Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Rice Cultivation and Harvesting
- Control: without As5+ or Se6+ addition in soils;
- Se5: Se6+ at 5 mg L−1;
- As5: As5+ at 5 mg L−1;
- As2.5 + Se5: As5+ at 2.5 mg L−1 and Se6+ at 5 mg L−1;
- As5 + Se5: As5+ and Se6+ at 5 mg L−1;
- As10 + Se5: As5+ at 10 mg L−1 and Se6+ at 5 mg L−1.
2.3. Evaluation of Soil and Grain Characterizations
2.4. Determination of As, Cd, and Se in Grains
2.5. As Chemical Speciation in Husked Rice
2.6. The Speciation of Se in Husked Rice
2.7. Estimated Daily Intake (EDI)
2.8. Statistics Analysis
3. Results and Discussion
3.1. Soil Analysis and Agronomic Parameters
3.2. As in Grains: Total Concentration and Chemical Speciation
3.3. Se: Total Concentration and Chemical Speciation
3.4. Co-Exposure As and Se: Total Concentration and Chemical Speciation
3.5. The Influence of Single or Combined Exposure to As and Se on the Daily Intake of As, Se, and Cd from Rice
Cultivar | Treatment | As | i-As | o-As | Se | i-Se | o-Se | Cd |
---|---|---|---|---|---|---|---|---|
BRS Pampa | Control | 0.11 (0.13) | 0.09 (0.09) | 0.01 (0.02) | 0.05 (0.07) | 0.05 (0.05) | 0.00 (0.00) | 0.09 (0.34) |
Se5 | 0.09 (0.10) | 0.08 (0.09) | 0.02 (0.02) | 7.84 (11.24) | 0.65 (0.72) | 7.19 (7.25) | 0.05 (0.06) | |
As5 | 0.30 (0.36) | 0.21 (0.21) | 0.09 (0.10) | 0.24 (0.49) | 0.00 (0.00) | 0.24 (0.24) | 0.08 (0.14) | |
As5 + Se5 | 0.24 (0.33) | 0.22 (0.24) | 0.06 (0.08) | 7.32 (8.72) | 0.27 (0.27) | 7.05 (7.06) | 0.09 (0.19) | |
EPAGRI 108 | Control | 0.06 (0.08) | 0.05 (0.06) | 0.01 (0.01) | 0.08 (0.14) | 0.00 (0.00) | 0.08 (0.08) | 0.03 (0.03) |
Se5 | 0.06 (0.07) | 0.05 (0.05) | 0.01 (0.01) | 9.85 (12.55) | 0.60 (0.65) | 9.25 (9.30) | 0.03 (0.08) | |
As5 | 0.20 (0.25) | 0.15 (0.16) | 0.05 (0.05) | 0.11 (0.23) | 0.00 (0.00) | 0.11 (0.11) | 0.02 (0.02) | |
As5 + Se5 | 0.18 (0.24) | 0.14 (0.15) | 0.07 (0.08) | 8.71 (12.36) | 0.22 (0.22) | 8.60 (8.71) | 0.03 (0.04) | |
Reference Intake | 0.3–8 a | 0.3–8 a | 0.79 b–5.7 c | 0.36 d | ||||
[30] e | Brazilian rice | 0.04–0.09 | 0.03–0.07 | 0.01–0.02 | 0.004–0.009 | |||
[56] f | Thai rice | 0.12–1.05 | 0.03–0.13 | |||||
[60] e | Chinese rice | 0.05–0.20 | ||||||
[60] e | Se-rich Chinese rice | 0.06–1.67 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sociedade sul-brasileira de Arroz irrigado (SOSBAI). Arroz irrigado: Recomendações técnicas da pesquisa para o Sul do Brasil. In Proceedings of the XXIX Reunião Técnica da Cultura do Arroz Irrigado, Gravatal, Brazil, 1–3 August 2012. [Google Scholar]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhaber, S.B. Trace element risk assessment: Essentiality vs. toxicity. Regul. Toxicol. Pharmacol. 2003, 38, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, Z.; Madrid, Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta 2009, 634, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Saifullah; Dahlawi, S.; Naeem, A.; Iqbal, M.; Farooq, M.A.; Bibi, S.; Rengel, Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere 2018, 194, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.M.; Carneiro, M.F.; Paulelli, A.C.C.; Grotto, D.; Magalhães Júnior, A.M.; Barbosa Júnior, F.; Batista, B.L. Arsénio e arroz: Toxicidade, metabolismo e segurança alimentar. Quím. Nova 2015, 38, 118–127. [Google Scholar]
