Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review
Abstract
:1. Introduction
2. Terminology
3. Chemical Fractionation Procedures
4. Operational Speciation of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn
5. Water-Soluble Fraction of Potentially Toxic Elements
- (1)
- not very bioaccessible (<20%): Fe and Cr;
- (2)
- moderately bioaccessible (20–40%): Pb, Ni, Cu, Co and Mn;
- (3)
- highly bioaccessible (40–60%): As, Zn and Cd.
- (1)
- not very bioaccessible: Cr, Fe, and Ni;
- (2)
- moderately bioaccessible: As, Cu, Pb, Co, Zn, and Mn;
- (3)
- highly bioaccessible: Cd.
6. Environmental Risk Assessment
7. Health Risk Assessment
8. Conclusions
- Operational speciation of over 40 potentially toxic particulate-bound elements occurring in urban air has been described in the scientific literature. The most common research subjects were As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn.
- Unification of terminology, the procedure for sampling atmospheric aerosols, sample pretreatment and, above all, a sequential extraction procedure is still a distant goal.
- Most operational speciation studies of potentially toxic elements were carried out using one of these three procedures: Fernández Espinosa SEP > BCR SEPs > Chester’s SEP. However, the declared application of a specific procedure did not always mean that the authors strictly followed its original protocols; both physical and chemical operating parameters were altered.
- The distribution patterns developed for 10 potentially toxic elements in urban air particulate matter for three chemical fractionation schemes should serve as useful benchmarks for future atmospheric speciation studies.
- A distinctive feature of operational speciation of particulate-bound metallic elements is the large proportion of the most mobile fraction. From among 10 elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) present in urban air, Cd and Zn have the highest proportion of this fraction, whilst As, Co, Cu, Mn, Ni and Pb have a moderate proportion, and only Fe and Cr have a relatively low proportion, of this fraction.
- Ecological risk indices calculated on the basis of the results obtained from chemical fractionation according to the Fernández Espinosa SEP, BCR SEP and Chester’s SEP are poorly comparable. The same class of contamination was determined only for Cd, Fe, Ni and Zn, whereas the same bioavailability category was determined only for Cd, Pb and Zn. Generally, the ecological risk indices calculated from the extraction results by Fernández Espinosa SEP and BCR SEP showed better comparability than those calculated according to Chester’s SEP and Fernández Espinosa SEP, or using Chester’s SEP and BCR SEP.
- The total cancer inhalation risk estimated on the basis of both total concentrations of As, Cd, Co, Cr, Ni and Pb and their water-soluble fractions for residents of cities with low or moderate pollution appeared to be lower than the maximum acceptable limit of 1 × 10−4. However, the total non-cancerogenic inhalation risk was acceptable only when the risk was assessed based on water-soluble fractions of As, Cd, Co, Cr and Mn. The total non-carcinogenic inhalation risk for residents of highly polluted cities exceeded the acceptable risk level by 1–2 orders of magnitude.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo, A.I.; Alves, C.; Castro, A.; Pont, V.; Vicente, A.M.; Fraile, R. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 2013, 120–121, 1–28. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, L.; Wang, G.; Bi, X.; Zhang, G.; et al. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef] [Green Version]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef] [PubMed]
- Smichowski, P.; Polla, G.; Gómez, D. Metal fractionation of atmospheric aerosols via sequential chemical extraction: A review. Anal. Bioanal. Chem. 2005, 381, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Nocoń, K.; Rogula-Kozłowska, W. Speciation of arsenic: A case study of PM1 in Zabrze. SN Appl. Sci. 2019, 1, 450. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.J.; Yuan, C.G.; Xie, J.; Shen, Y.W.; Zha, D.W.; Zhang, K.G.; Zhu, H.T. Fraction distribution of arsenic in different-sized atmospheric particulate matters. Environ. Sci. Pollut. Res. 2019, 26, 30826–30835. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.J.; Yuan, C.G.; Xie, J.; Niu, X.D.; Zhang, X.R.; Zhang, K.G.; Xu, P.Y.; Ma, X.Y.; Lv, X.B. Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement. Environ. Pollut. 2020, 259, 113881. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef] [PubMed]
