Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Dust Samples
2.2. Sample Preparation and Chemical Analysis
2.3. Quality Assurance and Quality Control
2.4. Human Exposure via Dust Ingestion and Comparison with Inhalation and Soil Ingestion
2.5. Data analysis
2.6. Ethical Statement
3. Results
3.1. Quantification Frequency and Levels of Pesticides in Dust
3.2. Temporal and Spatial Variations in Pesticide Levels in Dust
3.3. Daily Intakes of Pesticides via Dust Ingestion
3.4. Comparison of Daily Intakes from Dust Ingestion with Inhalation and Soil Ingestion
4. Discussion
4.1. Quantification Frequency and Levels of Pesticides Found
4.2. Temporal and Spatial Differences in Pesticide Levels
4.3. Daily Uptakes of Pesticides via Dust Ingestion
4.4. Comparison of Daily Intakes from Dust Ingestion with Inhalation and Soil Ingestion
4.5. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT-Pesticides Use/Crops. Available online: http://www.fao.org/faostat/en/#data/RP/visualize (accessed on 10 December 2019).
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kabir, E.; Ara, S. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: From clinical findings to preclinical models and potential mechanisms. J. Neurochem. 2017, 142, 162–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Wang, W.; Jiang, Y.; Chu, W. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio). Environ. Pollut. 2021, 269, 116129. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Bagchi, M.; Hassoun, E.A.; Stohs, S.J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 1995, 104, 129–140. [Google Scholar] [CrossRef]
- Ledda, C.; Cannizzaro, E.; Cinà, D.; Filetti, V.; Vitale, E.; Paravizzini, G.; Di Naso, C.; Iavicoli, I.; Rapisarda, V. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J. Occup. Med. Toxicol. 2021, 16, 1. [Google Scholar] [CrossRef]
- Désert, M.; Ravier, S.; Gille, G.; Quinapallo, A.; Armengaud, A.; Pochet, G.; Savelli, J.L.; Wortham, H.; Quivet, E. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur Region and Corsica, France. Atmos. Environ. 2018, 192, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
- Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J. Pesticides in the atmosphere: A comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 2016, 16, 1531–1544. [Google Scholar] [CrossRef]
- Pérez-Indoval, R.; Rodrigo-Ilarri, J.; Cassiraga, E.; Rodrigo-Clavero, M.E. Numerical modeling of groundwater pollution by chlorpyrifos, bromacil and terbuthylazine. Application to the buñol-cheste aquifer (spain). Int. J. Environ. Res. Public Health 2021, 18, 3511. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Indoval, R.; Rodrigo-Ilarri, J.; Cassiraga, E.; Rodrigo-Clavero, M.E. PWC-based evaluation of groundwater pesticide pollution in the Júcar River Basin. Sci. Total Environ. 2022, 847, 157386. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.E.; Cassiraga, E.; Ballesteros-Almonacid, L. Assessment of groundwater contamination by terbuthylazine using vadose zone numerical models. Case study of valencia province (spain). Int. J. Environ. Res. Public Health 2020, 17, 3280. [Google Scholar] [CrossRef]
- Coscollà, C.; López, A.; Yahyaoui, A.; Colin, P.; Robin, C.; Poinsignon, Q.; Yusà, V. Human exposure and risk assessment to airborne pesticides in a rural French community. Sci. Total Environ. 2017, 584–585, 856–868. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Klánová, J.; Přibylová, P.; Kohoutek, J.; Dalvie, M.A.; Röösli, M.; Degrendele, C. Qualitative assessment of 27 current-use pesticides in air at 20 sampling sites across Africa. Chemosphere 2020, 258, 127333. [Google Scholar] [CrossRef]
