The Role of Trace Elements in Cardiovascular Diseases
Abstract
:1. Introduction
2. Essential Trace Elements
2.1. Selenium (Se)
2.2. Zinc (Zn)
2.3. Copper (Cu)
2.4. Manganese (Mn)
2.5. Chromium (Cr)
2.6. Iron (Fe)
2.7. Molybdenum (Mo)
2.8. Nickel (Ni)
3. Non-Essential/Toxic Trace Elements
3.1. Cadmium (Cd)
3.2. Aluminum (Al)
3.3. Lead (Pb)
3.4. Arsenic (As)
3.5. Mercury (Hg)
4. The Role of Trace Elements in Selected Cardiovascular Diseases
4.1. Abdominal Aortic Aneurysm
4.2. Thoracic Aortic Dissection
4.3. Aortic Valve Sclerosis/Stenosis
4.4. Heart Failure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bai, X.; Tian, H.; Zhu, C.; Luo, L.; Hao, Y.; Liu, S.; Guo, Z.; Lv, Y.; Chen, D.; Chu, B.; et al. Present Knowledge and Future Perspectives of Atmospheric Emission Inventories of Toxic Trace Elements: A Critical Review. Environ. Sci. Technol. 2023, 57, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Thanigaivel, S.; Vickram, S.; Dey, N.; Jeyanthi, P.; Subbaiya, R.; Kim, W.; Govarthanan, M.; Karmegam, N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. Chemosphere 2023, 313, 137475. [Google Scholar] [CrossRef] [PubMed]
- Pasinszki, T.; Prasad, S.S.; Krebsz, M. Quantitative determination of heavy metal contaminants in edible soft tissue of clams, mussels, and oysters. Environ. Monit. Assess. 2023, 195, 1066. [Google Scholar] [CrossRef] [PubMed]
- Sarath, K.V.; Shaji, E.; Nandakumar, V. Characterization of trace and heavy metal concentration in groundwater: A case study from a tropical river basin of southern India. Chemosphere 2023, 338, 139498. [Google Scholar] [CrossRef] [PubMed]
- Lawi, D.J.; Abdulwhaab, W.S.; Abojassim, A.A. Potential Health Risks of Zn, Fe, and Pb in Medical Skin Creams and Cosmetic Products Derived from Plants in Iraq. Biol. Trace Elem. Res. 2023, 201, 4167–4176. [Google Scholar] [CrossRef]
- Pais, I.; Jones, J.B. The Handbook of Trace Elements; St. Lucie Press: Boca Raton, FL, USA, 1997; ISBN 1884015344. [Google Scholar]
- Chan, S.; Gerson, B.; Subramaniam, S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin. Lab. Med. 1998, 18, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef]
- Wong, T. Parenteral trace elements in children: Clinical aspects and dosage recommendations. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 649–656. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Institute of Medicine (U.S.). Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification; National Academies Press: Washington, DC, USA, 2010; ISBN 030952962X. [Google Scholar]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Arslan, B., Karcioglu, O., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-83880-785-6. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Dettwiler, M.; Flynn, A.C.; Rigutto-Farebrother, J. Effects of Non-Essential “Toxic” Trace Elements on Pregnancy Outcomes: A Narrative Overview of Recent Literature Syntheses. Int. J. Environ. Res. Public Health 2023, 20, 5536. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Costa, M. Metals and molecular carcinogenesis. Carcinogenesis 2020, 41, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, H.; Kolkowska, P.; Watly, J.; Krzywoszynska, K.; Potocki, S. General aspects of metal toxicity. Curr. Med. Chem. 2014, 21, 3721–3740. [Google Scholar] [CrossRef]
- Masironi, R. Trace elements and cardiovascular diseases. Bull. World Health Organ. 1969, 40, 305–312. [Google Scholar]
- Schroeder, H.A. Relations between hardness of water and death rates from certain chronic and degenerative diseases in the United States. J. Chronic Dis. 1960, 12, 586–591. [Google Scholar] [CrossRef]
- Morris, J.N.; Crawford, M.D.; Heady, J.A. Hardness of local water-supplies and mortality from cardiovascular disease in the County Boroughs of England and Wales. Lancet 1961, 1, 860–862. [Google Scholar] [CrossRef]
- Crawford, M.D. Hardness of drinking-water and cardiovascular disease. Proc. Nutr. Soc. 1972, 31, 347–353. [Google Scholar] [CrossRef]
