Synergistic Effects of Unmodified Tea Leaves and Tea Biochar Application on Remediation of Cr-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cr-Contaminated Soil
2.2. Preparation of Material for Chromium Immobilization
2.3. Remediation of Cr-Contaminated Soil
2.4. Analysis of Soil Chemical Properties
2.5. Analysis of Soil Enzyme Activity
2.6. Determination of Soil Cr Content and Cr Fractions
2.7. Data Analysis
3. Results
3.1. Effects of Unmodified Tea Leaves and Tea Biochar on Soil Chemical Properties
3.2. Unmodified Tea Leaves and Tea Biochar Application Altered Soil Enzyme Activities
3.3. Effects of Unmodified Tea Leaves and Tea Biochar on Cr(VI) Content in Soil
3.4. Effects of Unmodified Tea Leaves and Tea Biochar on Cr Chemical Speciation in Soil
3.5. Correlation Analysis of Chromium and Soil Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Jiang, Z.; Li, Q.; Huang, P.; Zheng, C.; Liao, Q.; Yang, W. Reductive Materials for Remediation of Hexavalent Chromium Contaminated Soil—A Review. Sci. Total Environ. 2021, 773, 145654. [Google Scholar] [CrossRef]
- Su, Q.; He, Y.; Pan, H.; Liu, H.; Mehmood, K.; Tang, Z.; Hu, L. Toxicity of Inorganic Arsenic to Animals and Its Treatment Strategies. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 271, 109654. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Lamb, D.; Kunhikrishnan, A. Comparative Sorption and Mobility of Cr(III) and Cr(VI) Species in a Range of Soils: Implications to Bioavailability. Water Air Soil Pollut. 2013, 224, 1699. [Google Scholar] [CrossRef]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- Hossan, S.; Hossain, S.; Islam, M.R.; Kabir, M.H.; Ali, S.; Islam, M.S.; Imran, K.M.; Moniruzzaman, M.; Mou, T.J.; Parvez, A.K.; et al. Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. Int. J. Environ. Res. Public Health 2020, 17, 6013. [Google Scholar] [CrossRef]
- Anthony, E.T.; Oladoja, N.A. Process Enhancing Strategies for the Reduction of Cr(VI) to Cr(III) via Photocatalytic Pathway. Environ. Sci. Pollut. Res. 2022, 29, 8026–8053. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Meng, Y.; Aihemaiti, A.; Xu, Y.; Xiang, H.; Gao, Y.; Chen, X. Preparation, Environmental Application and Prospect of Biochar-Supported Metal Nanoparticles: A Review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [CrossRef]
- Sarker, A.; Masud, M.A.A.; Deepo, D.M.; Das, K.; Nandi, R.; Ansary, M.W.R.; Islam, A.R.M.T.; Islam, T. Biological and Green Remediation of Heavy Metal Contaminated Water and Soils: A State-of-the-Art Review. Chemosphere 2023, 332, 138861. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Liu, L. Effects of Microplastics and Organic Fertilizer Regulation on Soil Dissolved Organic Matter Evolution. Toxics 2024, 12, 695. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chai, L.; Yang, Z.; Zhao, F.; Liao, Q.; Si, M. Mechanism of Chemical Reduction of Cr(VI). In Remediation of Chromium-Contaminated Soil: Theory and Practice; Environmental Science and Engineering; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Fan, X.; Ding, S.; Chen, M.; Gao, S.; Fu, Z.; Gong, M.; Tsang, D.C.W.; Wang, Y.; Zhang, C. Peak Chromium Pollution in Summer and Winter Caused by High Mobility of Chromium in Sediment of a Eutrophic Lake: In Situ Evidence from High Spatiotemporal Sampling. Environ. Sci. Technol. 2019, 53, 4755–4764. [Google Scholar] [CrossRef]
