Cadmium: A Focus on the Brown Crab (Cancer pagurus) Industry and Potential Human Health Risks
Abstract
:1. Introduction
2. Brown Crab (Cancer pagurus)
3. The Importance of the Brown Crab Fishing Industry and the Challenge of Cadmium: Ireland as an Example of a Crab-Trading Nation
4. Cadmium Accumulation and Monitoring in Crabs and Crustaceans
5. Cadmium and Human Health
5.1. Cadmium Exposure in Humans
5.2. Cadmium Ingestion and Accumulation in Humans
5.3. Cadmium’s Transport, Bioavailability, and Excretion in Humans
5.4. Cadmium Toxicity in Humans
6. Crab Consumption, Cadmium, and Human Health
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- Schaefer, H.R.; Dennis, S.; Fitzpatrick, S. Cadmium: Mitigation strategies to reduce dietary exposure. J. Food Sci. 2020, 85, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolam, T.; Bersuder, P.; Burden, R.; Shears, G.; Morris, S.; Warford, L.; Thomas, B.; Nelson, P. Cadmium levels in food containing crab brown meat: A brief survey from UK retailers. J. Food Compos. Anal. 2016, 54, 63–69. [Google Scholar] [CrossRef]
- Tully, O.; Robinson, M.; O’Keeffe, E.; Cosgrove, R.; Doyle, O.; Lehane, B. The Brown Crab (Cancer pagurus L.) fishery: Analysis of the resource in 2004–2005. Fish. Resour. Ser. 2006, 4, 48. [Google Scholar]
- Fahy, E.; Carroll, J.; Stokes, D. The Inshore Pot Fishery for Brown Crab (Cancer pagurus) Landing into South East Ireland: Estimate of Yield and Assessment of Status; 0578-7467; Marine Institute: Galway, Ireland, 2002. [Google Scholar]
- European Market Observatory for Fisheries and Aquaculture Products. Species Analyses 2014–2018 Edition. Available online: https://www.eumofa.eu/documents/20178/136822/Species+analyses.pdf/26ae5573-7f6c-47e1-b928-7ec5941c8ac8?version=1.0 (accessed on 26 April 2022).
- Seafood Source. Irish Brown Crab Exports to China Squeezed by New Testing Regime. Available online: https://www.seafoodsource.com/news/food-safety-health/irish-brown-crab-exports-to-china-squeezed-by-new-testing-regime (accessed on 11 April 2020).
- Seafood Source. Scottish Live Crab Exporters Feel the Pinch of Chinese Cadmium Crackdown. Available online: https://www.seafoodsource.com/news/premium/food-safety-health/scottish-live-crab-exporters-feel-the-pinch-of-chinese-cadmium-crackdown (accessed on 11 April 2020).
- European Market Observatory for Fisheries and Aquaculture Products. Brown Crab: COVID-19 Impact of the Supply Chain; European Market Observatory for Fisheries and Aquaculture Products: Luxembourg, 2021. [Google Scholar]
- Centre for Environment F. & Aquaculture Sciences (CEFAS). Survey of Cadmium in Brown Meat from Crabs and Products Made with Brown Meat from Crabs. Available online: https://www.food.gov.uk/research/research-projects/survey-of-cadmium-in-brown-meat-from-crabs-and-products-made-with-brown-meat-from-crabs (accessed on 11 April 2022).
- Angeletti, R.; Binato, G.; Guidotti, M.; Morelli, S.; Pastorelli, A.A.; Sagratella, E.; Ciardullo, S.; Stacchini, P. Cadmium bioaccumulation in Mediterranean spider crab (Maya squinado): Human consumption and health implications for exposure in Italian population. Chemosphere 2014, 100, 83–88. [Google Scholar] [CrossRef]
- Chavez-Crooker, P.; Pozo, P.; Castro, H.; Dice, M.S.; Boutet, I.; Tanguy, A.; Moraga, D.; Ahearn, G.A. Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 136, 213–224. [Google Scholar] [CrossRef]
- Barrento, S.; Marques, A.; Teixeira, B.; Carvalho, M.L.; Vaz-Pires, P.; Nunes, M.L. Accumulation of elements (S, As, Br, Sr, Cd, Hg, Pb) in two populations of Cancer pagurus: Ecological implications to human consumption. Food Chem. Toxicol. 2009, 47, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Anacleto, P.; Lourenço, H.M.; Carvalho, M.L.; Nunes, M.L.; Marques, A. Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chem. 2012, 133, 277–283. [Google Scholar] [CrossRef]
- Martin, D.J.; Rainbow, P.S. The kinetics of zinc and cadmium in the haemolymph of the shore crab Carcinus maenas (L.). Aquat. Toxicol. 1998, 40, 203–231. [Google Scholar] [CrossRef]
- Market Advisory Council. Testing for Cadmium Levels in Brown Crab Exported to People’s Republic of China. Available online: https://marketac.eu/testing-for-cadmium-levels-in-brown-crab-exported-to-peoples-republic-of-china/ (accessed on 11 April 2022).
- Lordan, R.; Zabetakis, I. Report: Cadmium Mitigation in Brown Crab. In 19/SRDP/002; Bord Iascaigh Mhara: Dublin, Ireland, 2020. [Google Scholar]
- European Commission. Commission Regulation (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: https://leap.unep.org/countries/eu/national-legislation/commission-regulation-eu-no-4882014-amending-regulation-ec-no (accessed on 17 August 2022).
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Authority, E.F.S. Cadmium in food-Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [Google Scholar] [CrossRef]
- Guilbert, S. Brown Crab and the Triple Challenge of Cadmium, Covid, and Brexit. In University of Exeter-Food System Impacts of COVID-19; University of Exeter: Exeter, UK, 2021. [Google Scholar]
- Seafood Source. Enhanced Food Safety Inspections Bite into Market for Chinese Demand for Irish, UK-Sourced Brown Crab. Available online: https://www.seafoodsource.com/news/premium/food-safety-health/enhanced-food-safety-inspections-bite-into-market-for-chinese-demand-for-irish-uk-sourced-brown-crab (accessed on 12 April 2022).