- Quirós-Alcalá, L.; Bradman, A.; Smith, K.; Weerasekera, G.; Odetokun, M.; Barr, D.B.; Nishioka, M.; Castorina, R.; Hubbard, A.E.; Nicas, M.; et al. Organophosphorous pesticide breakdown products in house dust and children’s urine. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunnelle, K.J.; Bennett, D.H.; Tancredi, D.J.; Gee, S.J.; Stoecklin-Marois, M.T.; Hennessy-Burt, T.E.; Hammock, B.D.; Schenker, M.B. Pyrethroids in house dust from the homes of farm worker families in the MICASA study. Environ. Int. 2013, 61, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Bradman, A.; Whitaker, D.; Quirós, L.; Castorina, R.; Henn, B.C.; Nishioka, M.; Morgan, J.; Barr, D.B.; Harnly, M.; Brisbin, J.A.; et al. Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Fuhrimann, S.; Mol, H.G.J.; Dias, J.; Dalvie, M.A.; Röösli, M.; Degrendele, C.; Figueiredo, D.M.; Huss, A.; Portengen, L.; Vermeulen, R. Quantitative assessment of multiple pesticides in silicone wristbands of children/guardian pairs living in agricultural areas in South Africa. Sci. Total Environ. 2022, 812, 152330. [Google Scholar] [CrossRef]
- Arcury, T.A.; Chen, H.; Quandt, S.A.; Talton, J.W.; Anderson, K.A.; Scott, R.P.; Jensen, A.; Laurienti, P.J. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. Sci. Total Environ. 2021, 763, 144233. [Google Scholar] [CrossRef]
- Fišerová, P.S.; Kohoutek, J.; Degrendele, C.; Dalvie, M.A.; Klánová, J. New sample preparation method to analyse 15 specific and non-specific pesticide metabolites in human urine using LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1166, 122542. [Google Scholar] [CrossRef] [PubMed]
- Bravo, N.; Grimalt, J.O.; Mazej, D.; Tratnik, J.S.; Sarigiannis, D.A.; Horvat, M. Mother/child organophosphate and pyrethroid distributions. Environ. Int. 2020, 134, 105264. [Google Scholar] [CrossRef] [PubMed]
- Molomo, R.N.; Basera, W.; Chetty-Mhlanga, S.; Fuhrimann, S.; Mugari, M.; Wiesner, L.; Röösli, M.; Dalvie, M.A. Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, socio-economic factors and lifestyles: A cross-sectional study among school boys in the rural western cape, South Africa. Environ. Pollut. 2021, 275, 116660. [Google Scholar] [CrossRef] [PubMed]
- Huen, K.; Bradman, A.; Harley, K.; Yousefi, P.; Boyd Barr, D.; Eskenazi, B.; Holland, N. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community. Environ. Res. 2012, 117, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Afata, T.N.; Mekonen, S.; Tucho, G.T. Evaluating the Level of Pesticides in the Blood of Small-Scale Farmers and Its Associated Risk Factors in Western Ethiopia. Environ. Health Insights 2021, 15, 11786302211043660. [Google Scholar] [CrossRef]
- Von Ehrenstein, O.S.; Ling, C.; Cui, X.; Cockburn, M.; Park, A.S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019, 364, l962. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.M.; English, P.B.; Grether, J.K.; Windham, G.C.; Somberg, L.; Wolff, C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ. Health Perspect. 2007, 115, 1482–1489. [Google Scholar] [CrossRef] [Green Version]
- Yitshak Sade, M.; Zlotnik, Y.; Kloog, I.; Novack, V.; Peretz, C.; Ifergane, G. Parkinson’s disease prevalence and proximity to agricultural cultivated fields. Parkinsons. Dis. 2015, 2015, 576564. [Google Scholar] [CrossRef]
- Patel, D.M.; Gyldenkærne, S.; Jones, R.R.; Olsen, S.F.; Tikellis, G.; Granström, C.; Dwyer, T.; Stayner, L.T.; Ward, M.H. Residential proximity to agriculture and risk of childhood leukemia and central nervous system tumors in the Danish national birth cohort. Environ. Int. 2020, 143, 105955. [Google Scholar] [CrossRef]
- Gómez-Barroso, D.; García-Pérez, J.; López-Abente, G.; Tamayo-Uria, I.; Morales-Piga, A.; Pardo Romaguera, E.; Ramis, R. Agricultural crop exposure and risk of childhood cancer: New findings from a case-control study in Spain. Int. J. Health Geogr. 2016, 15, 18. [Google Scholar] [CrossRef]