- Siddika, A.; Islam, M.M.; Parveen, Z.; Hossain, M.F. Remediation of Chromium (VI) from Contaminated Agricultural Soil Using Modified Biochars. Environ. Manag. 2023, 71, 809–820. [Google Scholar] [CrossRef]
- Chen, H.; Qin, P.; Yang, X.; Bhatnagar, A.; Shaheen, S.M.; Rinklebe, J.; Wu, F.; Xu, S.; Che, L.; Wang, H. Sorption of Diethyl Phthalate and Cadmium by Pig Carcass and Green Waste-Derived Biochars under Single and Binary Systems. Environ. Res. 2021, 193, 110594. [Google Scholar] [CrossRef] [PubMed]
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and Mechanisms of Hexavalent Chromium Removal by Biochar from Sugar Beet Tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef]
- Thangagiri, B.; Sivakumar, R. Biochar for Toxic Chromium Removal: Its Impacts, Mechanism, and Future Direction. Biomass Conv. Bioref. 2024, 14, 18417–18444. [Google Scholar] [CrossRef]
- Zhong, D.; Jiang, Y.; Zhao, Z.; Wang, L.; Chen, J.; Ren, S.; Liu, Z.; Zhang, Y.; Tsang, D.C.W.; Crittenden, J.C. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties. Environ. Sci. Technol. 2019, 53, 9034–9044. [Google Scholar] [CrossRef]
- Sinha, R.; Kumar, R.; Sharma, P.; Kant, N.; Shang, J.; Aminabhavi, T.M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J. Environ. Manag. 2022, 317, 115356. [Google Scholar] [CrossRef]
- Rajput, M.K.; Hazarika, R.; Sarma, D. Zerovalent Iron Decorated Tea Waste Derived Porous Biochar [ZVI@TBC] as an Efficient Adsorbent for Cd(II) and Cr(VI) Removal. J. Environ. Chem. Eng. 2023, 11, 110279. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, L. Production and Characterization of Tea Waste–Based Biochar and Its Application in Treatment of Cd-Containing Wastewater. Biomass Conv. Bioref. 2021, 11, 1719–1732. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Shangguan, L.; Liu, S.; Ma, H.; Adhikari, S.; Hou, D. Synergistic Construction of Green Tea Biochar Supported nZVI for Immobilization of Lead in Soil: A Mechanistic Investigation. Environ. Int. 2020, 135, 105374. [Google Scholar] [CrossRef]
- Sun, J.; Mao, J.-D.; Gong, H.; Lan, Y. Fe(III) Photocatalytic Reduction of Cr(VI) by Low-Molecular-Weight Organic Acids with α-OH. J. Hazard. Mater. 2009, 168, 1569–1574. [Google Scholar] [CrossRef]
- Jiang, X.; Long, W.; Xu, T.; Liu, J.; Tang, Y.; Zhang, W. Reductive Transformation of Cr(VI) in Contaminated Soil by Polyphenols: The Role of Gallic and Tannic Acid. Ecotoxicol. Environ. Saf. 2023, 255, 114807. [Google Scholar] [CrossRef]
- Jiang, X.; Long, W.; Peng, L.; Xu, T.; He, F.; Tang, Y.; Zhang, W. Reductive Immobilization of Cr(VI) in Contaminated Water by Tannic Acid. Chemosphere 2022, 297, 134081. [Google Scholar] [CrossRef]
- Mystrioti, C.; Koursari, S.; Xenidis, A.; Papassiopi, N. Hexavalent Chromium Reduction by Gallic Acid. Chemosphere 2021, 273, 129737. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Du, J.; Xing, B. Goethite Catalyzed Cr(VI) Reduction by Tartaric Acid via Surface Adsorption. Ecotoxicol. Environ. Saf. 2019, 171, 594–599. [Google Scholar] [CrossRef]
- Sun, S.; Liu, A.; Li, Z.; Guo, T.; Chen, S.; Ahammed, G.J. Anthocyanin Synthesis Is Critical for Melatonin-Induced Chromium Stress Tolerance in Tomato. J. Hazard. Mater. 2023, 453, 131456. [Google Scholar] [CrossRef] [PubMed]