- Milligan, G. Edible Crab (Cancer pagurus). 2014. Available online: https://commons.wikimedia.org/wiki/File:Edible_Crab_(Cancer_pagurus).jpg (accessed on 4 September 2022).
- Bernhoft, R.A. Cadmium toxicity and treatment. Sci. World J. 2013, 2013, 394652. [Google Scholar] [CrossRef]
- Aoshima, K. Itai-itai disease: Lessons from the investigations of environmental epidemiology conducted in the 1970’s, with special reference to the studies of the Toyama Institute of Health. Nihon Eiseigaku Zasshi. Jpn. J. Hyg. 2017, 72, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, J.; Woo, H.D.; Kim, D.W.; Choi, I.J.; Kim, Y.-I.; Kim, J. Association between dietary cadmium intake and early gastric cancer risk in a Korean population: A case–control study. Eur. J. Nutr. 2019, 58, 3255–3266. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Cardoso, C.; Nunes, M.L.; Marques, A. Risk–benefit assessment of cooked seafood: Black scabbard fish (Aphanopus carbo) and edible crab (Cancer pagurus) as case studies. Food Control 2013, 32, 518–524. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Amlund, H.; Brantsæter, A.L.; Engeset, D.; Fæste, C.K.; Holene, E.; Ruus, A.; Lillegaard, I.; Eriksen, G.S.; Kvalem, H.E. Risk assessment of dietary Cadmium exposure in the Norwegian population. Eur. J. Nutr. Food Saf. 2015, 8, 157–161. [Google Scholar] [CrossRef]
- Turoczy, N.J.; Mitchell, B.D.; Levings, A.H.; Rajendram, V.S. Cadmium, copper, mercury, and zinc concentrations in tissues of the King Crab (Pseudocarcinus gigas) from southeast Australian waters. Environ. Int. 2001, 27, 327–334. [Google Scholar] [CrossRef]
- Wiech, M.; Vik, E.; Duinker, A.; Frantzen, S.; Bakke, S.; Maage, A. Effects of cooking and freezing practices on the distribution of cadmium in different tissues of the brown crab (Cancer pagurus). Food Control 2017, 75, 14–20. [Google Scholar] [CrossRef]
- Wiech, M.; Frantzen, S.; Duinker, A.; Rasinger, J.D.; Maage, A. Cadmium in brown crab Cancer pagurus. Effects of location, season, cooking and multiple physiological factors and consequences for food safety. Sci. Total Environ. 2020, 703, 134922. [Google Scholar] [CrossRef] [PubMed]
- New York State Department of Health. New York State Blue Crab Cooking & Eating Guide. Available online: https://www.health.ny.gov/publications/6502/index.htm (accessed on 20 August 2022).
- Ervik, H.; Lierhagen, S.; Asimakopoulos, A.G. Elemental content of brown crab (Cancer pagurus)—Is it safe for human consumption? A recent case study from Mausund, Norway. Sci. Total Environ. 2020, 716, 135175. [Google Scholar] [CrossRef]
- Seafood Source. FDA Warns Consumers to Avoid Eating Lobster Tomalley. Available online: https://www.seafoodsource.com/news/food-safety-health/fda-warns-consumers-to-avoid-eating-lobster-tomalley (accessed on 18 August 2022).
- European Commission. Information Note: Consumption of Brown Crab Meat. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_information_note_cons_brown_crab_en.pdf (accessed on 20 August 2022).
- Coleman, M.; Rodrigues, E. Orkney brown crab (Cancer pagurus) tagging project. Orkney Shellfish Res. Proj. 2017, 21, 19. [Google Scholar]
- Tonk, L.; Rozemeijer, M. Ecology of the Brown Crab (Cancer pagurus): And Production Potential for Passive Fisheries in Dutch Offshore Wind Farms; Wageningen Marine Research: Yerseke, The Netherlands, 2019. [Google Scholar]
- Skajaa, K.; Fernö, A.; Løkkeborg, S.; Haugland, E.K. Basic movement pattern and chemo-oriented search towards baited pots in edible crab (Cancer pagurus L.). Hydrobiologia 1998, 371, 143–153. [Google Scholar] [CrossRef]
- Edwards, E. A Contribution to the Bionomics of the Edible Crab (Cancer pagurus L.) in English and Irish Waters; National University of Ireland: Dublin, Ireland, 1971. [Google Scholar]
- Neal, K.; Wilson, E. Edible Crab (Cancer pagurus). Available online: https://www.marlin.ac.uk/species/detail/1179 (accessed on 30 August 2022).
- Öndes, F.; Emmerson, J.A.; Kaiser, M.J.; Murray, L.G.; Kennington, K. The catch characteristics and population structure of the brown crab (Cancer pagurus) fishery in the Isle of Man, Irish Sea. J. Mar. Biol. Assoc. UK 2019, 99, 119–133. [Google Scholar] [CrossRef]
- Öndes, F.; Kaiser, M.J.; Murray, L.G.; Torres, G. Reproductive Ecology, Fecundity, and Elemental Composition of Eggs in Brown Crab Cancer pagurus in The Isle of Man. J. Shellfish Res. 2016, 35, 539–547. [Google Scholar] [CrossRef]
- Anilkumar, G.; Sudha, K.; Anitha, E.; Subramoniam, T. Aspects of Sperm Metabolism in the Spermatheca of the Brachyuran Crab Metopograpsus Messor (Forskal). J. Crustac. Biol. 1996, 16, 310–314. [Google Scholar] [CrossRef]
- Bord Bia. Irish Brown Carb. Available online: https://www.bordbia.ie/industry/news/food-alerts/irish-brown-crab-cancer-pagrus/ (accessed on 11 April 2022).
- FAO Fisheries and Aquaculture Department. Species Fact Sheets: Cancer pagurus (Linnaeus, 1758). Available online: http://www.fao.org/fishery/species/2627/en (accessed on 20 April 2020).
