar]
- Al-Ghamdi, A.; Mohammed, S.E.A.; Ansari, M.J.; Adgaba, N. Comparison of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis florea honey. Saudi J. Biol. Sci. 2019, 26, 845–848. [Google Scholar]
- Kowalski, S.; Lukasiewicz, M.; Bednarz, S.; Panus, M. Diastase number changes during thermal and microwave processing of honey. Czech J. Food Sci. 2012, 30, 21–26. [Google Scholar]
- Schmitzova, J.; Klaudiny, J.; Albert, S.; Schroder, W.; Schrockengost, W.; Hanes, J.; Judova, J.; Simuth, J. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell. Mol. Life Sci. 1998, 54, 1020–1030. [Google Scholar]
- Hojo, M.; Kagami, T.; Sasaki, T.; Nakamura, J.; Sasaki, M. Reduced expression of major royal jelly protein 1 gene in the mushroom bodies of worker honeybees with reduced learning ability. Apidologie 2010, 41, 194–202. [Google Scholar]
- Fontana, R.; Mendes, M.A.; de Souza Monson, B.; Konno, K.; César, L.M.M.; Malaspina, O. Jelleines: A family of antimicrobial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 2004, 25, 919–928. [Google Scholar]
- Brudzynski, K.; Sjaarda, C.; Lannigan, R. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates. Front. Microbiol. 2015, 6, 711. [Google Scholar]
- Bucekova, M.; Majtan, J. The MRJP1 honey glycoprotein does not contribute to the overall antibacterial activity of natural honey. Eur. Food Res. Technol. 2016, 242, 625–629. [Google Scholar]
- Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules 2018, 23, 260. [Google Scholar]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020. [Google Scholar] [CrossRef]
- Postmes, T.; van den Bogaard, A.E.; Hazen, M. The sterilization of honey with cobalt 60 gamma radiation: A study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. Experientia 1995, 51, 986–989. [Google Scholar]
- Midgal, W.; Owczarczyk, H.B.; Kedzia, B.; Holderna-Kedzia, E.; Madajczyk, D. Microbial decontamination of natural honey by irradiation. Radiat. Phys. Chem. 2000, 57, 285–288. [Google Scholar]
- Saxena, S.; Gautam, S.; Sharma, A. Microbial decontamination of honey of Indian origin using gamma radiation and its biochemical and organoleptic properties. J. Food Sci. 2010, 75, M19–M27. [Google Scholar]
- Molan, P.C.; Allen, K.L. The effect of gamma-irradiation on the antibacterial activity of honey. J. Pharm. Pharmacol. 1996, 48, 1206–1209. [Google Scholar]
- Sabet Jalali, F.S.; Ehsani, A.; Tajik, H.; Ashtari, S. In vitro assessment of efficacy of gamma irradiation on the antimicrobial activity of iranian honey. J. Anim. Vet. Adv. 2007, 6, 996–999. [Google Scholar]
- Horniackova, M.; Bucekova, M.; Valachova, I.; Majtan, J. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur. Food Res. Technol. 2017, 243, 81–88. [Google Scholar]
- Girma, A.; Seo, W.; She, R.C. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar]
- Allen, K.L.; Molan, P.C.; Reid, G.M. A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol. 1991, 43, 817–822. [Google Scholar]
- Barnes, J.S.; Foss, F.W.; Schug, K.A. Thermally accelerated oxidative degradation of quercetin using continuous flow kinetic electrospray-ion trap-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1513–1522. [Google Scholar]
No. of Honey Samples | Type of Honey | Geographical Origin of Honey | |
---|---|---|---|
Supermarkets | 1 | multi-floral | Unknown * |
2 | acacia | Slovakia | |
3 | honeydew | Slovakia | |
4 | linden | Unknown * | |
5 | multi-floral | Unknown * | |
6 | honeydew | Unknown * | |
7 | multi-floral | Unknown * | |
8 | multi-floral | Unknown * | |
9 | forest | Unknown * | |
10 | linden | Unknown * | |
11 | multi-floral | Unknown * | |
12 | acacia | Unknown * | |
13 | forest | Unknown * | |
14 | multi-floral | Unknown * | |
15 | multi-floral | Unknown * | |
16 | rapeseed | Slovakia | |
17 | multi-floral | Slovakia | |
18 | acacia | Slovakia | |
19 | honeydew | Slovakia | |
Local food shops | 20 | acacia | Slovakia |
21 | multi-floral | Slovakia | |
22 | forest | Slovakia | |
23 | linden | Slovakia | |
24 | honeydew | Slovakia | |
25 | rapeseed | Slovakia | |
26 | multi-floral | Slovakia | |
27 | acacia | Slovakia | |
28 | honeydew | Slovakia | |
29 | honeydew | Slovakia | |
30 | multi-floral | Slovakia | |
31 | acacia | Slovakia | |
32 | multi-floral | Slovakia | |
33 | linden | Slovakia | |
34 | multi-floral | Slovakia | |
35 | multi-floral | Slovakia | |
36 | multi-floral | Slovakia |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucekova, M.; Bugarova, V.; Godocikova, J.; Majtan, J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods 2020, 9, 1263. https://doi.org/10.3390/foods9091263
Bucekova M, Bugarova V, Godocikova J, Majtan J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods. 2020; 9(9):1263. https://doi.org/10.3390/foods9091263
Chicago/Turabian StyleBucekova, Marcela, Veronika Bugarova, Jana Godocikova, and Juraj Majtan. 2020. "Demanding New Honey Qualitative Standard Based on Antibacterial Activity" Foods 9, no. 9: 1263. https://doi.org/10.3390/foods9091263
APA StyleBucekova, M., Bugarova, V., Godocikova, J., & Majtan, J. (2020). Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods, 9(9), 1263. https://doi.org/10.3390/foods9091263