- Juda-Rezler, K.; Zajusz-Zubek, E.; Reizer, M.; Maciejewska, K.; Kurek, E.; Bulska, E.; Klejnowski, K. Bioavailability of elements in atmospheric PM2.5 during winter episodes at Central Eastern European urban background site. Atmos. Environ. 2021, 245, 117993. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Kaczmarek, K.; Mainka, A. Trace elements speciation of submicron particulate matter (PM1) collected in the surroundings of power plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, R.; Roy, R.; Yadav, S.; Satsangi, P.G. Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environ. Geochem. Health 2018, 40, 255–270. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Wang, Q.G.; Qian, X.; Qian, Y.; Yang, M.; Li, F.; Lu, H.; Wang, C. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmos. Environ. 2015, 103, 339–346. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Radko, T.; Mainka, A. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environ. Monit. Assess. 2017, 189, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Liu, P.; He, X.; Xu, H.; Shen, Z. Bioavailability of heavy metals bounded to PM2.5 in Xi’an, China: Seasonal variation and health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 35844–35853. [Google Scholar] [CrossRef] [PubMed]
- Sah, D.; Verma, P.K.; Kandikonda, M.K.; Lakhani, A. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. Environ. Sci. Pollut. Res. 2019, 26, 19749–19762. [Google Scholar] [CrossRef] [PubMed]
- Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environ. Geochem. Health 2019, 41, 1445–1458. [Google Scholar] [CrossRef] [PubMed]
- Anake, W.U.; Benson, N.U.; Tenebe, I.T.; Emenike, P.C.; Ana, G.R.E.E.; Zhang, S. Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria. Hum. Ecol. Risk Assess. 2020, 26, 242–254. [Google Scholar] [CrossRef]
- Sipos, P.; Choi, C.; May, Z. Combination of single and sequential chemical extractions to study the mobility and host phases of potentially toxic elements in airborne particulate matter. Chem. Erde-Geochem. 2016, 76, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environ. Geochem. Health 2015, 37, 875–889. [Google Scholar] [CrossRef]
- Pandey, M.; Pandey, A.K.; Mishra, A.; Tripathi, B.D. Speciation of carcinogenic and non-carcinogenic metals in respirable suspended particulate matter (PM10) in Varanasi, India. Urban Clim. 2017, 19, 141–154. [Google Scholar] [CrossRef]
- Xie, J.J.; Yuan, C.G.; Xie, J.; Shen, Y.W.; He, K.Q.; Zhang, K.G. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environ. Pollut. 2019, 252, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, Y.; Wu, T.; Shen, Z.; Xu, H. Acid-extractable heavy metals in PM2.5 over Xi’an, China: Seasonal distribution and meteorological influence. Environ. Sci. Pollut. Res. 2019, 26, 34357–34367. [Google Scholar] [CrossRef] [PubMed]
- Anake, W.U.; Ana, G.R.E.E.; Williams, A.B.; Fred-Ahmadu, O.H.; Benson, N.U. Chemical speciation and health risk assessment of fine particulate bound trace metals emitted from Ota Industrial Estate, Nigeria. In Proceedings of the 3rd International Conference on Advances in Environment Research, IOP Conference Series: Earth and Environmental Science, Beijing, China, 23–25 May 2017; Volume 68, p. 012005. [Google Scholar]
- Olumayede, E.G.; Ediagbonya, T.F. Sequential extractions and toxicity potential of trace metals absorbed into airborne particles in an urban atmosphere of Southwestern Nigeria. Sci. World J. 2018, 2018, 6852165. [Google Scholar] [CrossRef] [Green Version]
- Conca, E.; Malandrino, M.; Giacomino, A.; Costa, E.; Ardini, F.; Inaudi, P.; Abollino, O. Optimization of a sequential extraction procedure for trace elements in Arctic PM10. Anal. Bioanal. Chem. 2020, 412, 7429–7440. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.A.; Sánchez, K.; Richter, P.; Pey, J.; Gramsch, E. Partitioning of the water soluble versus insoluble fraction of trace elements in the city of Santiago, Chile. Atmosfera 2018, 31, 373–387. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Mainka, A. Analysis of trace elements in the mobile form of respirable fraction PM2.5 collected in the surroundings of Power Plant. Eng. Prot. Environ. 2015, 18, 245–258. (In Polish) [Google Scholar]
- Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal. Toxicol. 2017, 29, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Rajouriya, K.; Rohra, H.; Taneja, A. Levels of fine particulate matter bound trace metals in air of glass industrial area; Firozabad. Pollution 2020, 6, 555–568. [Google Scholar]