- Chetty-Mhlanga, S.; Fuhrimann, S.; Basera, W.; Eeftens, M.; Röösli, M.; Dalvie, M.A. Association of activities related to pesticide exposure on headache severity and neurodevelopment of school-children in the rural agricultural farmlands of the Western Cape of South Africa. Environ. Int. 2021, 146, 106237. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Glorennec, P.; Serrano, T.; Fravallo, M.; Warembourg, C.; Monfort, C.; Cordier, S.; Viel, J.F.; Le Gléau, F.; Le Bot, B.; Chevrier, C. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 2017, 104, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, C.; Zhang, X.; Zhang, X.; Pang, Y.; Zhang, S.; Fu, J. Route-specific daily uptake of organochlorine pesticides in food, dust, and air by Shanghai residents, China. Environ. Int. 2012, 50, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Arnot, J.A.; Wania, F. How are Humans Exposed to Organic Chemicals Released to Indoor Air? Environ. Sci. Technol. 2019, 53, 11276–11284. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.; Hooper, K.; Athanasiadou, M.; Athanassiadis, I.; Bergman, Å. Children show highest levels of polybrominated diphenyl ethers in a California family of four: A case study. Environ. Health Perspect. 2006, 114, 1581–1584. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.K.; Wilson, N.K.; Chuang, J.C. Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina. Int. J. Environ. Res. Public Health 2014, 11, 3743–3764. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.K. Children’s exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States. Int. J. Environ. Res. Public Health 2012, 9, 2964–2985. [Google Scholar] [CrossRef] [Green Version]
- Deziel, N.; Friesen, M.; Hoppin, J.; Hines, C.; Thomas, K.; Beane Freeman, L. Exposition non professionnelle des femmes aux pesticides en milieu rural: État des lieux des connaissances. Environ. Risques Sante 2015, 14, 473–475. [Google Scholar]
- Shaffer, R.M.; Smith, M.N.; Faustman, E.M. Developing the regulatory utility of the exposome: Mapping exposures for risk assessment through lifestage exposome snapshots (LEnS). Environ. Health Perspect. 2017, 125, 085003. [Google Scholar] [CrossRef] [Green Version]
- Teysseire, R.; Manangama, G.; Baldi, I.; Carles, C.; Brochard, P.; Bedos, C.; Delva, F. Determinants of non-dietary exposure to agricultural pesticides in populations living close to fields: A systematic review. Sci. Total Environ. 2021, 761. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, R.; Manangama, G.; Baldi, I.; Carles, C.; Brochard, P.; Bedos, C.; Delva, F. Assessment of residential exposures to agricultural pesticides: A scoping review. PLoS ONE 2020, 15, e0232258. [Google Scholar] [CrossRef] [PubMed]
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Juhani Jantunen, M.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Salthammer, T.; Zhang, Y.; Mo, J.; Koch, H.M.; Weschler, C.J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew. Chem. 2018, 130, 12406–12443. [Google Scholar] [CrossRef]
- Melymuk, L.; Demirtepe, H.; Jílková, S.R. Indoor dust and associated chemical exposures. Curr. Opin. Environ. Sci. Health 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Van den Berg, F.; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; van der Linden, A.M.A. Emission of pesticides into the air. Water. Air. Soil Pollut. 1999, 115, 195–218. [Google Scholar] [CrossRef]
- Das, S.; Hageman, K.J.; Taylor, M.; Michelsen-Heath, S.; Stewart, I. Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. Chemosphere 2020, 243, 125194. [Google Scholar] [CrossRef]
- Degrendele, C.; Audy, O.; Hofman, J.; Kučerik, J.; Kukučka, P.; Mulder, M.D.; Přibylová, P.; Prokeš, R.; Šáňka, M.; Schaumann, G.E.; et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a Central European receptor area. Environ. Sci. Technol. 2016, 50, 4278–4288. [Google Scholar] [CrossRef]