- Schroeder, H.A. Municipal drinking water and cardiovascular death rates. JAMA 1966, 195, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Ujueta, F.; Navas-Acien, A. Lead and Cadmium as Cardiovascular Risk Factors: The Burden of Proof Has Been Met. J. Am. Heart Assoc. 2021, 10, e018692. [Google Scholar] [CrossRef]
- Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am. Heart J. 2014, 168, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A. Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2023, 12, e029852. [Google Scholar] [CrossRef]
- Hollenberg, P.F. Introduction: Mechanisms of metal toxicity special issue. Chem. Res. Toxicol. 2010, 23, 292–293. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Lamas, G.A.; Navas-Acien, A.; Mark, D.B.; Lee, K.L. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J. Am. Coll. Cardiol. 2016, 67, 2411–2418. [Google Scholar] [CrossRef]
- Brocato, J.; Costa, M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit. Rev. Toxicol. 2013, 43, 493–514. [Google Scholar] [CrossRef]
- Arita, A.; Costa, M. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics 2009, 1, 222–228. [Google Scholar] [CrossRef]
- Marsit, C.J. Influence of environmental exposure on human epigenetic regulation. J. Exp. Biol. 2015, 218, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Broday, L.; Costa, M. Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat. Res. 1998, 415, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Z. The Epitranscriptomic Mechanism of Metal Toxicity and Carcinogenesis. Int. J. Mol. Sci. 2022, 23, 11830. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Wilson, V.; Ramsay, M.M.; Symonds, M.E.; Broughton Pipkin, F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 2008, 52, 881–888. [Google Scholar] [CrossRef]
- Detopoulou, P.; Letsiou, S.; Nomikos, T.; Karagiannis, A.; Pergantis, S.A.; Pitsavos, C.; Panagiotakos, D.B.; Antonopoulou, S. Selenium, Selenoproteins and 10-year Cardiovascular Risk: Results from the ATTICA Study. Curr. Vasc. Pharmacol. 2023, 21, 346–355. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Sukhorukov, V.N.; Melnichenko, A.A.; Khotina, V.A.; Orekhov, A.N. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023, 11, 2010. [Google Scholar] [CrossRef]
- Tuerk, M.J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef]
- Taheri, S.; Asadi, S.; Nilashi, M.; Ali Abumalloh, R.; Ghabban, N.M.A.; Mohd Yusuf, S.Y.; Supriyanto, E.; Samad, S. A literature review on beneficial role of vitamins and trace elements: Evidence from published clinical studies. J. Trace Elem. Med. Biol. 2021, 67, 126789. [Google Scholar] [CrossRef] [PubMed]
- Ripa, S.; Ripa, R. Zinco e pressione arteriosa. Minerva Med. 1994, 85, 455–459. [Google Scholar] [PubMed]
- Kitala, K.; Tanski, D.; Godlewski, J.; Krajewska-Włodarczyk, M.; Gromadziński, L.; Majewski, M. Copper and Zinc Particles as Regulators of Cardiovascular System Function-A Review. Nutrients 2023, 15, 3040. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Ashtary-Larky, D.; Nikbaf-Shandiz, M.; Goudarzi, K.; Bagheri, R.; Dolatshahi, S.; Omran, H.S.; Amirani, N.; Ghanavati, M.; Asbaghi, O. Zinc supplementation and cardiovascular disease risk factors: A GRADE-assessed systematic review and dose-response meta-analysis. J. Trace Elem. Med. Biol. 2023, 79, 127244. [Google Scholar] [CrossRef] [PubMed]
- Wachnik, A. The physiological role of copper and the problems of copper nutritional deficiency. Nahrung 1988, 32, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Ghalibaf, A.M.; Soflaei, S.S.; Ferns, G.A.; Saberi-Karimian, M.; Ghayour-Mobarhan, M. Association between dietary copper and cardiovascular disease: A narrative review. J. Trace Elem. Med. Biol. 2023, 80, 127255. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, P.; Lip, G.Y.H.; Ren, J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol. Sci. 2023, 44, 573–585. [Google Scholar] [CrossRef]
- Chen, P.; Chakraborty, S.; Mukhopadhyay, S.; Lee, E.; Paoliello, M.M.B.; Bowman, A.B.; Aschner, M. Manganese homeostasis in the nervous system. J. Neurochem. 2015, 134, 601–610. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Evaluation and Assessment of Trivalent and Hexavalent Chromium on Avena sativa and Soil Enzymes. Molecules 2023, 28, 4693. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Hu, F.B. Role of chromium in human health and in diabetes. Diabetes Care 2004, 27, 2741–2751. [Google Scholar] [CrossRef]