- Huang, L.; Bai, Y.H.; Ma, R.Y.; Zhuo, Z.M.; Chen, L. Winter chemical partitioning of metals bound to atmospheric fine particles in Dongguan, China, and its health risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 13664–13675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Li, H.; Wei, X.; Fu, Z. Preliminary assessment of size distribution of airborne metals and metalloids in the urban aerosols of Guiyang, southwest China. Atmos. Pollut. Res. 2015, 6, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Q.; Shao, M.; Wang, J.; Wang, C.; Sun, Y.; Qian, X.; Wu, H.; Yang, M.; Li, F. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environ. Pollut. 2016, 208, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.D.; Dang, Z.; Huang, W.L.; Yang, C. Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Technol. 2009, 6, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Richter, P.; Griño, P.; Ahumada, I.; Giordano, A. Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos. Environ. 2007, 41, 6729–6738. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Canepari, S.; Carderelli, E.; Ghighi, S.; Marzo, M.L. Chemical fractionation of elements in airborne particulate matter: Primary results on PM10 and PM2.5 samples in the Lazio region (central Italy). Ann. Chim. 2006, 96, 183–194. [Google Scholar] [CrossRef]
- Canepari, S.; Perrino, C.; Olivieri, F.; Astolfi, M.L. Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmos. Environ. 2008, 42, 8161–8175. [Google Scholar] [CrossRef]
- Canepari, S.; Pietrodangelo, A.; Perrino, C.; Astolfi, M.L.; Marzo, M.L. Enhancement of source traceability of atmospheric PM by elemental chemical fractionation. Atmos. Environ. 2009, 43, 4754–4765. [Google Scholar] [CrossRef]
- Dabek-Zlotorzynska, E.; Kelly, M.; Chen, H.; Chakrabarti, C.L. Evaluation of capillary electrophoresis combined with a BCR sequential extraction for determining distribution of Fe, Zn, Cu, Mn, and Cd in airborne particulate matter. Anal. Chim. Acta 2003, 498, 175–187. [Google Scholar] [CrossRef]
- Fernández Espinosa, A.J.; Rodriguez, M.T.; Barragán de la Rosa, F.J.; Sánchez, J.C.J. A chemical speciation of trace metals for fine urban particles. Atmos. Environ. 2002, 36, 773–780. [Google Scholar] [CrossRef]
- Koçak, M.; Kubilay, N.; Herut, B.; Nimmo, M. Trace metal solid state speciation in aerosols of the Northern Levantine Basin, East Mediterranean. J. Atmos. Chem. 2007, 56, 239–257. [Google Scholar] [CrossRef]
- Fernández-Espinosa, A.J.; Ternero-Rodriguez, M. Study of traffic pollution by metals in Seville (Spain) by physical and chemical speciation methods. Anal. Bioanal. Chem. 2004, 379, 684–699. [Google Scholar] [CrossRef] [PubMed]
- Voutsa, D.; Samara, C. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos. Environ. 2002, 36, 3583–3590. [Google Scholar] [CrossRef]
- Heal, M.R.; Hibbs, L.R.; Agius, R.M.; Beverland, I.J. Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, U.K. Atmos. Environ. 2005, 39, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
- Al-Masri, M.S.; Al-Kharfan, K.; Al-Shamali, K. Speciation of Pb, Cu and Zn determined by sequential extraction for identification of air pollution sources in Syria. Atmos. Environ. 2006, 40, 753–761. [Google Scholar] [CrossRef]
- Turšič, J.; Radić, H.; Kovačević, M.; Veber, M. Determination of selected trace elements in airborne aerosols particles using different sample preparation. Arch. Ind. Hyg. Toxicol. 2008, 59, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, M.; Gómez, D.; Dawidowski, L.; Gautier, E.; Smichowski, P. Determination of water-soluble and insoluble compounds in size classified airborne particulate matter. Microchem. J. 2009, 91, 133–139. [Google Scholar] [CrossRef]
- Fujiwara, F.; Dos Santos, M.; Marrero, J.; Polla, G.; Gómez, D.; Dawidowski, L.; Smichowski, P. Fractionation of eleven elements by chemical bonding from airborne particulate matter collected in an industrial city of Argentina. J. Environ. Monit. 2006, 8, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Pöykiö, R.; Perämäki, P.; Välimäki, I.; Kuokkanen, T. Estimation of environmental mobility of heavy metals using a sequential leaching of particulate material emitted from an opencast chrome mine complex. Anal. Bioanal. Chem. 2002, 373, 190–194. [Google Scholar] [CrossRef]
- Wu, Y.F.; Liu, C.Q.; Tu, C.L. Atmospheric deposition of metals in TSP of Guiyang, PR China. Bull. Environ. Contam. Toxicol. 2008, 80, 465–468. [Google Scholar] [CrossRef]
- Bikkes, M.; Polyák, K.; Hlavay, J. Fractionation of elements by particle size and chemical bonding from aerosols followed by ETAAS determination. J. Anal. At. Spectrom. 2001, 16, 74–81. [Google Scholar] [CrossRef]
- Preciado, H.F.; Li, L.Y. Evaluation of metal loadings and bioavailability in air, water and soil along two highways of British Columbia, Canada. Water Air Soil Pollut. 2006, 172, 81–108. [Google Scholar] [CrossRef]
- Jeong, G.H.; Lee, J.Y.; Moon, J.Y.; Lee, S.I. Chemical speciation of trace metals in airborne particles at an industrialized site. J. Environ. Sci. 2006, 15, 503–511. [Google Scholar]