- Bord Bia. Irish Fish & Seafood: An Analysis of the Irish Fish and Seafood Sector. Available online: https://www.bordbia.ie/industry/sector-profiles/fish-seafood/ (accessed on 10 January 2020).
- McDermott, A.; Whyte, P.; Brunton, N.; Lyng, J.; Bolton, D.J. Increasing the Yield of Irish Brown Crab (Cancer pagurus) during Processing without Adversely Affecting Shelf-Life. Foods 2018, 7, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bord Iascaigh Mhara. The Business of Seafood 2018: A Snapshot of Irelands Seafood Sector; BIM: Dublin, Ireland, 2019. [Google Scholar]
- The Irish Examiner. China Fears for Irish Crab Meat Exceeding Cadmium Limits. Available online: https://www.irishexaminer.com/farming/arid-20367120.html (accessed on 12 April 2022).
- Johnson, P. Chinese Market for Crab and Salmon Suffers Sudden Decline. Available online: https://www.shetnews.co.uk/2020/02/05/chinese-market-for-crab-and-salmon-suffers-sudden-decline/ (accessed on 20 August 2020).
- Seafood News. Live Dungeness Shipments to China Hampered by Rumors of Cadmium Contamination. Available online: https://www.seafoodnews.com/Story/1059810/Live-Dungeness-Shipments-to-China-Hampered-by-Rumors-of-Cadmium-Contamination (accessed on 12 April 2022).
- South China Morning Post. Mainland Halt on Hairy Crab Exports Keeps Them off the Menu in Hong Kong, as Peak Season Nears. Available online: https://www.scmp.com/news/hong-kong/health-environment/article/2115619/mainland-halt-hairy-crab-exports-keeps-them-menu (accessed on 27 April 2020).
- Hoogenboom, R.L.A.P.; Kotterman, M.J.J.; Hoek-van Nieuwenhuizen, M.; van der Lee, M.K.; Mennes, W.C.; Jeurissen, S.M.F.; van Leeuwen, S.P.J. Dioxins, PCBs and heavy metals in Chinese mitten crabs from Dutch rivers and lakes. Chemosphere 2015, 123, 1–8. [Google Scholar] [CrossRef]
- CBI Ministry of Foreign Affairs. Entering the European Market for Crab. Available online: https://www.cbi.eu/market-information/fish-seafood/crab/market-entry (accessed on 1 September 2022).
- BBC. Chinese Ban Imposed on ‘Contaminated’ Crabs. Available online: https://www.bbc.com/news/uk-wales-north-west-wales-34006259 (accessed on 22 March 2022).
- The Times. Chinese Ban on Crabmeat Costs Millions. Available online: https://www.thetimes.co.uk/article/chinese-ban-on-crabmeat-costs-millions-krcj73thk (accessed on 1 January 2022).
- Garret, A.; Lawler, I.; Ballesteros, M.; Marques, A.; Dean, C.; Schnabele, D. SR681 Outlook for European Brown Crab: Understanding Brown Crab Production and Consumption in the UK, Republic of Ireland, France, Spain and Portugal; Seafish: Edinburgh, UK, 2015. [Google Scholar]
- SFPA. Certification of Fishery Products. Available online: https://www.sfpa.ie/What-We-Do/Trade-Market-Access-Support/Exports/Certification-of-Fishery-Products (accessed on 23 March 2022).
- Mazzei, V.; Longo, G.; Brundo, M.V.; Sinatra, F.; Copat, C.; Oliveri Conti, G.; Ferrante, M. Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species. Ecotoxicol. Environ. Saf. 2014, 110, 269–279. [Google Scholar] [CrossRef]
- Signa, G.; Mazzola, A.; Tramati, C.D.; Vizzini, S. Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea). Environ. Pollut. 2017, 230, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P. Relationship between physiological condition and cadmium accumulation in Carcinus maenas (L.). Comp. Biochem. Physiol. Part A Physiol. 1991, 99, 75–83. [Google Scholar] [CrossRef]
- Bondgaard, M.; Nørum, U.; Bjerregaard, P. Cadmium accumulation in the female shore crab Carcinus maenas during the moult cycle and ovarian maturation. Mar. Biol. 2000, 137, 995–1004. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Bjørn, L.; Nørum, U.; Pedersen, K.L. Cadmium in the shore crab Carcinus maenas: Seasonal variation in cadmium content and uptake and elimination of cadmium after administration via food. Aquat. Toxicol. 2005, 72, 5–15. [Google Scholar] [CrossRef]
- Davies, I.; Topping, G.; Graham, W.; Falconer, C.; McIntosh, A.; Saward, D. Field and experimental studies on cadmium in the edible crab Cancer pagurus. Mar. Biol. 1981, 64, 291–297. [Google Scholar] [CrossRef]
- Frantzen, A.; Duinker, A.; Måge, A. Kadmiumanalyser i taskekrabbe fra Nordland Høsten/Vinteren 2013–2014; Norway Report; National Institute of Nutrition and Seafood Research (NIFES): Bergen, Norway, 2015. [Google Scholar]
- Frantzen, S.; Måge, A. Fremmedstoffer i Villfisk Med Vekt På Kyst-Nære Farvann. Brosme, Lange og Bifangstarter. Gjelder Tall for Prøver Samlet Inn i 2013–2015; NIFES: Bergen, Norway, 2016. [Google Scholar]
- Espinosa Almendro, J.M.; Bosch Ojeda, C.; Garcia de Torres, A.; Cano Pavón, J.M. Determination of cadmium in biological samples by inductively coupled plasma atomic emission spectrometry after extraction with 1,5-bis(di-2-pyridylmethylene) thiocarbonohydrazide. Analyst 1992, 117, 1749–1751. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium; U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. [Google Scholar]
- Canada Health. Product Safety Testing: Chemistry Methods. Available online: https://www.canada.ca/en/health-canada/services/consumer-product-safety/product-safety-testing/chemistry-methods.html (accessed on 22 April 2022).