- Tsave, O.; Yavropoulou, M.P.; Kafantari, M.; Gabriel, C.; Yovos, J.G.; Salifoglou, A. The adipogenic potential of Cr(III). A molecular approach exemplifying metal-induced enhancement of insulin mimesis in diabetes mellitus II. J. Inorg. Biochem. 2016, 163, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, M.; Zhen, H.; Chen, L.; Shi, P.; Huang, Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 2014, 9, e103194. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.C. Acute and chronic systemic chromium toxicity. Sci. Total Environ. 1989, 86, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-L.; Ghosh, M.C.; Rouault, T.A. The physiological functions of iron regulatory proteins in iron homeostasis—An update. Front. Pharmacol. 2014, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Von Haehling, S.; Ebner, N.; Evertz, R.; Ponikowski, P.; Anker, S.D. Iron Deficiency in Heart Failure: An Overview. JACC Heart Fail. 2019, 7, 36–46. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X. Iron in Cardiovascular Disease: Challenges and Potentials. Front. Cardiovasc. Med. 2021, 8, 707138. [Google Scholar] [CrossRef] [PubMed]
- Mendel, R.R. The molybdenum cofactor. J. Biol. Chem. 2013, 288, 13165–13172. [Google Scholar] [CrossRef]
- Gutierrez, C.T.; Loizides, C.; Hafez, I.; Biskos, G.; Loeschner, K.; Brostrøm, A.; Roursgaard, M.; Saber, A.T.; Møller, P.; Sørli, J.B.; et al. Comparison of acute phase response in mice after inhalation and intratracheal instillation of molybdenum disulphide and tungsten particles. Basic. Clin. Pharmacol. Toxicol. 2023, 133, 265–278. [Google Scholar] [CrossRef]
- Vyskočil, A.; Viau, C. Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 1999, 19, 185–192. [Google Scholar] [CrossRef]
- Sager, M. Nickel—A Trace Element Hardly Considered. IJHAF 2019, 3, 75–90. [Google Scholar] [CrossRef]
- Barceloux, D.G. Nickel. J. Toxicol. Clin. Toxicol. 1999, 37, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, H.; Lee, J.; Kim, Y.J.; Chung, H.S.; Yu, J.M.; Jang, G.; Park, R.; Chung, W.; Oh, C.-M.; et al. Smoking and passive smoking increases mortality through mediation effect of cadmium exposure in the United States. Sci. Rep. 2023, 13, 3878. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, D.; Rossmann, A.; Henderson, B.; Kind, M.; Seubert, A.; Wick, G. Increased serum cadmium and strontium levels in young smokers: Effects on arterial endothelial cell gene transcription. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian. J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Egger, A.E.; Grabmann, G.; Gollmann-Tepeköylü, C.; Pechriggl, E.J.; Artner, C.; Türkcan, A.; Hartinger, C.G.; Fritsch, H.; Keppler, B.K.; Brenner, E.; et al. Chemical imaging and assessment of cadmium distribution in the human body. Metallomics 2019, 11, 2010–2019. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry; IARC World Health Organization: Geneva, Switzerland, 1993; ISBN 9789283212584. [Google Scholar]
- Messner, B.; Knoflach, M.; Seubert, A.; Ritsch, A.; Pfaller, K.; Henderson, B.; Shen, Y.H.; Zeller, I.; Willeit, J.; Laufer, G.; et al. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1392–1398. [Google Scholar] [CrossRef]
- Knoflach, M.; Messner, B.; Shen, Y.H.; Frotschnig, S.; Liu, G.; Pfaller, K.; Wang, X.; Matosevic, B.; Willeit, J.; Kiechl, S.; et al. Non-toxic cadmium concentrations induce vascular inflammation and promote atherosclerosis. Circ. J. 2011, 75, 2491–2495. [Google Scholar] [CrossRef]
- Türkcan, A.; Scharinger, B.; Grabmann, G.; Keppler, B.K.; Laufer, G.; Bernhard, D.; Messner, B. Combination of cadmium and high cholesterol levels as a risk factor for heart fibrosis. Toxicol. Sci. 2015, 145, 360–371. [Google Scholar] [CrossRef]