- Davie-Martin, C.L.; Hageman, K.J.; Chin, Y.-P.P.; Rougé, V.; Fujita, Y. Influence of temperature, relative humidity, and soil properties on the soil-air partitioning of semivolatile pesticides: Laboratory measurements and predictive models. Environ. Sci. Technol. 2015, 49, 10431–10439. [Google Scholar] [CrossRef]
- FOCUS Air Group. FOCUS Pesticides in Air: Considerations for Exposure Assessment. Rep. Focus Work. Gr. Pestic. Air 2008, 327, 12–74. [Google Scholar]
- Figueiredo, D.M.; Nijssen, R.; Krop, E.J.M.; Buijtenhuijs, D.; Gooijer, Y.; Lageschaar, L.; Duyzer, J.; Huss, A.; Mol, H.; Vermeulen, R.C.H. Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of occurrence and concentrations. Environ. Pollut. 2022, 301, 119024. [Google Scholar] [CrossRef] [PubMed]
- Deziel, N.C.; Friesen, M.C.; Hoppin, J.A.; Hines, C.J.; Thomas, K.; Beane Freeman, L.E. A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas. Environ. Health Perspect. 2015, 123, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curl, C.L.; Fenske, R.A.; Kissel, J.C.; Shirai, J.H.; Moate, T.F.; Griffith, W.; Coronado, G.; Thompson, B. Evaluation of Take-Home Organophosphorus Pesticide Exposure among Agricultural Workers and Their Children. Environ. Health Perspect. 2002, 110, A787–A792. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take home exposure pathways. In Proceedings of the Environmental Research; Academic Press Inc.: New York, NY, USA, 2000; Volume 84, pp. 290–302. [Google Scholar]
- Gunier, R.B.; Ward, M.H.; Airola, M.; Bell, E.M.; Colt, J.; Nishioka, M.; Buffler, P.A.; Reynolds, P.; Rull, R.P.; Hertz, A.; et al. Determinants of agricultural pesticide concentrations in carpet dust. Environ. Health Perspect. 2011, 119, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Raffy, G.; Mercier, F.; Blanchard, O.; Derbez, M.; Dassonville, C.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-volatile organic compounds in the air and dust of 30 French schools: A pilot study. Indoor Air 2017, 27, 114–127. [Google Scholar] [CrossRef]
- Deziel, N.C.; Beane Freeman, L.E.; Graubard, B.I.; Jones, R.R.; Hoppin, J.A.; Thomas, K.; Hines, C.J.; Blair, A.; Sandler, D.P.; Chen, H.; et al. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: Meta-regression of published data. Environ. Health Perspect. 2017, 125, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Bennett, B.; Workman, T.; Smith, M.N.; Griffith, W.C.; Thompson, B.; Faustman, E.M. Longitudinal, seasonal, and occupational trends of multiple pesticides in house dust. Environ. Health Perspect. 2019, 127, 017003. [Google Scholar] [CrossRef]
- Li, H.; Ma, H.; Lydy, M.J.; You, J. Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere 2014, 95, 363–369. [Google Scholar] [CrossRef]
- Jiang, W.; Conkle, J.L.; Luo, Y.; Li, J.; Xu, K.; Gan, J. Occurrence, distribution, and accumulation of pesticides in exterior residential areas. Environ. Sci. Technol. 2016, 50, 12592–12601. [Google Scholar] [CrossRef]
- Quirós-Alcalá, L.; Bradman, A.; Nishioka, M.; Harnly, M.E.; Hubbard, A.; McKone, T.E.; Ferber, J.; Eskenazi, B. Pesticides in house dust from urban and farmworker households in California: An observational measurement study. Environ. Health Glob. Access Sci. Source 2011, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalvie, M.A.; Sosan, M.B.; Africa, A.; Cairncross, E.; London, L. Environmental monitoring of pesticide residues from farms at a neighbouring primary and pre-school in the Western Cape in South Africa. Sci. Total Environ. 2014, 466–467, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- AVCASA. Croplife South Africa Agricultural Remedies Database. Available online: https://www.croplife.co.za/images/croplife/home/CROPLIFESOUTHAFRICAAGRICULTURALREMEDIESDATABASEINTRODUCTION.pdf (accessed on 30 August 2022).