- Lemos Batista, B.; Nigar, M.; Mestrot, A.; Alves Rocha, B.; Barbosa Júnior, F.; Price, A.H.; Raab, A.; Feldmann, J. Identification and quantification of phytochelatins in roots of rice to long-term exposure: Evidence of individual role on arsenic accumulation and translocation. J. Exp. Bot. 2014, 65, 1467–1479. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhao, X.; Liu, Q.; Wang, Y.; Li, S.; Xu, S. Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation. Redox Biol. 2022, 50, 102255. [Google Scholar] [CrossRef]
- Wang, X.; An, Y.; Jiao, W.; Zhang, Z.; Han, H.; Gu, X.; Teng, X. Selenium protects against lead-induced apoptosis via endoplasmic reticulum stress in chicken kidneys. Biol. Trace Elem. Res. 2018, 182, 354–363. [Google Scholar] [CrossRef]
- Khoso, P.Y.; Zhang, Y.; Yin, H.; Teng, X.; Li, S. Selenium Deficiency Affects Immune Function by Influencing Selenoprotein and Cytokine Expression in Chicken Spleen. Biol. Trace Elem. Res. 2019, 187, 506–516. [Google Scholar] [CrossRef]
- Kot, A. The role of speciation in analytical chemistry. TrAC Trends Anal. Chem. 2000, 19, 69–79. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkesford, M.J.; Zhao, F.-J. Strategies for increasing the selenium content of wheat. J. Cereal Sci. 2007, 46, 282–292. [Google Scholar] [CrossRef]
- Syu, C.-H.; Huang, C.-C.; Jiang, P.-Y.; Lee, C.-H.; Lee, D.-Y. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J. Hazard. Mater. 2015, 286, 179–186. [Google Scholar] [CrossRef]
- Dwivedi, S.; Tripathi, R.D.; Srivastava, S.; Singh, R.; Kumar, A.; Tripathi, P.; Dave, R.; Rai, U.N.; Chakrabarty, D.; Trivedi, P.K.; et al. Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 2010, 245, 113–124. [Google Scholar] [CrossRef]
- Pillai, T.R.; Yan, W.; Agrama, H.A.; James, W.D.; Ibrahim, A.M.H.; McClung, A.M.; Gentry, T.J.; Loeppert, R.H. Total Grain-Arsenic and Arsenic-Species Concentrations in Diverse Rice Cultivars under Flooded Conditions. Crop Sci. 2010, 50, 2065–2075. [Google Scholar] [CrossRef]
- Camara, A.Y.; Wan, Y.; Yu, Y.; Wang, Q.; Li, H. Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2018, 148, 869–875. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, G.-L.; Huang, Y.-Z.; Liu, Y.-X.; Sun, G.-X. Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings. Environ. Sci. Pollut. Res. 2013, 21, 3955–3962. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.; Gupta, M. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators, and genotoxicity assay. J. Hazard. Mater. 2015, 287, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Singh, D.; Singh, K. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.). Environ. Monit. Assess. 2017, 189, 430. [Google Scholar] [CrossRef]
- Camara, A.Y.; Wan, Y.; Yu, Y.; Wang, Q.; Wang, K.; Li, H. Effect of Endogenous Selenium on Arsenic Uptake and Antioxidative Enzymes in As-Exposed Rice Seedlings. Int. J. Environ. Res. Public Health 2019, 16, 3350. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Bañuelos, G.; Zhou, X. Can As concentration in crop be controlled by Se fertilization? A meta-analysis and outline of as sequestration mechanisms. Sci. Total Environ. 2022, 838, 155967. [Google Scholar] [CrossRef] [PubMed]
- Bhadwal, S.; Sharma, S. Selenium alleviates physiological traits, nutrient uptake and nitrogen metabolism in rice under arsenate stress. Environ. Sci. Pollut. Res. 2022, 29, 70862–70881. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Li, J.; Chen, J.; Liu, J.; Cao, F.; Liao, C.; Zhang, Z.; Gu, M.; Wei, Y.; Shen, F.; et al. Effects of Foliar Applications of Brassinolide and Selenium on the Accumulation of Arsenic and Cadmium in Rice Grains and an Assessment of Their Health Risk. Int. J. Phytoremediat. 2022, 25, 161–171. [Google Scholar] [CrossRef]