- Abu-Hayyeh, S.; Sian, M.; Jones, K.G.; Manuel, A.; Powell, J.T. Cadmium accumulation in aortas of smokers. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Messner, B.; Ploner, C.; Laufer, G.; Bernhard, D. Cadmium activates a programmed, lysosomal membrane permeabilization-dependent necrosis pathway. Toxicol. Lett. 2012, 212, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Messner, B.; Türkcan, A.; Ploner, C.; Laufer, G.; Bernhard, D. Cadmium overkill: Autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell. Mol. Life Sci. 2016, 73, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P. Aluminum: Impacts and disease. Environ. Res. 2002, 89, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Furumo, N.C.; Viola, R.E. Aluminum-adenine nucleotides as alternate substrates for creatine kinase. Arch. Biochem. Biophys. 1989, 275, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Neurotoxicity of aluminum and its link to neurodegenerative diseases. Met. Res. 2021, 1, rev-47–rev-65. [Google Scholar] [CrossRef]
- Mehrpour, O.; Jafarzadeh, M.; Abdollahi, M. A systematic review of aluminium phosphide poisoning. Arh. Hig. Rada Toksikol. 2012, 63, 61–73. [Google Scholar] [CrossRef]
- Carbonara, C.E.M.; Roza, N.A.V.; Quadros, K.R.S.; França, R.A.; Esteves, A.B.A.; Pavan, C.R.; Barreto, J.; Dos Reis, L.M.; Jorgetti, V.; Sposito, A.C.; et al. Effect of aluminum accumulation on bone and cardiovascular risk in the current era. PLoS ONE 2023, 18, e0284123. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Garza, A.; Vega, R.; Soto, E. Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit. 2006, 12, RA57-65. [Google Scholar]
- Rouzi, L.; Elhamri, H.; Kalouch, S.; Salam, S.; El Moutawakil, B.; Chaoui, H.; Badrane, N.; Fekhaoui, M.; Jouhadi, Z. Lead poisoning with encephalic and neuropathic involvement in a child: Case report. Pan Afr. Med. J. 2022, 42, 276. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Santander, A.; Chavarría, L.; Cardozo, R.; Savio, F.; Sobrevia, L.; Nicolson, G.L. Functional consequences of lead and mercury exposomes in the heart. Mol. Asp. Med. 2022, 87, 101048. [Google Scholar] [CrossRef] [PubMed]
- Kataba, A.; Yohannes, Y.B.; Nakata, H.; Yabe, J.; Toyomaki, H.; Muzandu, K.; Zyambo, G.; Ikenaka, Y.; Choongo, K.; Ishizuka, M.; et al. Association between Chronic Environmental Lead (Pb) Exposure and Cytokines in Males and Females of Reproductive Age from Kabwe, Zambia. Int. J. Environ. Res. Public Health 2023, 20, 5596. [Google Scholar] [CrossRef] [PubMed]
- Halmo, L.; Nappe, T.M. StatPearls: Lead Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Dhar, S.; Garg, D. Lead Poisoning. N. Engl. J. Med. 2023, 388, e63. [Google Scholar] [CrossRef] [PubMed]
- Zeller, I.; Knoflach, M.; Seubert, A.; Kreutmayer, S.B.; Stelzmüller, M.E.; Wallnoefer, E.; Blunder, S.; Frotschnig, S.; Messner, B.; Willeit, J.; et al. Lead contributes to arterial intimal hyperplasia through nuclear factor erythroid 2-related factor-mediated endothelial interleukin 8 synthesis and subsequent invasion of smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.K.; Zhang, J.; Wei, Y. Blood Lead Levels and Risk of Deaths from Cardiovascular Disease. Am. J. Cardiol. 2022, 173, 132–138. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Arsenic and Arsenic Compounds, 2nd ed.; World Health Organization: Geneva, Switzerland, 2001; ISBN 9789240687622. [Google Scholar]
- Schlesinger, W.H.; Klein, E.M.; Vengosh, A. The Global Biogeochemical Cycle of Arsenic. Glob. Biogeochem. Cycles 2022, 36, e2022GB007515. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Ding, J.; Fu, W.; Gan, L.; Li, Y. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 2017, 7, 46545. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Kim, Y.-M.; Lee, K.-E. Methylmercury exposure and health effects. J. Prev. Med. Public. Health 2012, 45, 353–363. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef]