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Chetty-Mhlanga, S.; Basera, W.; Fuhrimann, S.; Probst-Hensch, N.; Delport, S.; Mugari, M.; Van Wyk, J.; Roosli, M.; Dalvie, M.A.; Röösli, M.; et al. A prospective cohort study of school-going children investigating reproductive and neurobehavioral health effects due to environmental pesticide exposure in the Western Cape, South Africa: Study protocol. BMC Public Health 2018, 18, 857. [Google Scholar] [CrossRef] [Green Version]
- Degrendele, C.; Klánová, J.; Prokeš, R.; Příbylová, P.; Šenk, P.; Šudoma, M.; Röösli, M.; Dalvie, M.A.; Fuhrimann, S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. Sci. Total Environ. 2022, 807, 150455. [Google Scholar] [CrossRef]
- Veludo, A.F.; Martins Figueiredo, D.; Degrendele, C.; Masinyana, L.; Curchod, L.; Kohoutek, J.; Kukučka, P.; Martiník, J.; Přibylová, P.; Klánová, J.; et al. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa. Chemosphere 2022, 289, 133162. [Google Scholar] [CrossRef]
- Curchod, L.; Oltramare, C.; Junghans, M.; Stamm, C.; Dalvie, M.A.; Röösli, M.; Fuhrimann, S. Temporal variation of pesticide mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Res. X 2020, 6, 100039. [Google Scholar] [CrossRef]
- Cao, Z.G.; Yu, G.; Chen, Y.S.; Cao, Q.M.; Fiedler, H.; Deng, S.B.; Huang, J.; Wang, B. Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environ. Int. 2012, 49, 24–30. [Google Scholar] [CrossRef]
- Mercier, F.; Glorennec, P.; Thomas, O.; Bot, B. Le Organic contamination of settled house dust, a review for exposure assessment purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.M.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 2019, 6, 170. [Google Scholar] [CrossRef] [Green Version]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. Lancet Planet. Health 2020, 4, e56–e63. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (EPA). Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; U.S. Environmental Protection Agency (EPA): Washington, DC, USA,, 2011.
- Raffy, G.; Mercier, F.; Glorennec, P.; Mandin, C.; Le Bot, B. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors. J. Hazard. Mater. 2018, 352, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Besis, A.; Botsaropoulou, E.; Balla, D.; Voutsa, D.; Samara, C. Toxic organic pollutants in Greek house dust: Implications for human exposure and health risk. Chemosphere 2021, 284, 131318. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Dodson, R.E.; Camann, D.E.; Morello-Frosch, R.; Brody, J.G.; Rudel, R.A. Semivolatile organic compounds in homes: Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. Environ. Sci. Technol. 2015, 49, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Coronado, G.D.; Holte, S.; Vigoren, E.; Griffith, W.C.; Barr, D.B.; Faustman, E.; Thompson, B. Organophosphate pesticide exposure and residential proximity to nearby fields: Evidence for the drift pathway. J. Occup. Environ. Med. 2011, 53, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Simaremare, S.R.S.; Hung, C.C.; Yu, T.H.; Hsieh, C.J.; Yiin, L.M. Association between pesticides in house dust and residential proximity to farmland in a rural region of taiwan. Toxics 2021, 9, 180. [Google Scholar] [CrossRef]
- Motsoeneng, P.M.; Dalvie, M.A. Relationship between urinary pesticide residue levels and neurotoxic symptoms among women on farms in the Western Cape, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 6281–6299. [Google Scholar] [CrossRef] [Green Version]
- Fenske, R.A.; Lu, C.; Barr, D.; Needham, L. Children’s Exposure to Chlorpyrifos and Parathion in an Agricultural Community in Central Washington State. Environ. Health Perspect. 2002, 110, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Waheed, S.; Halsall, C.; Sweetman, A.J.; Jones, K.C.; Malik, R.N. Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 2017, 56, 375–382. [Google Scholar] [CrossRef] [Green Version]
- UNEP Stockholm Convention. Available online: http://chm.pops.int (accessed on 31 August 2022).