- Roberts, C.A.; Clark, J.M. Improved determination of cadmium in blood and plasma by flameless atomic absorption spectroscopy. Bull. Environ. Contam. Toxicol. 1986, 36, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Satzger, R.D.; Clow, C.S.; Bonnin, E.; Fricke, F.L. Determination of background levels of lead and cadmium in raw agricultural crops by using differential pulse anodic stripping voltammetry. J.-Assoc. Off. Anal. Chem. 1982, 65, 987–991. [Google Scholar] [CrossRef]
- Knutsen, H.; Wiech, M.; Duinker, A.; Maage, A. Cadmium in the shore crab Carcinus maenas along the Norwegian coast: Geographical and seasonal variation and correlation to physiological parameters. Environ. Monit. Assess. 2018, 190, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, L.R.; Bjerregaard, P.; Simonsen, V. Interindividual variability in metal status in the shore crab Carcinus maenas: The role of physiological condition and genetic variation. Mar. Biol. 2005, 146, 571–580. [Google Scholar] [CrossRef]
- Nørum, U.; Bondgaard, M.; Pedersen, T.V.; Bjerregaard, P. In vivo and in vitro cadmium accumulation during the moult cycle of the male shore crab Carcinus maenas—Interaction with calcium metabolism. Aquat. Toxicol. 2005, 72, 29–44. [Google Scholar] [CrossRef]
- Wold, J.P.; Kermit, M.; Woll, A. Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer pagurus) by Near-Infrared Imaging Spectroscopy. Appl. Spectrosc. 2010, 64, 691–699. [Google Scholar] [CrossRef]
- Fairfield, E.A.; Richardson, D.S.; Daniels, C.L.; Butler, C.L.; Bell, E.; Taylor, M.I. Ageing European lobsters (Homarus gammarus) using DNA methylation of evolutionarily conserved ribosomal DNA. Evol. Appl. 2021, 14, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, N.M.; Suckling, C.C.; Ciotti, B.J.; Brown, J.; McCarthy, I.D.; Gimenez, L.; Hauton, C. Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change. Sci. Rep. 2018, 8, 15639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bord Iascaigh Mhara. Brown Crab: Handling and Quality Guide. Available online: https://bim.ie/wp-content/uploads/2021/03/BIMBrownCrabHandlingandQualityGuide.pdf (accessed on 23 March 2022).
- Nugegoda, D.; Rainbow, P.S. The uptake of dissolved zinc and cadmium by the decapod crustacean Palaemon elegans. Mar. Pollut. Bull. 1995, 31, 460–463. [Google Scholar] [CrossRef]
- Blewett, T.A.; Newton, D.; Flynn, S.L.; Alessi, D.S.; Goss, G.G.; Hamilton, T.J. Cadmium bioaccumulates after acute exposure but has no effect on locomotion or shelter-seeking behaviour in the invasive green shore crab (Carcinus maenas). Conserv. Physiol. 2017, 5, cox057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.-A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Clark, P.F.; Mortimer, D.N.; Law, R.J.; Averns, J.M.; Cohen, B.A.; Wood, D.; Rose, M.D.; Fernandes, A.R.; Rainbow, P.S. Dioxin and PCB Contamination in Chinese Mitten Crabs: Human Consumption as a Control Mechanism for an Invasive Species. Environ. Sci. Technol. 2009, 43, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-H.; Zhou, Z.-K.; Tu, D.-D.; Zhou, Y.-L.; Wang, C.; Liu, Z.-P.; Gu, W.-B.; Chen, Y.-Y.; Shu, M.-A. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes. Aquat. Toxicol. 2018, 195, 1–7. [Google Scholar] [CrossRef]
- Tang, D.; Guo, H.; Shi, X.; Wang, Z. Comparative Transcriptome Analysis of the Gills from the Chinese Mitten Crab (Eriocheir japonica sinensis) Exposed to the Heavy Metal Cadmium. Turk. J. Fish. Aquat. Sci. 2019, 20, 467–479. [Google Scholar] [CrossRef]
- Liu, J.; Wang, E.; Jing, W.; Dahms, H.-U.; Murugan, K.; Wang, L. Mitigative effects of zinc on cadmium-induced reproductive toxicity in the male freshwater crab Sinopotamon henanense. Environ. Sci. Pollut. Res. 2020, 27, 16282–16292. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Kholodkevich, S.; Sharov, A.; Chen, C.; Feng, Y.; Ren, N.; Sun, K. Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii). Chemosphere 2020, 242, 125105. [Google Scholar] [CrossRef]
- Wu, H.; Xuan, R.; Li, Y.; Zhang, X.; Jing, W.; Wang, L. Biochemical, histological and ultrastructural alterations of the alimentary system in the freshwater crab Sinopotamon henanense subchronically exposed to cadmium. Ecotoxicology 2014, 23, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Guo, H.; Wang, H.; Xie, Y.; Lee, S.C.; Liu, M.; Zheng, J.; Mao, X.; Wang, H.; Liu, F.; et al. Identification and profiling of microRNAs responsive to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Hereditas 2019, 156, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condón-Abanto, S.; Raso, J.; Arroyo, C.; Lyng, J.G.; Condón, S.; Álvarez, I. Evaluation of the potential of ultrasound technology combined with mild temperatures to reduce cadmium content of edible crab (Cancer pagurus). Ultrason. Sonochem. 2018, 48, 550–554. [Google Scholar] [CrossRef] [PubMed]
- De Guglielmo, V.; Puoti, R.; Notariale, R.; Maresca, V.; Ausió, J.; Troisi, J.; Verrillo, M.; Basile, A.; Febbraio, F.; Piscopo, M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. Ecotoxicol. Environ. Saf. 2019, 169, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Kim, N.-S.; Lee, B.-K.; Oh, I.; Kim, Y. Changes of Atmospheric and Blood Concentrations of Lead and Cadmium in the General Population of South Korea from 2008 to 2017. Int. J. Environ. Res. Public Health 2019, 16, 2096. [Google Scholar] [CrossRef] [Green Version]
- Lanceleur, L.; Schäfer, J.; Chiffoleau, J.-F.; Blanc, G.; Auger, D.; Renault, S.; Baudrimont, M.; Audry, S. Long-term records of cadmium and silver contamination in sediments and oysters from the Gironde fluvial–estuarine continuum–Evidence of changing silver sources. Chemosphere 2011, 85, 1299–1305. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Luo, T.; Liu, X.; Hua, H.; Zhuang, Y.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, W.; Ren, J. Tracing anthropogenic cadmium emissions: From sources to pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef]
- Andersen, O.; Nielsen, J.B.; Nordberg, G.F. Nutritional interactions in intestinal cadmium uptake–Possibilities for risk reduction. Biometals 2004, 17, 543–547. [Google Scholar] [CrossRef]
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vanter, M. Health effects of cadmium exposure—A review of the literature and a risk estimate. Scand. J. Work Environ. Health 1998, 24, 1–51. [Google Scholar]
- Ashraf, M.W. Levels of heavy metals in popular cigarette brands and exposure to these metals via smoking. Sci. World J. 2012, 2012, 729430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keil, D.E.; Berger-Ritchie, J.; McMillin, G.A. Testing for Toxic Elements: A Focus on Arsenic, Cadmium, Lead, and Mercury. Lab. Med. 2011, 42, 735–742. [Google Scholar] [CrossRef]
- Satarug, S.; Moore, M.R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health Perspect. 2004, 112, 1099–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Current health risk assessment practice for dietary cadmium: Data from different countries. Food Chem. Toxicol. 2017, 106, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Food Safety Authority of Ireland. Metals of Toxicological Importance in the Irish Diet. Available online: https://www.lenus.ie/handle/10147/609836 (accessed on 29 August 2020).