- Kent, K.C.; Zwolak, R.M.; Egorova, N.N.; Riles, T.S.; Manganaro, A.; Moskowitz, A.J.; Gelijns, A.C.; Greco, G. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 2010, 52, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 2011, 8, 92–102. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Haskal, Z.J.; Hertzer, N.R.; Bakal, C.W.; Creager, M.A.; Halperin, J.L.; Hiratzka, L.F.; Murphy, W.R.C.; Olin, J.W.; Puschett, J.B.; et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006, 113, e463–e654. [Google Scholar] [CrossRef] [PubMed]
- Doppler, C.; Messner, B.; Mimler, T.; Schachner, B.; Rezk, M.; Ganhör, C.; Wechselberger, C.; Müller, M.; Puh, S.; Pröll, J.; et al. Noncanonical atherosclerosis as the driving force in tricuspid aortic valve associated aneurysms—A trace collection. J. Lipid Res. 2023, 64, 100338. [Google Scholar] [CrossRef] [PubMed]
- Stern, C.; Scharinger, B.; Tuerkcan, A.; Nebert, C.; Mimler, T.; Baranyi, U.; Doppler, C.; Aschacher, T.; Andreas, M.; Stelzmueller, M.-E.; et al. Strong Signs for a Weak Wall in Tricuspid Aortic Valve Associated Aneurysms and a Role for Osteopontin in Bicuspid Aortic Valve Associated Aneurysms. Int. J. Mol. Sci. 2019, 20, 4782. [Google Scholar] [CrossRef] [PubMed]
- McCormick, M.L.; Gavrila, D.; Weintraub, N.L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 461–469. [Google Scholar] [CrossRef]
- Michel, J.-B.; Martin-Ventura, J.-L.; Egido, J.; Sakalihasan, N.; Treska, V.; Lindholt, J.; Allaire, E.; Thorsteinsdottir, U.; Cockerill, G.; Swedenborg, J. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 2011, 90, 18–27. [Google Scholar] [CrossRef]
- Rizas, K.D.; Ippagunta, N.; Tilson, M.D. Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm. Cardiol. Rev. 2009, 17, 201–210. [Google Scholar] [CrossRef]
- Ziaja, D.; Chudek, J.; Sznapka, M.; Kita, A.; Biolik, G.; Sieroń-Stołtny, K.; Pawlicki, K.; Domalik, J.; Ziaja, K. Trace elements in the wall of abdominal aortic aneurysms with and without coexisting iliac artery aneurysms. Biol. Trace Elem. Res. 2015, 165, 119–122. [Google Scholar] [CrossRef]
- Nandi, M.; Slone, D.; Jick, H.; Shapiro, S.; Lewis, G.P. Cadmium content of cigarettes. Lancet 1969, 2, 1329–1330. [Google Scholar] [CrossRef]
- Socha, K.; Borawska, M.H.; Gacko, M.; Guzowski, A. Diet and the content of selenium and lead in patients with abdominal aortic aneurysm. Vasa 2011, 40, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Unkiewicz-Winiarczyk, A.; Gromysz-Kałkowska, K.; Szubartowska, E. Aluminium, cadmium and lead concentration in the hair of tobacco smokers. Biol. Trace Elem. Res. 2009, 132, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, D.G.; Thomassen, Y.; Rustad, P.; Molander, P.; Aaseth, J. The time-trend and the relation between smoking and circulating selenium concentrations in Norway. J. Trace Elem. Med. Biol. 2009, 23, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ziaja, D.; Kita, A.; Janowska, J.; Pawlicki, K.; Mikuła, B.; Sznapka, M.; Chudek, J.; Ziaja, K. Intraluminal thrombus thickness is not related to lower concentrations of trace elements in the wall of infrarenal abdominal aortic aneurysms. J. Trace Elem. Med. Biol. 2014, 28, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.W.; McGoodwin, E.B.; Martin, G.R.; Grahn, D. Decreased lysyl oxidase activity in the aneurysm-prone, mottled mouse. J. Biol. Chem. 1977, 252, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.S.; Coulson, W.F.; Kimball, D.A.; Carnes, W.H.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. 32. Cardiovascular lesions in copper-deficient swine. Am. J. Pathol. 1962, 41, 603–621. [Google Scholar] [PubMed]
- Levinson, B.; Vulpe, C.; Elder, B.; Martin, C.; Verley, F.; Packman, S.; Gitschier, J. The mottled gene is the mouse homologue of the Menkes disease gene. Nat. Genet. 1994, 6, 369–373. [Google Scholar] [CrossRef]
- Senapati, A.; Carlsson, L.K.; Fletcher, C.D.; Browse, N.L.; Thompson, R.P. Is tissue copper deficiency associated with aortic aneurysms? Br. J. Surg. 1985, 72, 352–353. [Google Scholar] [CrossRef]
- Nienaber, C.A.; Clough, R.E.; Sakalihasan, N.; Suzuki, T.; Gibbs, R.; Mussa, F.; Jenkins, M.P.; Thompson, M.M.; Evangelista, A.; Yeh, J.S.M.; et al. Aortic dissection. Nat. Rev. Dis. Primers 2016, 2, 16071. [Google Scholar] [CrossRef]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Di Bartolomeo, R.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; Gaemperli, O.; et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. Eur. Heart J. 2014, 35, 2873–2926. [Google Scholar] [CrossRef]