- de Magalhães Júnior, A.M.; de Moraes, O.P.; Fagundes, P.R.R.; Neto, F.P.M.; Franco, D.F.; Neves, P.D.C.; Severo, A.C.M. BRS Pampa: Cultivar de arroz irrigado de alta produtividade e excelência na qualidade de grãos. Embrapa Clima Temperado-Comun. Téc. 2012, 282, 1–8. [Google Scholar]
- Streck, E.A.; de Magalhaes, A.M.; Aguiar, G.A.; Henrique Facchinello, P.K.; Reis Fagundes, P.R.; Franco, D.F.; Nardino, M.; de Oliveira, A.C. Genetic Progress in 45 Years of Irrigated Rice Breeding in Southern Brazil. Crop Sci. 2018, 58, 1094–1105. [Google Scholar] [CrossRef]
- van Raij, B.; de Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001; 285p.
- Paniz, F.P.; Pedron, T.; Freire, B.M.; Torres, D.P.; Silva, F.F.; Batista, B.L. Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs. Anal. Methods 2018, 10, 4094–4103. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.; Catron, B.; Chan, Q.; Hu, Q.; Caruso, J.A. Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom. 2009, 24, 1657. [Google Scholar] [CrossRef]
- Freire, B.M.; Santos, V.d.S.; Neves, P.d.C.F.; Oliveira Souza Reis, J.M.; de Souza, S.S.; Barbosa, F.; Batista, B.L. Elemental chemical composition and As speciation in rice varieties selected for biofortification. Anal. Methods 2020, 12, 2102–2113. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Sistema Nacional de Índices de Preços ao Consumidor: Estruturas de Ponderação a Partir da Pesquisa de Orçamentos Familiares, 2008–2009; IBGE: Rio de Janeiro, Brazil, 2009.
- Andrade, G.F.; Paniz, F.P.; Martins, A.C.; Rocha, B.A.; da Silva Lobato, A.K.; Rodrigues, J.L.; Cardoso-Gustavson, P.; Masuda, H.P.; Batista, B.L. Agricultural use of Samarco’s spilled mud assessed by rice cultivation: A promising residue use? Chemosphere 2018, 193, 892–902. [Google Scholar] [CrossRef]
- Boldrin, P.F.; Faquin, V.; Ramos, S.J.; Boldrin, K.V.F.; Ávila, F.W.; Guilherme, L.R.G. Soil and foliar application of selenium in rice biofortification. J. Food Compos. Anal. 2013, 31, 238–244. [Google Scholar] [CrossRef]
- Meena, H.N.; Bohra, J.S.; Jinger, D.; Rajpoot, S.K. Effect of tillage and crop establishment methods on productivity, profitability and quality of rice under rice-wheat cropping system. Ann. Agric. Res. New Ser. 2016, 37, 369–373. [Google Scholar]
- Liao, G.; Xu, Y.; Chen, C.; Wu, Q.; Feng, R.; Guo, J.; Wang, R.; Ding, Y.; Sun, Y.; Xu, Y.; et al. Root application of selenite can simultaneously reduce arsenic and cadmium accumulation and maintain grain yields but show negative effects on the grain quality of paddy rice. J. Environ. Manag. 2016, 183, 733–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokhrel, G.R.; Wang, K.T.; Zhuang, H.; Wu, Y.; Chen, W.; Lan, Y.; Zhu, X.; Li, Z.; Fu, F.; Yang, G. Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 2020, 239, 124712. [Google Scholar] [CrossRef] [PubMed]
- CODEX—Codex Alimentarius Committee of Food and Agriculture of the United Nations, 2016. Proposals for Maximum Levels for Inorganic Arsenic in Husked Rice (CX/CF16/10/5). Netherlands. Available online: http://www.fao.org/fao-whocodexalimentarius (accessed on 9 February 2019).