- Irish Universities Nutrition Alliance. National Adult Nutrition Survey: Physical Measurements, Physical Activity Patterns and Food Choice Motives. Available online: https://www.iuna.net/surveyreports (accessed on 29 August 2022).
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary Cadmium Intake and Sources in the US. Nutrients 2019, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Chapter 1-The Origin of Chronic Diseases with Respect to Cardiovascular Disease. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Zabetakis, I., Lordan, R., Tsoupras, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Awata, H.; Linder, S.; Mitchell, L.E.; Delclos, G.L. Association of Dietary Intake and Biomarker Levels of Arsenic, Cadmium, Lead, and Mercury among Asian Populations in the United States: NHANES 2011–2012. Environ. Health Perspect. 2017, 125, 314–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, E.M.; Landy, D.C.; Ahn, S.; Hlaing, W.M.; Hennekens, C.H. Hypothesis: Cadmium explains, in part, why smoking increases the risk of cardiovascular disease. J. Cardiovasc. Pharmacol. Ther. 2013, 18, 550–554. [Google Scholar] [CrossRef]
- Zeng, L.; Ruan, M.; Liu, J.; Wilde, P.; Naumova, E.N.; Mozaffarian, D.; Zhang, F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 2019, 119, 1085–1098.e1012. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Lu, Y.; Liang, Y.; Chen, B.; Wu, M.; Li, S.; He, G.; Jin, T. Exposure assessment of dietary cadmium: Findings from shanghainese over 40 years, China. BMC Public Health 2013, 13, 590. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callan, A.; Hinwood, A.; Devine, A. Metals in commonly eaten groceries in Western Australia: A market basket survey and dietary assessment. Food Addit. Contam. Part A 2014, 31, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. Int. J. Hyg. Environ. Health 2012, 215, 99–101. [Google Scholar] [CrossRef]
- Adams, S.V.; Quraishi, S.M.; Shafer, M.M.; Passarelli, M.N.; Freney, E.P.; Chlebowski, R.T.; Luo, J.; Meliker, J.R.; Mu, L.; Neuhouser, M.L.; et al. Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women’s Health Initiative. Environ. Health Perspect. 2014, 122, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Puerto-Parejo, L.M.; Aliaga, I.; Canal-Macias, M.L.; Leal-Hernandez, O.; Roncero-Martín, R.; Rico-Martín, S.; Moran, J.M. Evaluation of the Dietary Intake of Cadmium, Lead and Mercury and Its Relationship with Bone Health among Postmenopausal Women in Spain. Int. J. Environ. Res. Public Health 2017, 14, 564. [Google Scholar] [CrossRef] [Green Version]
- Lavado-García, J.M.; Puerto-Parejo, L.M.; Roncero-Martín, R.; Moran, J.M.; Pedrera-Zamorano, J.D.; Aliaga, I.J.; Leal-Hernández, O.; Canal-Macias, M.L. Dietary Intake of Cadmium, Lead and Mercury and Its Association with Bone Health in Healthy Premenopausal Women. Int. J. Environ. Res. Public Health 2017, 14, 1437. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhang, F.; Lei, Y. Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol. 2016, 42, 101–107. [Google Scholar] [CrossRef]
- Jin, T.; Nordberg, M.; Frech, W.; Dumont, X.; Bernard, A.; Ye, T.-t.; Kong, Q.; Wang, Z.; Li, P.; Lundström, N.-G.; et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 2002, 15, 397–410. [Google Scholar] [CrossRef]
- Taylor, W.R. Permeation of barium and cadmium through slowly inactivating calcium channels in cat sensory neurones. J. Physiol. 1988, 407, 433–452. [Google Scholar] [CrossRef]
- Foulkes, E.C. Interactions between metals in rat jejunum: Implications on the nature of cadmium uptake. Toxicology 1985, 37, 117–125. [Google Scholar] [CrossRef]
- Reeves, P.G.; Chaney, R.L. Bioavailability as an issue in risk assessment and management of food cadmium: A review. Sci. Total Environ. 2008, 398, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.R.S. Nutritional Factors that May Influence Bioavailability of Cadmium. J. Environ. Qual. 1988, 17, 175–180. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Jensen, L.B.E.; Pedersen, K.L. Effect of size on concentrations and cadmium inducibility of metallothionein in the shore crab Carcinus maenas. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 249, 109146. [Google Scholar] [CrossRef] [PubMed]