- Canepari, S.; Astolfi, M.L.; Moretti, S.; Curini, R. Comparison of extracting solutions for elemental fractionation in airborne particulate matter. Talanta 2010, 82, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Canepari, S.; Cardarelli, E.; Perrino, C.; Catrambone, M.; Pietrodangelo, A.; Strincone, M. Two-stage chemical fractionation method for the analysis of elements and non-volatile inorganic ions in PM10 samples: Application to ambient samples collected in Rome (Italy). Atmos. Environ. 2006, 40, 7908–7923. [Google Scholar] [CrossRef]
- Niu, J.; Rasmussen, P.E.; Hassan, N.M.; Vincent, R. Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water Air Soil Pollut. 2010, 213, 211–225. [Google Scholar] [CrossRef]
- Celo, V.; Mahmoud, M.; Yassine, M.M.; Dabek-Zlotorzynska, E. Insights into elemental composition and sources of fine and coarse particulate matter in dense traffic areas in Toronto and Vancouver, Canada. Toxics 2021, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Betha, R.; Pradani, M.; Lestari, P.; Joshi, U.M.; Reid, J.S.; Balasubramanian, R. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 2013, 122, 571–578. [Google Scholar] [CrossRef]
- Szigeti, T.; Mihucz, V.G.; Óvári, M.; Baysal, A.; Atılgan, S.; Akman, S.; Záray, G. Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem. J. 2013, 107, 86–94. [Google Scholar] [CrossRef]
- Cancio, J.L.; Sánchez, A.D.; Alemán, P.S. Metallic species in ambient air particles of Canary Islands. Soluble fraction in total suspended matter. Afinidad 2013, 70, 34–42. [Google Scholar]
- Muránszky, G.; Óvári, M.; Virág, I.; Csiba, P.; Dobai, R.; Záray, G. Chemical characterization of PM10 fractions of urban aerosol. Microchem. J. 2011, 98, 1–10. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zawoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef]
- Betha, R.; Behera, S.N.; Balasubramanian, R. 2013 Southheast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 2014, 48, 4327–4335. [Google Scholar] [CrossRef] [PubMed]
- Funasaka, K.; Tojo, T.; Kaneco, S.; Takaoka, M. Different chemical properties of lead in atmospheric particles from urban roadside and residential areas. Atmos. Pollut. Res. 2013, 4, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Jing, Y.; Luo, X.S.; Li, H.; Tang, M. Overview and research progresses in chemical speciation and in vitro bioaccessibility analyses of airborne particulate trace metals. Curr. Pollut. Rep. 2021, 7, 540–548. [Google Scholar] [CrossRef]
- Mishra, A.; Pervez, S.; Candeias, C.; Verma, M.; Bano, S.; Dugga, P.; Verma, S.R.; Tamrakar, A.; Shafi, S.; Pervez, Y.F.; et al. Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. J. Indian Chem. Soc. 2021, 98, 100212. [Google Scholar] [CrossRef]
- Templeton, D.M.; Ariese, F.; Cornelis, R.; Danielsson, L.-G.; Muntau, H.; van Leeuwen, H.P.; Lobinski, R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem. 2000, 72, 1453–1470. [Google Scholar] [CrossRef]
- Schleicher, N.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Mobility of trace metals in urban atmospheric particulate matter from Beijing, China. In Urban Environment, Proceedings of the 10th Urban Environment Symposium; Springer: Berlin/Heidelberg, Germany, 2012; pp. 191–200. [Google Scholar]
- Schleicher, N.J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Temporal variability of trace metal mobility of urban particulate matter from Beijinge. A contribution to health impact assessments of aerosols. Atmos. Environ. 2011, 45, 7248–7265. [Google Scholar] [CrossRef]
- Li, X.; Feng, L.; Huang, C.; Yan, X.; Zhang, X. Potential hazardous elements (PHEs) in atmospheric particulate matter (APM) in the south of Xi’an during the dust episodes of 2001–2012 (NW China): Chemical fractionation, ecological and health risk assessment. Environ. Earth Sci. 2014, 71, 4115–4126. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Wu, J.; Lian, H.; Chen, Y. Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Sci. Total Environ. 2014, 493, 487–494. [Google Scholar] [CrossRef]
- Shao, L.; Xiao, H.; Wu, D. Speciation of heavy metals in airborne particles, road dust, and soils along expressways in China. Chin. J. Geochem. 2013, 32, 420–429. [Google Scholar] [CrossRef]
- Gao, J.; Tian, H.; Cheng, K.; Lu, L.; Wang, Y.; Wu, Y.; Zhu, C.; Liu, K.; Zhou, J.; Liu, X.; et al. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmos. Environ. 2014, 99, 257–265. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, X.; Chen, H.; Xu, B.; Zhu, L.; Li, C.; Zeng, G. Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Sci. Total Environ. 2014, 493, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Chester, R.; Lin, F.J.; Murphy, K.J.T. A three stage sequential leaching scheme for the characterisation of the sources and environmental mobility of trace metals in the marine aerosol. Environ. Technol. Lett. 1989, 10, 887–900. [Google Scholar] [CrossRef]