- Norton, G.J.; Duan, G.; Dasgupta, T.; Islam, M.R.; Lei, M.; Zhu, Y.; Deacon, C.M.; Moran, A.C.; Islam, S.; Zhao, F.-J.; et al. Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India. Environ. Sci. Technol. 2009, 43, 8381–8386. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.L.; Souza, J.M.O.; De Souza, S.S.; Barbosa, F. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard. Mater. 2011, 191, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of Selenium Concentration of Rice in China and Effect of Fertilization of Selenite and Selenate on Selenium Content of Rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, P.F.; Faquin, V.; Ramos, S.J.; Guilherme, L.R.G.; Bastos, C.E.A.; Carvalho, G.S.; Costa, E.T.d.S. Selenato e selenito na produção e biofortificação agronômica com selênio em arroz. Pesqui. Agropecu. Bras. 2012, 47, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Norton, G.J.; Duan, G.; Huang, Y.; Liu, Y. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 2014, 384, 131–140. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S.; Ding, Y.; Song, Z. A Dual Role of Se on Cd Toxicity: Evidences from the Uptake of Cd and Some Essential Elements and the Growth Responses in Paddy Rice. Biol. Trace Elem. Res. 2012, 151, 113–121. [Google Scholar] [CrossRef]
- Lv, H.; Chen, W.; Zhu, Y.; Yang, J.; Mazhar, S.H.; Zhao, P.; Wang, L.; Li, Y.; Azam, S.M.; Ben Fekih, I.; et al. Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice. Environ. Pollut. 2020, 262, 114283. [Google Scholar] [CrossRef]
- Hu, P.; Huang, J.; Ouyang, Y.; Wu, L.; Song, J.; Wang, S.; Li, Z.; Han, C.; Zhou, L.; Huang, Y.; et al. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health 2013, 35, 767–778. [Google Scholar] [CrossRef]
- Li, H.-F.; Lombi, E.; Stroud, J.L.; McGrath, S.P.; Zhao, F.-J. Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. J. Agric. Food Chem. 2010, 58, 11837–11843. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.-X.; Liu, X.; Williams, P.N.; Zhu, Y.-G. Distribution and Translocation of Selenium from Soil to Grain and Its Speciation in Paddy Rice (Oryza sativa L.). Environ. Sci. Technol. 2010, 44, 6706–6711. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.-M.; Scheckel, K.G.; Lombi, E.; Newville, M.; Choi, Y.; Norton, G.J.; Price, A.H.; Meharg, A.A. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 5557–5564. [Google Scholar] [CrossRef]
- Stadlober, M.; Sager, M.; Irgolic, K.J. Effects of selenate supplemented fertilisation on the selenium level of cereals—Identification and quantification of selenium compounds by HPLC–ICP–MS. Food Chem. 2001, 73, 357–366. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Pilon-Smits, E.A.H.; Zhao, F.-J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2008, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Xiong, S.; Tu, S.; Liu, J.; Chen, C. Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ. Exp. Bot. 2015, 117, 12–19. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.P.; Singh, P.K.; Awasthi, S.; Chakrabarty, D.; Trivedi, P.K.; Tripathi, R.D. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 2014, 23, 1153–1163. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, A.K.; Singh, D.P. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol. Environ. Saf. 2018, 148, 105–113. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Tripathi, P.; Mishra, S.; Dwivedi, S.; Niranjan, A.; Mallick, S.; Tripathi, P.; Pande, V.; Tripathi, R.D. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2017, 138, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kukusamude, C.; Sricharoen, P.; Limchoowong, N.; Kongsri, S. Heavy metals and probabilistic risk assessment via rice consumption in Thailand. Food Chem. 2021, 334, 127402. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food. EFSA J. 2006, 4, 365. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to cadmium as undesirable substance in animal feed. EFSA J. 2004, 2, 72. [Google Scholar] [CrossRef]
- Institute of Medicine (IOM). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids: A Report of the Panel on Dietary Antioxidants and Related Compounds (Dietary Reference Intakes); National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Zhang, L.; Guo, Y.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y.; Mei, X.; Yin, H.; Liu, X.; Lu, B. Determination of Selenium in Common and Selenium-Rich Rice from Different Areas in China and Assessment of Their Dietary Intake. Int. J. Environ. Res. Public Health 2020, 17, 4596. [Google Scholar] [CrossRef]
- Benko, I.; Nagy, G.; Tanczos, B.; Ungvari, E.; Sztrik, A.; Eszenyi, P.; Prokisch, J.; Banfalvi, G. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ. Toxicol. Chem. 2012, 31, 2812–2820. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484S–1491S. [Google Scholar] [CrossRef] [Green Version]
- Rohn, I.; Marschall, T.A.; Kroepfl, N.; Jensen, K.B.; Aschner, M.; Tuck, S.; Kuehnelt, D.; Schwerdtle, T.; Bornhorst, J. Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans. Metallomics 2018, 10, 818–827. [Google Scholar] [CrossRef]
- Ronquim, C.C. Conceitos de Fertilidade do Solo e Manejo Adequado para as Regiões Tropicais; Embrapa Monitoramento por Satélite, Boletim de Pesquisa e Desenvolvimento: Brasília, Brazil, 2010. [Google Scholar]
- Ponnamperuma, F.N. The chemistry of submerged soils. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1972; Volume 24, pp. 29–96. [Google Scholar]
- Sobral, L.F.; Barreto, M.D.V.; Da Silva, A.J.; Dos Anjos, J.L. Guia Prático para Interpretação de Resultados de Análises de Solos; Embrapa Tabuleiros Costeiros-Documentos (INFOTECA-E): Aracaju, Brazil, 2015. [Google Scholar]
- dos Santos, H.G.; Jacomine, P.K.T.; Dos Anjos, L.H.C.; De Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araujo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- IAL-Instituto Agronômico de Campinas (iac.sp.gov.br). Available online: http://www.iac.sp.gov.br/produtoseservicos/analisedosolo/interpretacaoanalise.php (accessed on 5 May 2021).