- Nienaber, C.A.; Clough, R.E. Management of acute aortic dissection. Lancet 2015, 385, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Clough, R.E.; Nienaber, C.A. Management of acute aortic syndrome. Nat. Rev. Cardiol. 2015, 12, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Dobnig, H.; Winklhofer-Roob, B.M.; Renner, W.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; März, W. Low serum zinc concentrations predict mortality in patients referred to coronary angiography. Br. J. Nutr. 2009, 101, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Giacconi, R.; Caruso, C.; Malavolta, M.; Lio, D.; Balistreri, C.R.; Scola, L.; Candore, G.; Muti, E.; Mocchegiani, E. Pro-inflammatory genetic background and zinc status in old atherosclerotic subjects. Ageing Res. Rev. 2008, 7, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Gupta, U.C.; Mittal, N.; Niaz, M.A.; Ghosh, S.; Rastogi, V. Epidemiologic study of trace elements and magnesium on risk of coronary artery disease in rural and urban Indian populations. J. Am. Coll. Nutr. 1997, 16, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Socha, K.; Karwowska, A.; Kurianiuk, A.; Markiewicz-Żukowska, R.; Guzowski, A.; Gacko, M.; Hirnle, T.; Borawska, M.H. Estimation of Selected Minerals in Aortic Aneurysms-Impaired Ratio of Zinc to Lead May Predispose? Biol. Trace Elem. Res. 2021, 199, 2811–2818. [Google Scholar] [CrossRef] [PubMed]
- Kurianiuk, A.; Socha, K.; Gacko, M.; Błachnio-Zabielska, A.; Karwowska, A. The Relationship between the Concentration of Cathepsin A, D, and E and the Concentration of Copper and Zinc, and the Size of the Aneurysmal Enlargement in the Wall of the Abdominal Aortic Aneurysm. Ann. Vasc. Surg. 2019, 55, 182–188. [Google Scholar] [CrossRef]
- Edvinsson, M.; Ilbäck, N.-G.; Frisk, P.; Thelin, S.; Nyström-Rosander, C. Trace Element Changes in Thoracic Aortic Dissection. Biol. Trace Elem. Res. 2016, 169, 159–163. [Google Scholar] [CrossRef]
- Rink, L.; Haase, H. Zinc homeostasis and immunity. Trends Immunol. 2007, 28, 1–4. [Google Scholar] [CrossRef]
- Murakami, M.; Hirano, T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008, 99, 1515–1522. [Google Scholar] [CrossRef]
- Zhu, L.; An, P.; Zhao, W.; Xia, Y.; Qi, J.; Luo, J.; Luo, Y. Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients 2023, 15, 1640. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, H.; Eggebrecht, H.; Boes, T.; Antoch, G.; Rosenbaum, S.; Ladd, S.; Bockisch, A.; Barkhausen, J.; Erbel, R. Detection of inflammation in patients with acute aortic syndrome: Comparison of FDG-PET/CT imaging and serological markers of inflammation. Heart 2008, 94, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Z.; Hong, J.; Che, Y.; Chen, R.; Hu, Z.; Hu, X.; Wu, Q.; Hu, J.; Zhang, M. Iron deficiency promotes aortic medial degeneration via destructing cytoskeleton of vascular smooth muscle cells. Clin. Transl. Med. 2021, 11, e276. [Google Scholar] [CrossRef] [PubMed]
- Agmon, Y.; Khandheria, B.K.; Meissner, I.; Sicks, J.R.; O’Fallon, W.M.; Wiebers, D.O.; Whisnant, J.P.; Seward, J.B.; Tajik, A.J. Aortic valve sclerosis and aortic atherosclerosis: Different manifestations of the same disease? Insights from a population-based study. J. Am. Coll. Cardiol. 2001, 38, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Milin, A.C.; Vorobiof, G.; Aksoy, O.; Ardehali, R. Insights into aortic sclerosis and its relationship with coronary artery disease. J. Am. Heart Assoc. 2014, 3, e001111. [Google Scholar] [CrossRef] [PubMed]
- Al-Taesh, H.; Çelekli, A.; Sucu, M.; Taysi, S. Trace elements in patients with aortic valve sclerosis. Ther. Adv. Cardiovasc. Dis. 2021, 15, 1753944720985985. [Google Scholar] [CrossRef] [PubMed]
- Kosar, F.; Sahin, I.; Acikgöz, N.; Aksoy, Y.; Kucukbay, Z.; Cehreli, S. Significance of serum trace element status in patients with rheumatic heart disease: A prospective study. Biol. Trace Elem. Res. 2005, 107, 1–10. [Google Scholar] [CrossRef]