- Siewicki, T.; Balthrop, J. Comparison of the digestion of oyster tissue containing intrinsically or extrinsically labeled cadmium [Rats]. Nutr. Rep. Int. 1983, 27, 899–909. [Google Scholar]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy fats and cardiovascular disease: Do we really need to be concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.G.; Chaney, R.L. Nutritional status affects the absorption and whole-body and organ retention of cadmium in rats fed rice-based diets. Environ. Sci. Technol. 2002, 36, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Chaney, R.L. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ. Res. 2004, 96, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Chaney, R.L.; Simmons, R.W.; Cherian, M.G. Metallothionein induction is not involved in cadmium accumulation in the duodenum of mice and rats fed diets containing high-cadmium rice or sunflower kernels and a marginal supply of zinc, iron, and calcium. J. Nutr. 2005, 135, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, P.R.; McLellan, J.S.; Haist, J.; Cherian, M.G.; Chamberlain, M.J.; Valberg, L.S. Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 1978, 74, 841–846. [Google Scholar] [CrossRef]
- Silver, M.K.; Lozoff, B.; Meeker, J.D. Blood cadmium is elevated in iron deficient U.S. children: A cross-sectional study. Environ. Health 2013, 12, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997, 388, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Kim, K.-Y.; Choi, B.-S.; Youn, P.; Ryu, D.-Y.; Klaassen, C.D.; Park, J.-D. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch. Toxicol. 2007, 81, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Richens, D.T. The Chemistry of Aqua Ions; Wiley Chichester: Chichester, UK, 1997. [Google Scholar]
- Zalups, R.K.; Ahmad, S. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 2003, 186, 163–188. [Google Scholar] [CrossRef]
- Bernard, A. Confusion about Cadmium Risks: The Unrecognized Limitations of an Extrapolated Paradigm. Environ. Health Perspect. 2016, 124, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef]
- Aitio, A.; Kiilunen, M.; Santonen, T.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed.; Chapter: Gold and Gold Mining; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bernard, A. Renal dysfunction induced by cadmium: Biomarkers of critical effects. Biometals 2004, 17, 519–523. [Google Scholar] [CrossRef]
- Bernard, A.; Roels, H.; Buchet, J.-P.; Cardenas, A.; Lauwerys, R. Cadmium and health: The Belgian experience. IARC Sci. Publ. 1992, 118, 15–33. [Google Scholar]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Chaumont, A.; De Winter, F.; Dumont, X.; Haufroid, V.; Bernard, A. The threshold level of urinary cadmium associated with increased urinary excretion of retinol-binding protein and β2-microglobulin: A re-assessment in a large cohort of nickel-cadmium battery workers. Occup. Environ. Med. 2011, 68, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Lei, L.; Nilsson, J.; Li, H.; Nordberg, M.; Bernard, A.; Nordberg, G.F.; Bergdahl, I.A.; Jin, T. Renal Function after Reduction in Cadmium Exposure: An 8-Year Follow-up of Residents in Cadmium-Polluted Areas. Environ. Health Perspect. 2012, 120, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Dyck, K.N.; Bashir, S.; Horgan, G.W.; Sneddon, A.A. Regular crabmeat consumers do not show increased urinary cadmium or beta-2-microglobulin levels compared to non-crabmeat consumers. J. Trace Elem. Med. Biol. 2019, 52, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, S.; Palermo, T.; Meliker, J. Seafood intake and blood cadmium in a cohort of adult avid seafood consumers. Int. J. Hyg. Environ. Health 2015, 218, 147–152. [Google Scholar] [CrossRef]
- Lind, Y.; Wicklund Glynn, A.; Engman, J.; Jorhem, L. Bioavailability of cadmium from crab hepatopancreas and mushroom in relation to inorganic cadmium: A 9-week feeding study in mice. Food Chem. Toxicol. 1995, 33, 667–673. [Google Scholar] [CrossRef]
- Maage, A.; Julshamn, K. A comparison of dressed crab and a cadmium salt (CdCl2) as cadmium sources in rat diets. Comp Biochem. Physiol. C Comp. Pharm. Toxicol. 1987, 88, 209–211. [Google Scholar] [CrossRef]
- Ju, Y.-R.; Chen, W.-Y.; Liao, C.-M. Assessing human exposure risk to cadmium through inhalation and seafood consumption. J. Hazard. Mater. 2012, 227–228, 353–361. [Google Scholar] [CrossRef]
- FAO/WHO (Food and Agriculture Organisation/World Health Organization). Joint FAO/WHO Expert Committee on Food Additives. In Proceedings of the Seventy-Third Meeting, Geneva, Switzerland,, 8–17 June 2010; Summary and Conclusions. Issued 24 June 2010. Available online: https://www.who.int/publications/i/item/9789241209601 (accessed on 29 September 2022).