- da Silva, J.T.; Paniz, F.P.; Pedron, T.; Torres, D.P.; da Rocha Concenço, F.I.G.; Parfitt, J.M.B.; Batista, B.L. Selected soil water tensions at phenological phases and mineral content of trace elements in rice grains–mitigating arsenic by water management. Agric. Water Manag. 2020, 228, 105884. [Google Scholar] [CrossRef]
Parameters Evaluated | |||||
---|---|---|---|---|---|
Treatments | Number of Grains | Length (mm) of Grains | Weight (g) of Grains | Weight (g) of Husk’s Grains | |
BRS PAMPA | Control | 149 ± 49 | 8.8 ± 0.2 | 2.7 ± 0.8 | 0.9 ± 0.4 |
Se5 | 134 ± 22 | 8.6 ± 0.4 | 2.6 ± 0.5 | 0.8 ± 0.1 | |
As5 | 154 ± 51 | 8.7 ± 0.2 | 2.6 ± 0.8 | 0.9 ± 0.4 | |
As2.5 + Se5 | 184 ± 62 bc | 9.1 ± 0.1 | 3.4 ± 0.9 b | 1.0 ± 0.3 | |
As5 + Se5 | 172 ± 56 b | 8.8 ± 0.2 | 3.1 ± 1.0 | 0.9 ± 0.3 | |
As10 + Se5 | 236 ± 80 abc | 8.7 ± 0.3 | 4.1 ± 1.5 abc | 1.2 ± 0.4 | |
EPAGRI 108 | Control | 108 ± 30 | 9.3 ± 0.1 | 2.6 ± 0.6 | 0.8 ± 0.2 |
Se5 | 124 ± 31 | 9.2 ± 0.2 | 2.7 ± 0.7 | 0.8 ± 0.2 | |
As5 | 108 ± 17 | 9.2 ± 0.1 | 2.4 ± 0.4 | 0.7 ± 0.1 | |
As2.5 + Se5 | 125 ± 49 | 9.3 ± 0.2 | 2.8 ± 1.1 | 0.7 ± 0.3 | |
As5 + Se5 | 173 ± 43 | 9.1 ± 0.3 | 3.6 ± 1.0 | 1.0 ± 0.3 | |
As10 + Se5 | 132 ± 52 | 9.1 ± 0.2 | 3.0 ± 1.2 | 0.8 ± 0.3 |
Treatment | Cultivar: BRS Pampa (Mean ± Standard Deviation) | Cultivar: EPAGRI 108 (Mean ± Standard Deviation) | ||||
---|---|---|---|---|---|---|
As (µg kg−1) | Se (µg kg−1) | Cd (µg kg−1) | As (µg kg−1) | Se (µg kg−1) | Cd (µg kg−1) | |
Control | 107 ± 10 | 48 ± 11 | 83.0 ± 24.5 | 61 ± 14 | 79 ± 32 | 27.8 ± 2.81 |
Se5 | 85 ± 12 | 7560 ± 2029 a | 49.2 ± 4.58 a | 54 ± 6 | 9499 ± 1801 a | 28.9 ± 6.38 |
As5 | 293 ± 34 ab | 227 ± 146 b | 75.0 ± 34.1 | 197 ± 34 a | 107 ± 67 ab | 16.7 ± 1.31 |
As2.5 + Se5 | 263 ± 25 ab | 8968 ± 1864 a | 42.4 ± 26.4 a | 94 ± 17 ab | 5474 ± 949 ab | 43.3 ± 17.0 |
As5 + Se5 | 229 ± 21 ab | 7055 ± 1047 ac | 91.4 ± 30.7 | 170 ± 48 ab | 8400 ± 3372 a | 32.6 ± 11.2 |
As10 + Se5 | 417 ± 53 abc | 7565 ± 1154 ac | 63.4 ± 3.51 | 255 ± 60 abc | 4543 ± 21 abc | 37.0 ± 10.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paniz, F.P.; Pedron, T.; Procópio, V.A.; Lange, C.N.; Freire, B.M.; Batista, B.L. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. Toxics 2023, 11, 362. https://doi.org/10.3390/toxics11040362
Paniz FP, Pedron T, Procópio VA, Lange CN, Freire BM, Batista BL. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. Toxics. 2023; 11(4):362. https://doi.org/10.3390/toxics11040362
Chicago/Turabian StylePaniz, Fernanda Pollo, Tatiana Pedron, Vitória Aparecida Procópio, Camila Neves Lange, Bruna Moreira Freire, and Bruno Lemos Batista. 2023. "Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption" Toxics 11, no. 4: 362. https://doi.org/10.3390/toxics11040362
APA StylePaniz, F. P., Pedron, T., Procópio, V. A., Lange, C. N., Freire, B. M., & Batista, B. L. (2023). Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. Toxics, 11(4), 362. https://doi.org/10.3390/toxics11040362