- Balmer, J.E.; Morris, A.D.; Hung, H.; Jantunen, L.; Vorkamp, K.; Rigét, F.; Evans, M.; Houde, M.; Muir, D.C.G. Levels and trends of current-use pesticides (CUPs) in the arctic: An updated review, 2010–2018. Emerg. Contam. 2019, 5, 70–88. [Google Scholar] [CrossRef]
- Colt, J.S.; Lubin, J.; Camann, D.; Davis, S.; Cerhan, J.; Severson, R.K.; Cozen, W.; Hartge, P. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Julien, R.; Adamkiewicz, G.; Levy, J.I.; Bennett, D.; Nishioka, M.; Spengler, J.D. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Banks, A.P.W.; He, C.; Drage, D.S.; Gallen, C.L.; Li, Y.; Li, Q.; Thai, P.K.; Mueller, J.F. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia–occurrence, sources and exposure risks. Sci. Total Environ. 2019, 693, 133588. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ramalho, O.; Mandin, C. A long-term dynamic model for predicting the concentration of semivolatile organic compounds in indoor environments: Application to phthalates. Build. Environ. 2019, 148, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Mandin, C.; Blanchard, O.; Mercier, F.; Pelletier, M.; Le Bot, B.; Glorennec, P.; Ramalho, O. Semi-volatile organic compounds in French dwellings: An estimation of concentrations in the gas phase and particulate phase from settled dust. Sci. Total Environ. 2019, 650, 2742–2750. [Google Scholar] [CrossRef]
- Melymuk, L.; Bohlin-Nizzetto, P.; Kukučka, P.; Vojta, Š.; Kalina, J.; Čupr, P.; Klánová, J. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ. Pollut. 2016, 218, 392–401. [Google Scholar] [CrossRef]
- Mackay, D.; Celsie, A.K.D.; Parnis, J.M. Kinetic Delay in Partitioning and Parallel Particle Pathways: Underappreciated Aspects of Environmental Transport. Environ. Sci. Technol. 2019, 53, 234–241. [Google Scholar] [CrossRef]
- Hung, C.C.; Huang, F.J.; Yang, Y.Q.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Pesticides in indoor and outdoor residential dust: A pilot study in a rural county of Taiwan. Environ. Sci. Pollut. Res. 2018, 25, 23349–23356. [Google Scholar] [CrossRef]
- Velázquez-Gómez, M.; Hurtado-Fernández, E.; Lacorte, S. Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. Sci. Total Environ. 2019, 648, 1354–1370. [Google Scholar] [CrossRef]
- Nakagawa, L.E.; Costa, A.R.; Polatto, R.; Nascimento, C.M.d.; Papini, S. Pyrethroid concentrations and persistence following indoor application. Environ. Toxicol. Chem. 2017, 36, 2895–2898. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Stanek, E.J. What proportion of household dust is derived from outdoor soil? J. Soil Contam. 1992, 1, 253–263. [Google Scholar] [CrossRef]
- Simcox, N.J.; Fenske, R.A.; Wolz, S.A.; Lee, I.-C.; Kalman, D.A. Pesticides in Household Dust and Soil: Exposure Pathways for Children of Agricultural Families. Environ. Health Perspect. 1995, 103, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R. Proximity to crops and residential to agricultural herbicides in Iowa. Environ. Health Perspect. 2006, 114, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Branch, R.; Jacqz, E. Is carbaryl as safe as its reputation? Am. J. Med. 1986, 81, 1124–1125. [Google Scholar]
- Rosas, L.G.; Eskenazi, B. Pesticides and child neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 191–197. [Google Scholar] [CrossRef] [Green Version]
- van Wendel de Joode, B.; Mora, A.M.; Lindh, C.H.; Hernández-Bonilla, D.; Córdoba, L.; Wesseling, C.; Hoppin, J.A.; Mergler, D. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016, 85, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Clayton, C.A.; Pellizzari, E.D.; Whitmore, R.W.; Quackenboss, J.J.; Adgate, J.; Sefton, K. Distributions, associations, and partial ag-gregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota Children’s Pesticide Exposure Study (MNCPES). J. Expo. Anal. Environ. Epidemiol. 2003, 13, 100–111. [Google Scholar] [CrossRef]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef]