- Hlavay, J.; Polyák, K.; Bódog, I.; Molnár, Á.; Mészáros, E. Distribution of trace elements in filter-collected aerosol samples. Fresenius J. Anal. Chem. 1996, 354, 227–232. [Google Scholar] [CrossRef]
- Fernández, A.J.; Ternero, M.; Barragán, F.J.; Jiménez, J.C. An approach to characterization of sources of urban airborne particles through heavy metal speciation. Chemosphere-Glob. Chang. Sci. 2000, 2, 123–136. [Google Scholar] [CrossRef]
- Pourret, O.; Bollinger, J.-C. “Heavy Metals”—What to do now: To use or not to use? Sci. Total Environ. 2018, 610–611, 419–420. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Satsangi, P.G. Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ. Monit. Assess. 2013, 185, 7365–7379. [Google Scholar] [CrossRef] [PubMed]
- Hlavay, J.; Polyak, K.; Molnar, A.; Meszaros, E. Determination of the distribution of elements as a function of particle size in aerosol samples by sequential leaching. Analyst 1998, 123, 859–863. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–850. [Google Scholar] [CrossRef]
- Obiols, J.; Devesa, R.; Sol, A. Speciation of heavy metals in suspended particulates in urban air. Toxicol. Environ. Chem. 1986, 13, 121–128. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Desboeufs, K.V.; Sofikitis, A.; Losno, R.; Colin, J.L.; Ausset, P. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 2005, 58, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Chester, R.; Nimmo, M.; Preston, M.R. The trace metal chemistry of atmospheric dry deposition samples collected at Cap Ferrat: A coastal site in the Western Mediterranean. Mar. Chem. 1999, 68, 15–30. [Google Scholar] [CrossRef]
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic aromatic Hydrocarbons in Ambient Air. Official Journal of the European Union L 23/3. 26 January 2005. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:023:0003:0016:EN:PDF (accessed on 22 September 2021).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union L 152/1. 11 June 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en (accessed on 25 September 2021).
- European Environment Agency. Air Quality in Europe—2020 Report; EEA Report No 09/2020; European Environment Agency: København, Danmark, September 2020. [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quevauviller, P. Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends Anal. Chem. 1998, 17, 289–297. [Google Scholar] [CrossRef]
- Naji, A.; Ismail, A.; Ismail, A.R. Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchem. J. 2010, 95, 285–292. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); Office of Superfund Remediation and Technology Innovation Environmental Protection Agency: Washington, DC, USA, 2009.
- US EPA. Risk Assessment Guidance for Superfund, Vol. I, Human Health Evaluation Manual (Part A); EPA/540/1-89/002; Office of Emergency and Remedial Response: Washington, DC, USA, 1989; p. 20450.
- Mukhtar, A.; Limbeck, A. Recent developments in assessment of bio–accessible trace metal fractions in airborne particulate matter: A review. Anal. Chim. Acta 2013, 774, 11–25. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Recommended Default Exposure Factors; US Environmental Protection Agency: Washington, DC, USA, February 2014.
- US EPA. Regional Screening Levels (RSLs)—Generic Tables. 2021. Available online: http://www.epa.gov/region9/superfund/prg/ (accessed on 14 July 2021).
- Costa, D.L.; Dreher, K.L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ. Health Perspect. 1997, 105, 1053–1060. [Google Scholar] [PubMed] [Green Version]
- Adamson, I.Y.R.; Prieditis, H.; Hedgecock, C.; Vincent, R. Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol. Appl. Pharmacol. 2000, 166, 111–119. [Google Scholar] [CrossRef] [PubMed]
SEP | Fraction | Analytical Procedure | Reference |
---|---|---|---|
Fernández Espinosa procedure | Soluble and exchangeable |
| [40] |
Carbonates, oxides and reducible |
| ||
Bound to organic matter, oxidizable and sulphidic |
| ||
Residual |
| ||
Original BCR procedure | Exchangeable, water- and acid-soluble |
| [82] |
Reducible |
| ||
Oxidizable |
| ||
Residual |
| ||
Optimized BCR procedure | Exchangeable, water- and acid-soluble |
| [83] |
Reducible |
| ||
Oxidizable |
| ||
Residual |
| ||
Chester’s procedure | Loosely held |
| [75] |
Carbonate and oxide |
| ||
Refractory and organic |
| ||
Tessier procedure | Exchangeable |
| [84] |
Bound to carbonates |
| ||
Bound to Fe and Mn oxides |
| ||
Bound to organic matter |
| ||
Residual |
| ||
Obiols procedure | Soluble and exchangeable |
| [85] |
Carbonates, and oxides |
| ||
Bound to organic matter |
| ||
Residual |
| ||
Wenzel procedure | Non-specifically sorbed |
| [86] |
Specifically sorbed |
| ||