- Okumura, H. Application of Phenolic Compounds in Plants for Green Chemical Materials. Curr. Opin. Green Sustain. Chem. 2021, 27, 100418. [Google Scholar] [CrossRef]
- Han, C.; Wang, M.; Ren, Y.; Zhang, L.; Ji, Y.; Zhu, W.; Song, Y.; He, J. Characterization of Pruned Tea Branch Biochar and the Mechanisms Underlying Its Adsorption for Cadmium in Aqueous Solution. RSC Adv. 2021, 11, 26832–26843. [Google Scholar] [CrossRef]
- Duwiejuah, A.B.; Adjei, E.F.; Alhassan, E.H. Adsorption of Toxic Metals from Greywater Using Coconut Husk Biochar and Spent Green Tea. Heliyon 2024, 10, e38189. [Google Scholar] [CrossRef]
- Khalil, U.; Shakoor, M.B.; Ali, S.; Rizwan, M. Tea Waste as a Potential Biowaste for Removal of Hexavalent Chromium from Wastewater: Equilibrium and Kinetic Studies. Arab. J. Geosci. 2018, 11, 573. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Song, W.; Wen, S.; Wang, B.; Zhu, C.; Shen, R. Impact of 25 Years of Inorganic Fertilization on Diazotrophic Abundance and Community Structure in an Acidic Soil in Southern China. Soil Biol. Biochem. 2017, 113, 240–249. [Google Scholar] [CrossRef]
- Feng, C.; Yi, Z.; Qian, W.; Liu, H.; Jiang, X. Rotations Improve the Diversity of Rhizosphere Soil Bacterial Communities, Enzyme Activities and Tomato Yield. PLoS ONE 2023, 18, e0270944. [Google Scholar] [CrossRef]
- Mouco-Novegil, B.A.; Hernández-Córdoba, M.; López-García, I. Improvement in the Chromium(VI)-Diphenylcarbazide Determination Using Cloud Point Microextraction; Speciation of Chromium at Low Levels in Water Samples. Molecules 2023, 29, 153. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Gao, Y.; Yi, S.; Jiang, J.; Aihemaiti, A.; Li, D.; Yang, M. Multi-Step Column Leaching Using Low-Molecular-Weight Organic Acids for Remediating Vanadium- and Chromium-Contaminated Soil. Environ. Sci. Pollut. Res. 2019, 26, 15406–15413. [Google Scholar] [CrossRef]
- Karer, J.; Wawra, A.; Zehetner, F.; Dunst, G.; Wagner, M.; Pavel, P.-B.; Puschenreiter, M.; Friesl-Hanl, W.; Soja, G. Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of Heavy Metals in Contaminated Soils. Water Air Soil Pollut. 2015, 226, 342. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of Soil Amendments to Contaminated Soils for Heavy Metal Immobilization and Improved Soil Quality—A Critical Review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of Soil pH on the Transport, Fractionation, and Oxidation of Chromium(III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Chen, J.; Jiang, C.; Wu, S.; Wang, H. Effective Removal of Heavy Metals with Amino-Functionalized Silica Gel in Tea Polyphenol Extracts. Food Meas. 2020, 14, 2134–2144. [Google Scholar] [CrossRef]
- Mao, Y.; Tao, Y.; Zhang, X.; Chu, Z.; Zhang, X.; Huang, H. Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism. Water Air Soil Pollut. 2023, 234, 149. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Liu, D.; Li, H.; Han, S.; Li, M. Study on Influence Mechanism of Biochar on Soil Nitrogen Conversion. Environ. Pollut. Bioavail. 2022, 34, 419–432. [Google Scholar] [CrossRef]