- Satarug, S.; Gobe, G.C.; Vesey, D.A. Multiple Targets of Toxicity in Environmental Exposure to Low-Dose Cadmium. Toxics 2022, 10, 472. [Google Scholar] [CrossRef]
- Wong, C.; Roberts, S.M.; Saab, I.N. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul. Toxicol. Pharmacol. 2022, 130, 105122. [Google Scholar] [CrossRef]
- The Panel on Contaminants in the Food Chain of the European Food Safety Authority (CONTAM Panel). Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. Environ. Res. 2019, 173, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Varghese, A.C.; Mandal, S.; Bhattacharyya, S.; Nandi, P.; Rahman, S.M.; Kar, K.K.; Saha, R.; Roychoudhury, S.; Murmu, N. Lead and cadmium exposure induces male reproductive dysfunction by modulating the expression profiles of apoptotic and survival signal proteins in tea-garden workers. Reprod. Toxicol. 2020, 98, 134–148. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, P.; Feng, W.; Liu, C.; Yang, P.; Chen, Y.J.; Sun, L.; Sun, Y.; Yue, J.; Gu, L.J.; et al. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ. Pollut. 2017, 224, 224–234. [Google Scholar] [CrossRef]
- Lee, S.; Min, J.-Y.; Min, K.-B. Female Infertility Associated with Blood Lead and Cadmium Levels. Int. J. Environ. Res. Public Health 2020, 17, 1794. [Google Scholar] [CrossRef] [Green Version]
- Upson, K.; O’Brien, K.M.; Hall, J.E.; Tokar, E.J.; Baird, D.D. Cadmium Exposure and Ovarian Reserve in Women Aged 35-49 Years: The Impact on Results From the Creatinine Adjustment Approach Used to Correct for Urinary Dilution. Am. J. Epidemiol. 2021, 190, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.; Ye, X.; Zhu, Z.; Li, C.; Zhou, J.; Liu, J. Urinary cadmium concentrations and risk of primary ovarian insufficiency in women: A case–control study. Environ. Geochem. Health 2021, 43, 2025–2035. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Awadalla, A.; Mortada, W.I.; Abol-Enein, H.; Shokeir, A.A. Correlation between blood levels of cadmium and lead and the expression of microRNA-21 in Egyptian bladder cancer patients. Heliyon 2020, 6, e05642. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.R.; Taalab, Y.M.; Heinze, S.; Tariba Lovaković, B.; Pizent, A.; Renieri, E.; Tsatsakis, A.; Farooqi, A.A.; Javorac, D.; Andjelkovic, M.; et al. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Patrick, L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 2003, 8, 106–128. [Google Scholar] [PubMed]
- Joseph, P. Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Filipič, M. Mechanisms of cadmium induced genomic instability. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2012, 733, 69–77. [Google Scholar] [CrossRef]
- Liu, J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bimonte, V.M.; Besharat, Z.M.; Antonioni, A.; Cella, V.; Lenzi, A.; Ferretti, E.; Migliaccio, S. The endocrine disruptor cadmium: A new player in the pathophysiology of metabolic diseases. J. Endocrinol. Investig. 2021, 44, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Chen, Y.; Chen, Y.; Chen, C.; Han, B.; Li, Q.; Zhu, C.; Xia, F.; Zhai, H.; Wang, N.; et al. Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women. Environ. Pollut. 2017, 230, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Javadmoosavi, S.Y.; Mansouri, B.; Azadi, N.A.; Mehrpour, O.; Nakhaee, S. Thyroid dysfunction: How concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ. Sci. Pollut. Res. Int. 2019, 26, 35787–35796. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, R.; Yu, L.; Cai, Z.; Li, H.; Zuo, Y.; Wang, Z.; Li, H. Combined effects of cadmium and tetrabromobisphenol a (TBBPA) on development, antioxidant enzymes activity and thyroid hormones in female rats. Chem. Biol. Interact. 2018, 289, 23–31. [Google Scholar] [CrossRef]
- Chen, A.; Kim, S.S.; Chung, E.; Dietrich, K.N. Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health and Nutrition Examination Survey, 2007–2008. Environ. Health Perspect. 2013, 121, 181–186. [Google Scholar] [CrossRef]
- Jain, R.B.; Choi, Y.S. Interacting effects of selected trace and toxic metals on thyroid function. Int. J. Environ. Health Res. 2016, 26, 75–91. [Google Scholar] [CrossRef]
- Buha, A.; Matovic, V.; Antonijevic, B.; Bulat, Z.; Curcic, M.; Renieri, E.A.; Tsatsakis, A.M.; Schweitzer, A.; Wallace, D. Overview of Cadmium Thyroid Disrupting Effects and Mechanisms. Int. J. Mol. Sci. 2018, 19, 1501. [Google Scholar] [CrossRef] [Green Version]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A metallohormone? Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Brama, M.; Gnessi, L.; Basciani, S.; Cerulli, N.; Politi, L.; Spera, G.; Mariani, S.; Cherubini, S.; d’Abusco, A.S.; Scandurra, R.; et al. Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism. Mol. Cell. Endocrinol. 2007, 264, 102–108. [Google Scholar] [CrossRef]