Amorphous and poorly crystalline hydrous oxides of Fe and Al |
| ||
Well-crystalized hydrous oxides of Fe and Al |
| ||
Residual |
|
Element Fraction | Number of Data Sets | Mean | SD | Median | Range | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
F(1)-As | 18 | 29.2 | 22.8 | 31.0 | 2.4–98.1 | 3.58 | 1.38 |
F(2)-As | 26.7 | 18.2 | 34.2 | 0.2–67.1 | −0.28 | 0.07 | |
F(3)-As | 19.2 | 18.4 | 16.0 | 0.0–76.5 | 4.62 | 1.96 | |
F(4)-As | 25.0 | 28.9 | 14.0 | 0.0–93.1 | 0.80 | 1.50 | |
F(1)-Cd | 22 | 42.5 | 19.1 | 42.3 | 5.0–78.5 | −0.34 | −0.17 |
F(2)-Cd | 24.7 | 15.1 | 20.4 | 3.5–67.3 | 1.87 | 1.28 | |
F(3)-Cd | 18.8 | 16.8 | 14.5 | 3.8–73.3 | 4.30 | 1.94 | |
F(4)-Cd | 14.0 | 11.4 | 11.1 | 0.0–48.8 | 2.89 | 1.32 | |
F(1)-Co | 12 | 35.7 | 14.0 | 37.6 | 15.7–54.3 | −1.59 | −0.12 |
F(2)-Co | 19.3 | 7.6 | 21.3 | 5.7–29.0 | −0.81 | −0.41 | |
F(3)-Co | 22.3 | 10.5 | 18.5 | 11.8–43.4 | −0.47 | 0.83 | |
F(4)-Co | 22.6 | 11.5 | 19.4 | 6.6–49.5 | 1.61 | 1.09 | |
F(1)-Cr | 19 | 14.6 | 15.7 | 8.2 | 0.0–46.5 | −0.80 | 0.82 |
F(2)-Cr | 10.6 | 11.5 | 9.2 | 0.8–51.0 | 8.56 | 2.58 | |
F(3)-Cr | 28.8 | 19.1 | 23.8 | 0.0–70.5 | 0.06 | 0.51 | |
F(4)-Cr | 46.0 | 29.6 | 50.5 | 0.0–98.8 | −0.86 | 0.24 | |
F(1)-Cu | 15 | 22.6 | 11.0 | 20.0 | 0.0–38.0 | −0.41 | −0.19 |
F(2)-Cu | 22.9 | 13.9 | 21.0 | 2.4–61.0 | 3.44 | 1.52 | |
F(3)-Cu | 28.1 | 14.5 | 30.2 | 3.5–51.9 | −0.61 | −0.12 | |
F(4)-Cu | 26.5 | 23.1 | 18.0 | 2.4–94.0 | 4.64 | 2.02 | |
F(1)-Fe | 14 | 6.5 | 7.7 | 3.9 | 0.3–29.6 | 6.34 | 2.30 |
F(2)-Fe | 15.7 | 6.3 | 15.3 | 6.2–32.7 | 3.52 | 1.39 | |
F(3)-Fe | 26.9 | 12.4 | 25.4 | 7.7–48.0 | −0.84 | 0.37 | |
F(4)-Fe | 51.0 | 11.4 | 50.7 | 33.5–70.6 | −0.69 | 0.27 | |
F(1)-Mn | 18 | 30.8 | 17.4 | 33.3 | 1.1–55.3 | −0.78 | −0.58 |
F(2)-Mn | 24.0 | 12.4 | 24.9 | 6.0–49.4 | −0.06 | 0.53 | |
F(3)-Mn | 27.1 | 14.0 | 27.0 | 5.0–73.4 | 7.11 | 1.95 | |
F(4)-Mn | 18.1 | 18.1 | 13.2 | 3.9–81.2 | 9.08 | 2.77 | |
F(1)-Ni | 18 | 23.3 | 15.2 | 23.4 | 1.9–64.2 | 1.79 | 0.91 |
F(2)-Ni | 24.6 | 20.0 | 17.9 | 4.7–65.3 | 0.72 | 1.39 | |
F(3)-Ni | 26.7 | 16.2 | 30.1 | 0.0–54.0 | −1.13 | −0.25 | |
F(4)-Ni | 25.3 | 20.2 | 17.0 | 6.0–73.3 | 2.00 | 1.72 | |
F(1)-Pb | 23 | 20.1 | 15.7 | 21.4 | 0.0–55.0 | −0.16 | 0.59 |
F(2)-Pb | 39.0 | 17.4 | 41.0 | 5.0–73.9 | −0.07 | −0.14 | |
F(3)-Pb | 17.1 | 11.2 | 16.5 | 1.2–49.9 | 2.18 | 1.09 | |
F(4)-Pb | 23.7 | 24.6 | 14.0 | 1.3–76.5 | 0.33 | 1.26 | |
F(1)-Zn | 16 | 32.3 | 21.3 | 37.1 | 0.1–61.4 | −1.46 | −0.20 |
F(2)-Zn | 24.0 | 12.0 | 27.1 | 0.7–45.2 | −0.11 | −0.52 | |
F(3)-Zn | 21.1 | 13.5 | 15.6 | 6.2–49.5 | −0.23 | 0.98 | |
F(4)-Zn | 22.8 | 21.0 | 15.3 | 0.5–58.8 | −1.17 | 0.68 |
Element Fraction | Number of Data Sets | Mean | SD | Median | Range | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
F(1)-As | 10 | 37.8 | 22.7 | 45.1 | 6.4–72.0 | −0.94 | −0.46 |
F(2)-As | 24.8 | 13.7 | 27.3 | 2.9–44.2 | −1.06 | −0.20 | |
F(3)-As | 15.9 | 15.1 | 8.6 | 3.7–44.3 | 0.28 | 1.34 | |
F(4)-As | 21.5 | 22.1 | 14.0 | 6.7–78.4 | 5.48 | 2.30 | |
F(1)-Cd | 19 | 47.3 | 16.0 | 51.3 | 16.8–82.3 | 0.06 | 0.12 |
F(2)-Cd | 14.2 | 11.2 | 11.3 | 0.0–38.0 | −0.63 | 0.59 | |
F(3)-Cd | 21.4 | 17.0 | 17.4 | 0.0–59.0 | −0.43 | 0.71 | |
F(4)-Cd | 16.9 | 11.3 | 16.5 | 1.0–44.4 | 0.80 | 0.75 | |
F(1)-Co | 11 | 15.9 | 6.5 | 15.8 | 6.6–32.2 | 4.16 | 1.54 |
F(2)-Co | 13.3 | 6.4 | 10.9 | 5.5–22.6 | −1.62 | 0.47 | |
F(3)-Co | 30.8 | 11.9 | 32.8 | 7.2–43.4 | −0.13 | −0.91 | |
F(4)-Co | 40.0 | 20.6 | 43.0 | 13.6–80.7 | −0.31 | 0.56 | |
F(1)-Cr | 17 | 13.0 | 12.8 | 12.4 | 0.7–51.1 | 4.02 | 1.68 |
F(2)-Cr | 21.3 | 17.2 | 17.3 | 0.0–62.0 | 0.57 | 1.03 | |
F(3)-Cr | 22.8 | 13.6 | 22.6 | 3.4–51.1 | 0.06 | 0.61 | |
F(4)-Cr | 42.8 | 24.5 | 35.6 | 8.4–95.0 | −0.21 | 0.67 | |
F(1)-Cu | 20 | 31.6 | 19.9 | 29.5 | 2.2–76.7 | −0.21 | 0.60 |
F(2)-Cu | 16.5 | 6.9 | 15.2 | 2.0–29.3 | −0.18 | −0.07 | |
F(3)-Cu | 24.7 | 12.8 | 25.4 | 3.4–51.8 | −0.13 | 0.44 | |
F(4)-Cu | 27.3 | 20.2 | 23.1 | 3.0–88.9 | 3.51 | 1.60 | |
F(1)-Fe | 8 | 9.8 | 6.4 | 8.0 | 1.3–18.3 | −1.65 | 0.22 |
F(2)-Fe | 20.1 | 13.8 | 14.9 | 7.0–42.6 | −0.24 | 1.21 | |
F(3)-Fe | 22.3 | 21.2 | 16.8 | 3.2–65.0 | 1.47 | 1.44 | |
F(4)-Fe | 47.9 | 24.0 | 48.9 | 18.7–79.6 | −1.90 | 0.00 | |
F(1)-Mn | 13 | 30.5 | 13.6 | 33.8 | 8.1–57.0 | −0.13 | −0.02 |
F(2)-Mn | 18.5 | 20.5 | 9.6 | 4.0–70.3 | 3.40 | 2.09 | |
F(3)-Mn | 19.7 | 10.6 | 20.0 | 0.0–36.4 | −0.54 | −0.19 | |
F(4)-Mn | 31.3 | 16.1 | 31.0 | 13.5–64.5 | 0.36 | 0.99 | |
F(1)-Ni | 14 | 12.8 | 7.4 | 10.5 | 4.0–28.5 | 0.25 | 1.03 |
F(2)-Ni | 17.4 | 7.5 | 17.7 | 2.5–27.4 | −0.68 | −0.38 | |
F(3)-Ni | 35.5 | 15.7 | 40.6 | 5.0–52.1 | −0.25 | −1.02 | |
F(4)-Ni | 34.3 | 23.5 | 24.3 | 14.9–84.3 | 1.14 | 1.50 | |
F(1)-Pb | 19 | 34.0 | 25.7 | 30.9 | 3.0–85.8 | −0.89 | 0.53 |
F(2)-Pb | 26.1 | 11.9 | 23.3 | 10.2–49.0 | −0.71 | 0.54 | |