- Koşar, F.; Sahin, I.; Taşkapan, C.; Küçükbay, Z.; Güllü, H.; Taşkapan, H.; Cehreli, S. Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyol. Derg. 2006, 6, 216–220. [Google Scholar]
- Nyström-Rosander, C.; Lindh, U.; Friman, G.; Lindqvist, O.; Thelin, S.; Ilbäck, N.-G. Trace element changes in sclerotic heart valves from patients are expressed in their blood. Biometals 2004, 17, 121–128. [Google Scholar] [CrossRef]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef]
- Yutzey, K.E.; Demer, L.L.; Body, S.C.; Huggins, G.S.; Towler, D.A.; Giachelli, C.M.; Hofmann-Bowman, M.A.; Mortlock, D.P.; Rogers, M.B.; Sadeghi, M.M.; et al. Calcific aortic valve disease: A consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2387–2393. [Google Scholar] [CrossRef]
- Laguna-Fernandez, A.; Carracedo, M.; Jeanson, G.; Nagy, E.; Eriksson, P.; Caligiuri, G.; Franco-Cereceda, A.; Bäck, M. Iron alters valvular interstitial cell function and is associated with calcification in aortic stenosis. Eur. Heart J. 2016, 37, 3532–3535. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Mandala, A.; Malhotra, M.; Gnana-Prakasam, J.P. Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 7163326. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Gotlieb, A.I. Wnt3a/β-catenin increases proliferation in heart valve interstitial cells. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2013, 22, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Boult, J.; Roberts, K.; Cooper, B.T.; Hotchin, N.A.; Matthews, G.; Iqbal, T.; Tselepis, C. A role for iron in Wnt signalling. Oncogene 2008, 27, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, N.; Si, H.; Liu, T.; Wang, H.; Geng, H.; Qin, Q.; Guo, Z. Iron overload impairs renal function and is associated with vascular calcification in rat aorta. Biometals 2022, 35, 1325–1339. [Google Scholar] [CrossRef] [PubMed]
- Talvio, K.; Kanninen, K.M.; White, A.R.; Koistinaho, J.; Castrén, M.L. Increased iron content in the heart of the Fmr1 knockout mouse. Biometals 2021, 34, 947–954. [Google Scholar] [CrossRef]
- Morvan, M.; Arangalage, D.; Franck, G.; Perez, F.; Cattan-Levy, L.; Codogno, I.; Jacob-Lenet, M.-P.; Deschildre, C.; Choqueux, C.; Even, G.; et al. Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets. J. Am. Coll. Cardiol. 2019, 73, 1043–1054. [Google Scholar] [CrossRef]
- Tomášek, A.; Maňoušek, J.; Kuta, J.; Hlásenský, J.; Křen, L.; Šindler, M.; Zelený, M.; Kala, P.; Němec, P. Metals and Trace Elements in Calcified Valves in Patients with Acquired Severe Aortic Valve Stenosis: Is There a Connection with the Degeneration Process? J. Pers. Med. 2023, 13, 320. [Google Scholar] [CrossRef]
- Gonzalvo, M.C.; Gil, F.; Hernández, A.F.; Villanueva, E.; Pla, A. Inhibition of paraoxonase activity in human liver microsomes by exposure to EDTA, metals and mercurials. Chem. Biol. Interact. 1997, 105, 169–179. [Google Scholar] [CrossRef]
- Salonen, J.T.; Malin, R.; Tuomainen, T.P.; Nyyssönen, K.; Lakka, T.A.; Lehtimäki, T. Polymorphism in high density lipoprotein paraoxonase gene and risk of acute myocardial infarction in men: Prospective nested case-control study. BMJ 1999, 319, 487–489; discussion 490. [Google Scholar] [CrossRef] [PubMed]
- Kulka, M. A review of paraoxonase 1 properties and diagnostic applications. Pol. J. Vet. Sci. 2016, 19, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Sevim, Ç.; Doğan, E.; Comakli, S. Cardiovascular disease and toxic metals. Curr. Opin. Toxicol. 2020, 19, 88–92. [Google Scholar] [CrossRef]
- Ćirović, A.; Buha Đorđević, A.; Ćirović, A.; Jevtić, J.; Tasić, D.; Janković, S.; Antonijević, B.; Petrović, Z.; Orisakwe, O.E.; Tasić, N. Trace Element Concentrations in Autopsied Heart Tissues from Patients with Secondary Cardiomyopathy. Biol. Trace Elem. Res. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Klinova, S.V.; Minigalieva, I.A.; Protsenko, Y.L.; Sutunkova, M.P.; Gurvich, V.B.; Ryabova, J.V.; Valamina, I.E.; Gerzen, O.P.; Nabiev, S.R.; Balakin, A.A.; et al. Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. Int. J. Mol. Sci. 2022, 23, 4417. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, L.; Peng, C.; Yu, G.; Zhang, Y.; Du, Z. Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via autophagy activation. Chem. Biol. Interact. 2021, 337, 109331. [Google Scholar] [CrossRef] [PubMed]