- Omara, P.; Singh, H.; Singh, K.; Sharma, L.; Otim, F.; Obia, A. Short-Term Effect of Field Application of Biochar on Cation Exchange Capacity, pH, and Electrical Conductivity of Sandy and Clay Loam Temperate Soils. Technol. Agron. 2023, 3, 16. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils. 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Usevičiūtė, L.; Baltrėnaitė-Gedienė, E. Dependence of Pyrolysis Temperature and Lignocellulosic Physical-Chemical Properties of Biochar on Its Wettability. Biomass Convers. Bioref. 2021, 11, 2775–2793. [Google Scholar] [CrossRef]
- Sinduja, M.; Sathya, V.; Maheswari, M.; Kalpana, P.; Dhevagi, P.; Dinesh, G.K.; Chitdeshwari, T. Chemical Transformation and Bioavailability of Chromium in the Contaminated Soil Amended with Bioamendments. Bioremediat. J. 2023, 27, 229–250. [Google Scholar] [CrossRef]
- Zhu, Q.; Ji, J.; Tang, X.; Wang, C.; Sun, H. Bioavailability Assessment of Heavy Metals and Organic Pollutants in Water and Soil Using DGT: A Review. Appl. Sci. 2023, 13, 9760. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, F.; Wang, W.; Zhang, S.; Wang, F. Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance. Toxics 2020, 8, 26. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Zhao, Y.; Zhang, C.; Jin, Z.; Shan, S.; Ping, L. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Front. Bioeng. Biotechnol. 2021, 9, 728530. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Sun, P.; Liu, J.; Qiao, S.; Zhang, D.; Zhang, Z. Remediation of Chromium-Contaminated Soil Based on Bacillus Cereus WHX-1 Immobilized on Biochar: Cr(VI) Transformation and Functional Microbial Enrichment. Front. Microbiol. 2021, 12, 641913. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhou, L.; Liu, Y.; Mirza, Z.A.; Lin, X. Remediation of Hexavalent Chromium Spiked Soil by Using Synthesized Iron Sulfide Particles. Chemosphere 2017, 169, 131–138. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, J.; Hu, X.; Xing, L.; Yan, C. Immobilization of Cr(VI) Contaminated Soil Using Green-Tea Impregnated Attapulgite. J. Clean. Prod. 2021, 278, 123967. [Google Scholar] [CrossRef]
- Ma, L.; Chen, N.; Feng, C.; Yang, Q. Recent Advances in Enhanced Technology of Cr(VI) Bioreduction in Aqueous Condition: A Review. Chemosphere 2024, 351, 141176. [Google Scholar] [CrossRef]
- Rahmanian, M.; Khadem, A. The Effects of Biochar on Soil Extra and Intracellular Enzymes Activity. Biomass Convers. Biorefin. 2024, 14, 21993–22005. [Google Scholar] [CrossRef]
- Wu, J.; Annath, H.; Chen, H.; Mangwandi, C. Upcycling Tea Waste Particles into Magnetic Adsorbent Materials for Removal of Cr(VI) from Aqueous Solutions. Particuology 2023, 80, 115–126. [Google Scholar] [CrossRef]
- Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Perelomov, L.V.; Soja, G.; Zamulina, I.V.; Rajput, V.D.; Sushkova, S.N.; Mohan, D.; Yao, J. The Mechanisms of Biochar Interactions with Microorganisms in Soil. Environ. Geochem. Health 2020, 42, 2495–2518. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Qiu, Q.; Zhou, Y.; You, W. Changes in Soil Properties and Enzyme Stoichiometry in Three Different Forest Types Changed to Tea Plantations. Forests 2023, 14, 2043. [Google Scholar] [CrossRef]