- Wilson, N.K.; Chuang, J.C.; Lyu, C.; Menton, R.; Morgan, M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jílková, S.; Melymuk, L.; Vojta, Š.; Vykoukalová, M.; Bohlin-Nizzetto, P.; Klánová, J. Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling. Chemosphere 2018, 206, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Wason, S.C.; Julien, R.; Perry, M.J.; Smith, T.J.; Levy, J.I. Modeling exposures to organophosphates and pyrethroids for children living in an urban low-income environment. Environ. Res. 2013, 124, 13–22. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Nazaroff, W.W.; Weschler, C.J.; Williams, J. How Do Indoor Environments Affect Air Pollution Exposure? Environ. Sci. Technol. 2021, 55, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T. Emerging indoor pollutants. Int. J. Hyg. Environ. Health 2020, 224. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, J.; Wang, Z.; Zhang, B.; Sun, Z.; Yun, X.; Zhang, J. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ. Int. 2020, 142, 105822. [Google Scholar] [CrossRef]
Chlorpyrifos | Terbuthylazine | Carbaryl | Diazinon | Carbendazim | Tebuconazole | Propiconazole | S-Metolachlor | Diuron | Malathion | ||
---|---|---|---|---|---|---|---|---|---|---|---|
All n = 50 | QF | 96 | 90 | 76 | 72 | 60 | 58 | 8 | 4 | 2 | 4 |
Mean | 1250 | 9.30 | 1020 | 122 | 16.3 | 13.6 | |||||
Median | 365 | 4.54 | 247 | 9.29 | 7.02 | 4.38 | |||||
Min | 0.19 | 0.05 | 5 | 0.29 | 0.14 | 0.19 | 3.63 | 10.3 | 26.8 | 43.9 | |
Max | 19,500 | 90.8 | 17,200 | 2210 | 257 | 99.0 | 12.5 | 46.6 | 26.8 | 150 | |
IQR25 | 135 | 2.76 | 64 | 0.30 | 0.15 | 0.20 | |||||
IQR75 | 986 | 9.25 | 544 | 31.2 | 14.2 | 15.8 | |||||
Hex River Valley n = 25 | QF | 96 | 96 | 60 | 68 | 36 | 92 | 8 | 0 | 0 | 0 |
Mean | 1810 | 5.38 | 292 | 136 | 17.5 | 25.1 | |||||
Median | 398 | 4.47 | 102 | 6.41 | 0.15 | 15.7 | |||||
Min | 0.19 | 0.05 | 5 | 0.29 | 0.14 | 0.20 | 3.63 | ||||
Max | 19,500 | 11.0 | 1980 | 1680 | 257 | 99.0 | 9.60 | ||||
IQR25 | 142 | 3.04 | 5 | 0.29 | 0.15 | 7.96 | |||||
IQR75 | 1850 | 7.70 | 266 | 15.5 | 7.45 | 35.4 | |||||
Grabouw n = 25 | QF | 96 | 84 | 92 | 76 | 84 | 24 | 8 | 8 | 4 | 8 |
Mean | 690 | 13.2 | 1740 | 109 | 15.1 | 2.04 | |||||
Median | 268 | 4.62 | 525 | 11.2 | 11.0 | 0.20 | |||||
Min | 0.20 | 0.05 | 5 | 0.29 | 0.14 | 0.19 | 3.63 | 10.3 | 26.8 | 43.9 | |
Max | 4700 | 90.8 | 17,200 | 2210 | 64.1 | 19.6 | 12.5 | 46.6 | 26.8 | 150 | |
IQR25 | 133 | 2.70 | 207 | 4.37 | 5.94 | 0.19 | |||||
IQR75 | 948 | 13.6 | 1660 | 37.4 | 17.8 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degrendele, C.; Prokeš, R.; Šenk, P.; Jílková, S.R.; Kohoutek, J.; Melymuk, L.; Přibylová, P.; Dalvie, M.A.; Röösli, M.; Klánová, J.; et al. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. Toxics 2022, 10, 629. https://doi.org/10.3390/toxics10100629
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, Přibylová P, Dalvie MA, Röösli M, Klánová J, et al. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. Toxics. 2022; 10(10):629. https://doi.org/10.3390/toxics10100629
Chicago/Turabian StyleDegrendele, Céline, Roman Prokeš, Petr Šenk, Simona Rozárka Jílková, Jiří Kohoutek, Lisa Melymuk, Petra Přibylová, Mohamed Aqiel Dalvie, Martin Röösli, Jana Klánová, and et al. 2022. "Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa" Toxics 10, no. 10: 629. https://doi.org/10.3390/toxics10100629
APA StyleDegrendele, C., Prokeš, R., Šenk, P., Jílková, S. R., Kohoutek, J., Melymuk, L., Přibylová, P., Dalvie, M. A., Röösli, M., Klánová, J., & Fuhrimann, S. (2022). Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. Toxics, 10(10), 629. https://doi.org/10.3390/toxics10100629