- Turdi, S.; Sun, W.; Tan, Y.; Yang, X.; Cai, L.; Ren, J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin. Exp. Pharmacol. Physiol. 2013, 40, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Cheng, Z.-W.; Huang, C.-G.; Ye, Z.-Q.; Sun, L.-J.; Chen, H.; Fu, B.-B.; Zhou, K.; Fang, Z.-R.; Wang, Z.-J.; et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol. Environ. Saf. 2022, 234, 113329. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, W. Cardiovascular toxicities upon manganese exposure. Cardiovasc. Toxicol. 2005, 5, 345–354. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, M.; Li, J.; Deng, Y.; Li, S.; Guo, Y.; Li, N.; Lin, Y.; Yu, P.; Liu, Z.; et al. Metal nickel exposure increase the risk of congenital heart defects occurrence in offspring: A case-control study in China. Med. Baltim. 2019, 98, e15352. [Google Scholar] [CrossRef]
- Borné, Y.; Barregard, L.; Persson, M.; Hedblad, B.; Fagerberg, B.; Engström, G. Cadmium exposure and incidence of heart failure and atrial fibrillation: A population-based prospective cohort study. BMJ Open 2015, 5, e007366. [Google Scholar] [CrossRef]
- Ghosh, K.; Indra, N. Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environ. Toxicol. Pharmacol. 2018, 59, 43–52. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Zhang, S.-L.; Liu, Z.-Y.; Tian, Y.; Sun, Q. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes. Biosci. Rep. 2015, 35, e00214. [Google Scholar] [CrossRef] [PubMed]
- Oluranti, O.I.; Agboola, E.A.; Fubara, N.E.; Ajayi, M.O.; Michael, O.S. Cadmium exposure induces cardiac glucometabolic dysregulation and lipid accumulation independent of pyruvate dehydrogenase activity. Ann. Med. 2021, 53, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; Varadharajan, K.; Shanmugakonar, M.; Al-Naemi, H.A. Chronic Cadmium Exposure Alters Cardiac Matrix Metalloproteinases in the Heart of Sprague-Dawley Rat. Front. Pharmacol. 2021, 12, 663048. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-H.; Lin, H.-C.; Chen, S.-W.; Tai, Y.-T.; Jung, S.-M.; Ko, F.-H.; Pang, J.-H.S.; Chu, P.-H. Cadmium exposure induces histological damage and cytotoxicity in the cardiovascular system of mice. Food Chem. Toxicol. 2023, 175, 113740. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, F.; Wu, H.; Xing, C.; Xue, H.; Zhang, L.; Zhang, C.; Hu, G.; Cao, H. Selenium protects against cadmium-induced cardiac injury by attenuating programmed cell death via PI3K/AKT/PTEN signaling. Environ. Toxicol. 2022, 37, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Fitch, M.L.; Kabir, R.; Ebenebe, O.V.; Taube, N.; Garbus, H.; Sinha, P.; Wang, N.; Mishra, S.; Lin, B.L.; Muller, G.K.; et al. Cadmium exposure induces a sex-dependent decline in left ventricular cardiac function. Life Sci. 2023, 324, 121712. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.E.; Nigra, A.E.; Klett, J.; Sobel, M.; Oelsner, E.C.; Navas-Acien, A.; Hu, X.; Sanchez, T.R. Blood and Urinary Metal Levels among Exclusive Marijuana Users in NHANES (2005–2018). Environ. Health Perspect. 2023, 131, 87019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wechselberger, C.; Messner, B.; Bernhard, D. The Role of Trace Elements in Cardiovascular Diseases. Toxics 2023, 11, 956. https://doi.org/10.3390/toxics11120956
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. Toxics. 2023; 11(12):956. https://doi.org/10.3390/toxics11120956
Chicago/Turabian StyleWechselberger, Christian, Barbara Messner, and David Bernhard. 2023. "The Role of Trace Elements in Cardiovascular Diseases" Toxics 11, no. 12: 956. https://doi.org/10.3390/toxics11120956
APA StyleWechselberger, C., Messner, B., & Bernhard, D. (2023). The Role of Trace Elements in Cardiovascular Diseases. Toxics, 11(12), 956. https://doi.org/10.3390/toxics11120956