F(3)-Pb | 18.9 | 17.3 | 15.5 | 1.1–63.7 | 3.04 | 1.83 | |
F(4)-Pb | 20.9 | 23.6 | 9.9 | 0.0–77.1 | 0.95 | 1.33 | |
F(1)-Zn | 20 | 47.1 | 23.5 | 54.5 | 8.0–85.9 | −1.05 | −0.19 |
F(2)-Zn | 15.8 | 9.4 | 13.9 | 3.8–34.6 | −0.83 | 0.52 | |
F(3)-Zn | 18.3 | 18.5 | 13.4 | 1.5–75.0 | 4.81 | 2.19 | |
F(4)-Zn | 18.7 | 17.0 | 10.0 | 0.5–55.0 | −0.79 | 0.78 |
Element Fraction | Number of Data Sets | Mean | SD | Median | Range | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
F(1)-As | 7 | 29.1 | 26.8 | 19.0 | 3.0–70.1 | −0.93 | 0.97 |
F(2)-As | 17.4 | 14.1 | 14.0 | 2.0–36.3 | −1.55 | 0.44 | |
F(3)-As | 53.5 | 37.9 | 67.0 | 0.0–94.0 | −1.62 | −0.53 | |
F(1)-Cd | 13 | 61.8 | 29.1 | 61.4 | 5.5–100.0 | −0.25 | −0.63 |
F(2)-Cd | 12.2 | 11.3 | 10.4 | 0.0–30.0 | −1.42 | 0.42 | |
F(3)-Cd | 26.0 | 30.0 | 13.6 | 0.0–94.0 | 1.63 | 1.65 | |
F(1)-Cr | 11 | 26.4 | 18.8 | 27.0 | 1.5–54.4 | −1.35 | 0.13 |
F(2)-Cr | 31.5 | 29.0 | 26.6 | 1.2–94.1 | 1.38 | 1.47 | |
F(3)-Cr | 42.1 | 30.5 | 40.0 | 1.0–97.0 | −0.37 | 0.48 | |
F(1)-Cu | 15 | 31.9 | 24.8 | 22.8 | 3.7–91.2 | 0.79 | 1.14 |
F(2)-Cu | 28.2 | 15.5 | 26.0 | 5.4–63.0 | 0.25 | 0.62 | |
F(3)-Cu | 39.9 | 19.0 | 43.2 | 3.4–75.7 | −0.35 | −0.05 | |
F(1)-Fe | 12 | 6.1 | 5.5 | 3.5 | 0.0–18.0 | 0.19 | 0.98 |
F(2)-Fe | 28.2 | 24.6 | 21.9 | 2.9–75.0 | −0.06 | 1.00 | |
F(3)-Fe | 65.7 | 27.9 | 73.1 | 18.0–96.2 | −1.01 | −0.66 | |
F(1)-Mn | 13 | 31.0 | 22.5 | 27.1 | 5.0–75.1 | −0.59 | 0.64 |
F(2)-Mn | 16.2 | 10.4 | 19.3 | 2.0–34.2 | −1.13 | 0.00 | |
F(3)-Mn | 52.9 | 24.6 | 45.4 | 14.5–90.0 | −1.06 | 0.28 | |
F(1)-Ni | 10 | 25.0 | 13.0 | 27.5 | 0.7–48.0 | 0.79 | −0.24 |
F(2)-Ni | 23.4 | 13.1 | 23.4 | 1.1–42.0 | −0.48 | 0.01 | |
F(3)-Ni | 51.6 | 23.5 | 56.7 | 19.0–98.0 | 0.48 | 0.39 | |
F(1)-Pb | 14 | 61.8 | 23.1 | 61.4 | 5.7–93.7 | 1.41 | −0.96 |
F(2)-Pb | 20.8 | 11.7 | 17.7 | 4.5–46.1 | 0.25 | 0.88 | |
F(3)-Pb | 17.4 | 17.8 | 9.2 | 1.7–65.5 | 3.20 | 1.71 | |
F(1)-Zn | 12 | 50.6 | 30.7 | 44.0 | 0.2–94.5 | −1.14 | −0.07 |
F(2)-Zn | 16.6 | 11.3 | 15.3 | 0.0–36.2 | −1.07 | 0.21 | |
F(3)-Zn | 32.8 | 27.5 | 27.2 | 2.4–91.4 | 0.24 | 1.02 |
Element | Air Quality Standards [ng/m3] | Commonly Encountered Pollution Level | High Pollution Level | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range [ng/m3] | Mean Conc. ± SEM [ng/m3] | Median [ng/m3] | Kurtosis | Skewness | Water-Soluble Fraction [%] | Median [%] | Kurtosis | Skewness | Range [ng/m3] | Mean Conc. ± SEM [ng/m3] | Water-Soluble Fraction [%] | ||
As | 6 (1) | 0–50 | 19 ± 3 (n = 32) | 18 | −1.3681 | 0.3544 | 46 (n = 32) | 44 | 0.2564 | 0.2698 | >50 | 1.5 × 103 ± 1.4 × 103 (n = 8) | 21 (n = 8) |
Cd | 5 (1,2) | 0–10 | 3.3 ± 0.5 (n = 37) | 2.1 | −1.0456 | 0.6879 | 54 (n = 40) | 60 | −0.3866 | −0.6045 | >10 | 9.6 × 101 ± 4.3 × 101 (n = 14) | 41 (n = 15) |
Co | 0–10 | 1.2 ± 0.5 (n = 20) | 0.4 | 8.8310 | 2.9437 | 37 (n = 21) | 30 | 1.7134 | 1.2002 | >10 | 1.8 × 102 ± 0.7 × 102 (n = 7) | 29 (n = 7) | |
Cr | 0–50 | 13 ± 2 (n = 31) | 9.3 | 0.6823 | 1.0271 | 18 (n = 34) | 12 | −0.2495 | 0.8251 | >50 | 3.5 × 102 ± 0.7 × 102 (n = 12) | 5.4 (n = 13) | |
Cu | 0–100 | 44 ± 6 (n = 32) | 38 | −1.3064 | 0.3713 | 29 (n = 35) | 30 | 1.8778 | 0.8686 | >100 | 1.3 × 103 ± 0.6 × 103 (n = 19) | 22 (n = 20) | |
Fe | 0–1000 | 46 × 101 ± 7 × 101 (n = 18) | 38 × 10 | −1.3077 | 0.3265 | 8.9 (n = 18) | 7.1 | 8.3319 | 2.5542 | >1000 | 2.6 × 103 ± 0.4 × 103 (n = 23) | 5.5 (n = 24) | |
Mn | 150 (3) | 0–100 | 38 ± 6 (n = 32) | 20 | −1.3318 | 0.6144 | 38 (n = 34) | 39 | 2.0410 | 0.4390 | >100 | 2.2 × 102 ± 0.3 × 102 (n = 17) | 36 (n = 17) |
Ni | 20 (1) | 0–100 | 16 ± 4 (n = 34) | 8.3 | 4.1668 | 1.9957 | 28 (n = 32) | 27 | 1.3585 | 1.1514 | >100 | 3.6 × 102 ± 1.5 × 102 (n = 8) | 11 (n = 9) |
Pb | 500 (2) | 0–500 | 13 × 101 ± 2 × 101 (n = 57) | 8 × 10 | 0.3486 | 1.1766 | 21 (n = 60) | 20 | −0.2814 | 0.5933 | >500 | 3.9 × 103 ± 2.6 × 103 (n = 6) | 24 (n = 5) |
Zn | 0–1000 | 26 × 101 ± 4 × 101 (n = 46) | 17 × 10 | 0.7063 | 1.1090 | 52 (n = 46) | 52 | −1.1357 | −0.1086 | >1000 | 3.4 × 104 ± 3.2 × 104 (n = 3) | 31 (n = 4) |
Element | Fernández Espinosa SEP | BCR SEP | Chester’s SEP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F(1/2) [%] | BI | ICF | F(1/2) [%] | BI | ICF | F(1/2) [%] | BI | ICF | |||||||
Value | Bio-Availability | Value | Class of Contamination | Value | Bio- Availability | Value | Class of Contamination | Value | Bio-Availability | Value | Class of Contamination | ||||
As | 55.9 | 0.56 | high | 1.3 | moderate | 62.6 | 0.63 | high | 1.7 | moderate | 46.5 | 0.46 | medium | 0.87 | low |
Cd | 67.2 | 0.67 | high | 2.0 | moderate | 61.5 | 0.62 | high | 1.6 | moderate | 74.0 | 0.74 | high | 2.8 | moderate |
Co | 55.0 | 0.55 | high | 1.2 | moderate | 29.2 | 0.29 | low | 0.41 | low | 73.2 | 0.73 | high | 4.4 | considerable |