- Arafat, Y.; Ud Din, I.; Tayyab, M.; Jiang, Y.; Chen, T.; Cai, Z.; Zhao, H.; Lin, X.; Lin, W.; Lin, S. Soil Sickness in Aged Tea Plantation Is Associated With a Shift in Microbial Communities as a Result of Plant Polyphenol Accumulation in the Tea Gardens. Front. Plant Sci. 2020, 11, 601. [Google Scholar] [CrossRef]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial Activity and Mechanism of Plant Flavonoids to Gram-Positive Bacteria Predicted from Their Lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef]
- Duan, Y.; Shang, X.; Liu, G.; Zou, Z.; Zhu, X.; Ma, Y.; Li, F.; Fang, W. The Effects of Tea Plants-Soybean Intercropping on the Secondary Metabolites of Tea Plants by Metabolomics Analysis. BMC Plant Biol. 2021, 21, 482. [Google Scholar] [CrossRef]
- Azeem, M.; Hassan, T.U.; Tahir, M.I.; Ali, A.; Jeyasundar, P.G.S.A.; Hussain, Q.; Bashir, S.; Mehmood, S.; Zhang, Z. Tea Leaves Biochar as a Carrier of Bacillus Cereus Improves the Soil Function and Crop Productivity. Appl. Soil Ecol. 2021, 157, 103732. [Google Scholar] [CrossRef]
- Khan, D.; Kabiraj, A.; Roy, R.K.; Let, M.; Majhi, K.; Bandopadhyay, R. Bioremediation of Heavy Metals by Metagenomic Approaches. In Omics Insights in Environmental Bioremediation; Kumar, V., Thakur, I.S., Eds.; Springer: Singapore, 2022; Chapter 17. [Google Scholar] [CrossRef]
- Yuebing, S.; Shunan, Z.; Lin, W.; Xuefeng, L.; Yingming, X. Changes of Enzymatic Activities, Substrate Utilization Pattern, and Microbial Community Diversity in Heavy Metal-Contaminated Soils. Water Air Soil Pollut. 2020, 231, 422. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Tsai, C.-F.; Rekha, P.D.; Ghate, S.D.; Huang, H.-Y.; Hsu, Y.-H.; Liaw, L.-L.; Young, C.-C. Agricultural Management Practices Influence the Soil Enzyme Activity and Bacterial Community Structure in Tea Plantations. Bot. Stud. 2021, 62, 8. [Google Scholar] [CrossRef]
- Du, P.; Cao, Y.; Yin, B.; Zhou, S.; Li, Z.; Zhang, X.; Xu, J.; Liang, B. Improved Tolerance of Apple Plants to Drought Stress and Nitrogen Utilization by Modulating the Rhizosphere Microbiome via Melatonin and Dopamine. Front. Microbiol. 2022, 13, 980327. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, J.-L. Effects of Biochar on Soil Microbial Diversity and Community Structure in Clay Soil. Ann. Microbiol. 2022, 72, 35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, W.; Yang, Y.; Xu, Y.; Teng, X.; Ma, J.; Xu, W.; Ye, Z.; Fang, X.; Liu, D. Synergistic Effects of Unmodified Tea Leaves and Tea Biochar Application on Remediation of Cr-Contaminated Soil. Toxics 2024, 12, 888. https://doi.org/10.3390/toxics12120888
Qi W, Yang Y, Xu Y, Teng X, Ma J, Xu W, Ye Z, Fang X, Liu D. Synergistic Effects of Unmodified Tea Leaves and Tea Biochar Application on Remediation of Cr-Contaminated Soil. Toxics. 2024; 12(12):888. https://doi.org/10.3390/toxics12120888
Chicago/Turabian StyleQi, Weili, Yun Yang, Yan Xu, Xiaowen Teng, Jiawei Ma, Weijie Xu, Zhengqian Ye, Xianzhi Fang, and Dan Liu. 2024. "Synergistic Effects of Unmodified Tea Leaves and Tea Biochar Application on Remediation of Cr-Contaminated Soil" Toxics 12, no. 12: 888. https://doi.org/10.3390/toxics12120888
APA StyleQi, W., Yang, Y., Xu, Y., Teng, X., Ma, J., Xu, W., Ye, Z., Fang, X., & Liu, D. (2024). Synergistic Effects of Unmodified Tea Leaves and Tea Biochar Application on Remediation of Cr-Contaminated Soil. Toxics, 12(12), 888. https://doi.org/10.3390/toxics12120888