- Strumylaite, L.; Kregzdyte, R.; Bogusevicius, A.; Poskiene, L.; Baranauskiene, D.; Pranys, D. Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study. Int. J. Mol. Sci. 2019, 20, 3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Shi, L.; Li, J.; Li, L.; Wang, H.; Yang, H. Long-term cadmium exposure promoted breast cancer cell migration and invasion by up-regulating TGIF. Ecotoxicol. Environ. Saf. 2019, 175, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Henson, M.C.; Chedrese, P.J. Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction. Exp. Biol. Med. 2004, 229, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, B.; Dahiya, N.R.; Tyagi, A.; Kolluru, V.; Saran, U.; Baby, B.V.; States, J.C.; Haddad, A.Q.; Ankem, M.K.; Damodaran, C. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis 2020, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Imura, J.; Tsuneyama, K.; Ueda, Y. Novel Pathological Study of Cadmium Nephropathy of Itai-itai Disease. In Cadmium Toxicity: New Aspects in Human Disease, Rice Contamination, and Cytotoxicity; Himeno, S., Aoshima, K., Eds.; Springer: Singapore, 2019; pp. 39–50. [Google Scholar]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Sakurai, M.; Ishizaki, M.; Kido, T. Cancer Mortality in Residents of the Cadmium-Polluted Jinzu River Basin in Toyama, Japan. Toxics 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; MacGibbon, A.; Fong, B.; Zhang, R.; Liu, K.; Rowan, A.; McJarrow, P. Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats. Nutrients 2015, 7, 4526. [Google Scholar] [CrossRef] [Green Version]
- Birgisdottir, B.E.; Knutsen, H.K.; Haugen, M.; Gjelstad, I.M.; Jenssen, M.T.S.; Ellingsen, D.G.; Thomassen, Y.; Alexander, J.; Meltzer, H.M.; Brantsæter, A.L. Essential and toxic element concentrations in blood and urine and their associations with diet: Results from a Norwegian population study including high-consumers of seafood and game. Sci. Total Environ. 2013, 463–464, 836–844. [Google Scholar] [CrossRef]
Crab Meat Type (State) | Location | Estimated Cadmium Levels (mg/kg) | Detection Method | Reference | |
---|---|---|---|---|---|
Mean ± SD | |||||
Spring Caught | Summer Caught | ||||
White meat (raw) | Portugal | 0.07 ± 0.06 | 0.01 ± 0.01 | FAAS | [14] |
White meat (steamed) | Portugal | 0.24 ± 0.38 | 0.10 ± 0.14 | ||
White meat (boiled) | Portugal | 0.05 ± 0.05 | 0.10 ± 0.16 | ||
Brown meat (raw) | Portugal | 8.4 ± 8.3 | 8.1 ± 14.2 | ||
Brown meat (steamed) | Portugal | 7.6 ± 5.2 | 11 ± 13 | ||
Brown meat (boiled) | Portugal | 5.6 ± 5.6 | 5.0 ± 8.2 | ||
Mean ± SD | |||||
White claw meat (raw) | Northern Norway | 0.024 ± 0.012 | ICP-MS | [30] | |
White claw meat (raw) | Southern Norway | 0.007 ± 0.005 | |||
Brown meat (raw) | Northern Norway | 1.15 ± 0.76 | |||
Brown meat (raw) | Southern Norway | 0.21 ± 0.14 | |||
White claw meat (boiled) | Northern Norway | 0.30 ± 0.29 | |||
White claw meat (boiled) | Southern Norway | 0.065 ± 0.075 | |||
Brown meat (boiled) | Northern Norway | 0.45 ± 0.26 | |||
Brown meat (boiled) | Southern Norway | 0.16 ± 0.12 | |||
Yearly median concentration range between 2016 and 2017 | |||||
Brown meat (raw) | Mausund, Norway | 2.11–4.37 | ICP-MS | [33] | |
Estimated mean | |||||
White meat (raw) | English Channel | 0.10 | FAAS | [13] | |
Brown meat (raw) | English Channel | 15–18 | |||
White meat (raw) | Scottish coast | 0.10 | |||
Brown meat (raw) | Scottish coast | 20–30 | |||
Mean/range | |||||
White meat (raw) | Birsay, Scotland | -/0.08–0.27 | FAAS | [64] | |
Brown meat (raw) | Birsay, Scotland | 7.30/1.12–49.4 | |||
White meat (raw) | Norwegian coast | 0.62/0.002–4.5 | ICP-MS | [33,65] | |
Brown meat (raw) | Norwegian coast | 8.7/0.24–43.0 | |||
White meat (raw) | Senja, Norway | 0.53/0.03–3.2 | ICP-MS | [33,66] | |
Brown meat (raw) | Senja, Norway | 9.3/1.6–29.0 | |||
White meat (raw) | Kvaløya, Norway | 0.25/0.06–0.74 | |||
Brown meat (raw) | Kvaløya, Norway | 30.0/7.3–58.0 |
General Population (A) | High-Exposure Population (B) * | ||
---|---|---|---|
Food Group | Percentage (%) Contribution of Dietary Cadmium Intake | Food Group | Percentage (%) Contribution of Dietary Cadmium Intake |
Rice | 55.8 | Rice | 58.6 |
Leafy vegetables | 10.5 | Leafy vegetables | 9.2 |
Wheat flour | 11.8 | Wheat flour | 2 |
Shellfish | 4.8 | Shellfish | 13.2 |
Meat | 2.6 | Meat | 2 |
Seaweed | 2.4 | Seaweed | 6.4 |
Other vegetables | 2.4 | Other vegetables | 1.4 |
Other cereals | 2.1 | Other cereals | 0.9 |
Root and stalk vegetables | 2.0 | Root and stalk vegetables | 1.7 |
Mushrooms | 1.1 | Mushrooms | 1.5 |
Fish | 1.1 | Fish | 1 |
Legumes | 0.9 | Legumes | 0.6 |
Fruits | 0.6 | Fruits | 0.4 |
Eggs | 0.6 | Eggs | 0.2 |
Nuts | 0.4 | Nuts | 0.4 |
Offal | 0.4 | Offal | 0.2 |
Other | 0.5 | Other | 0.3 |
Biomarkers | Abnormal Values | Interpretations and Associations |
---|---|---|
NAG | >4 U/g creatinine | Tubular injury, mortality |
Lysozyme | >4 mg/g creatinine | Tubular injury |
Total protein | >100 mg/g creatinine | Glomerular dysfunction, CKD |
Albumin | >30 mg/g creatinine | Glomerular dysfunction, CKD |
ß2MG | ≥1000 µg/g creatinine | Irreversible tubular dysfunction |
ß2-MG | ≥300 µg/g creatinine | Mild tubular dysfunction, rapid GFR decline |
ß2-MG | ≥145 µg/g creatinine | Increased hypertension risk |
α1-MG | ≥400 µg/g creatinine | Mild tubular dysfunction |
α1-MG | ≥1500 µg/g creatinine | Irreversible tubular dysfunction |
KIM-1 | ≥1.6 mg/g creatinine in men ≥2.4 mg/g creatinine in women | Kidney injury, urinary KIM-1 levels correlated with blood cadmium levels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lordan, R.; Zabetakis, I. Cadmium: A Focus on the Brown Crab (Cancer pagurus) Industry and Potential Human Health Risks. Toxics 2022, 10, 591. https://doi.org/10.3390/toxics10100591
Lordan R, Zabetakis I. Cadmium: A Focus on the Brown Crab (Cancer pagurus) Industry and Potential Human Health Risks. Toxics. 2022; 10(10):591. https://doi.org/10.3390/toxics10100591
Chicago/Turabian StyleLordan, Ronan, and Ioannis Zabetakis. 2022. "Cadmium: A Focus on the Brown Crab (Cancer pagurus) Industry and Potential Human Health Risks" Toxics 10, no. 10: 591. https://doi.org/10.3390/toxics10100591