Cr | 25.2 | 0.25 | low | 0.34 | low | 34.3 | 0.34 | medium | 0.52 | low | 57.9 | 0.58 | high | 1.4 | moderate |
Cu | 45.5 | 0.46 | medium | 0.83 | low | 48.1 | 0.48 | medium | 0.92 | low | 60.1 | 0.60 | high | 1.5 | moderate |
Fe | 22.2 | 0.22 | low | 0.28 | low | 29.9 | 0.30 | low | 0.43 | low | 34.3 | 0.34 | medium | 0.52 | low |
Mn | 54.8 | 0.55 | high | 1.2 | moderate | 49.0 | 0.49 | medium | 0.96 | low | 47.2 | 0.47 | medium | 0.89 | low |
Ni | 47.9 | 0.48 | medium | 0.92 | low | 30.2 | 0.30 | low | 0.43 | low | 48.4 | 0.48 | medium | 0.94 | low |
Pb | 59.1 | 0.59 | high | 1.5 | moderate | 60.1 | 0.60 | high | 1.5 | moderate | 82.6 | 0.83 | high | 4.7 | considerable |
Zn | 56.3 | 0.56 | high | 1.3 | moderate | 62.9 | 0.63 | high | 1.7 | moderate | 67.2 | 0.67 | high | 2.9 | moderate |
Parameter | Acronym | Unit | Values | Reference |
---|---|---|---|---|
Exposure duration | ED | year | 24 | [98] |
Exposure time | ET | h/day | 24 | [98] |
Exposure frequency | EF | day/year | 350 | [98] |
Average exposure time | ATn | |||
For carcinogens | hours | 613 × 200 | [98] | |
For non-carcinogens | hours | 210 × 240 | [98] | |
Inhalation unit risk | IUR | |||
As | (μg/m3)−1 | 4.30 × 10−3 | [99] | |
Cd | (μg/m3)−1 | 1.80 × 10−3 | [99] | |
Pb | (μg/m3)−1 | 1.20 × 10−5 | [99] | |
Co | (μg/m3)−1 | 9.00 × 10−3 | [99] | |
Ni | (μg/m3)−1 | 2.40 × 10−4 | [99] | |
Cr | (μg/m3)−1 | 1.20 × 10−2 | [99] | |
Reference concentration | RfC | |||
As | mg/m−3 | 1.50 × 10−5 | [99] | |
Cd | mg/m−3 | 1.00 × 10−5 | [99] | |
Mn | mg/m−3 | 5.00 × 10−5 | [99] | |
Cr | mg/m−3 | 1.00 × 10−4 | [99] | |
Ni | mg/m−3 | 9.00 × 10−5 | [99] | |
Co | mg/m−3 | 6.00 × 10−6 | [99] |
Element | IUR [μg/m3]−1 | Commonly Encountered Pollution Level | High Pollution Level | CR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci [ng m−3] | ECi [ng m−3] | Ci [ng m−3] | ECi [ng m−3] | Commonly Encountered Pollution Level | High Pollution Level | ||||||||
Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | ||
As | 4.30 × 10−3 | 19 | 8.7 | 6.3 | 2.9 | 1.5 × 103 | 3.2 × 102 | 4.9 × 102 | 1.0 × 102 | 2.7 × 10−5 | 1.3 × 10−5 | 2.1 × 10−3 | 4.3 × 10−4 |
Cd | 1.80 × 10−3 | 3.3 | 1.8 | 1.1 | 5.9 × 10−1 | 9.6 × 101 | 3.9 × 101 | 3.2 × 101 | 1.3 × 101 | 2.0 × 10−6 | 1.1 × 10−6 | 5.8 × 10−5 | 2.3 × 10−5 |
Co | 9.00 × 10−3 | 1.2 | 4.4 × 10−1 | 4.0 × 10−1 | 1.5 × 10−1 | 1.8 × 102 | 5.2 × 101 | 5.9 × 101 | 1.7 × 101 | 3.6 × 10−6 | 1.4 × 10−6 | 5.3 × 10−4 | 1.5 × 10−4 |
Cr | 1.20 × 10−2 | 13 | 2.3 | 4.3 | 7.6 × 10−1 | 3.5 × 102 | 1.9 × 101 | 1.1 × 102 | 6.2 | 5.2 × 10−5 | 9.1 × 10−6 | 1.3 × 10−3 | 7.4 × 10−5 |
Ni | 2.40 × 10−4 | 16 | 4.5 | 5.3 | 1.5 | 3.6 × 102 | 3.9 × 101 | 1.2 × 102 | 1.3 × 101 | 1.3 × 10−6 | 3.6 × 10−7 | 2.9 × 10−5 | 3.1 × 10−6 |
Pb | 1.20 × 10−5 | 1.3 × 102 | 27 | 43 | 8.9 | 3.9 × 103 | 9.4 × 102 | 1.3 × 103 | 3.1 × 102 | 5.2 × 10−7 | 1.1 × 10−7 | 1.6 × 10−5 | 3.7 × 10−6 |
TCR | 8.6 × 10−5 | 2.5 × 10−5 | 4.0 × 10−3 | 6.8 × 10−4 |
Element | RfC [mg/m3] | Commonly Encountered Pollution Level | High Pollution Level | HQ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci [ng m−3] | ECi [ng m−3] | Ci [ng m−3] | ECi [ng m−3] | Commonly Encountered Pollution Level | High Pollution Level | ||||||||
Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | Mean Conc. | Water-Soluble Fraction | ||
As | 1.50 × 10−5 | 19 | 8.7 | 18 | 8.4 | 1.5 × 103 | 3.2 × 102 | 1.4 × 103 | 3.0 × 102 | 1.2 | 5.6 × 10−1 | 93 | 20 |
Cd | 1.00 × 10−5 | 3.3 | 1.8 | 3.2 | 1.7 | 9.6 × 101 | 3.9 × 101 | 9.2 × 101 | 3.7 × 101 | 3.2 × 10−1 | 1.7 × 10−1 | 9.2 | 3.7 |
Co | 6.00 × 10−6 | 1.2 | 4.4 × 10−1 | 1.2 | 4.2 × 10−1 | 1.8 × 102 | 5.2 × 101 | 1.7 × 102 | 5.0 × 101 | 2.0 × 10−1 | 7.0 × 10−2 | 28 | 8.3 |
Cr | 1.00 × 10−4 | 13 | 2.3 | 12 | 2.2 | 3.5 × 102 | 1.9 × 101 | 3.4 × 102 | 1.8 × 101 | 1.2 × 10−1 | 2.2 × 10−2 | 3.4 | 1.8 × 10−1 |
Ni | 9.00 × 10−5 | 16 | 4.5 | 15 | 4.3 | 3.6 × 102 | 4.0 × 101 | 3.5 × 102 | 3.8 × 101 | 1.7 × 10−1 | 4.7 × 10−2 | 3.9 | 4.2 × 10−1 |
Mn | 5.00 × 10−5 | 38 | 14 | 36 | 13 | 2.2 × 102 | 7.9 × 101 | 2.1 × 102 | 7.6 × 101 | 7.2 × 10−1 | 2.6 × 10−1 | 4.2 | 1.5 |
HI | 2.7 | 1.1 | 1.4 × 102 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świetlik, R.; Trojanowska, M. Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. Toxics 2022, 10, 124. https://doi.org/10.3390/toxics10030124
Świetlik R, Trojanowska M. Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. Toxics. 2022; 10(3):124. https://doi.org/10.3390/toxics10030124
Chicago/Turabian StyleŚwietlik, Ryszard, and Marzena Trojanowska. 2022. "Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review" Toxics 10, no. 3: 124. https://doi.org/10.3390/toxics10030124
APA StyleŚwietlik, R., & Trojanowska, M. (2022). Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. Toxics, 10(3), 124. https://doi.org/10.3390/toxics10030124