In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Components and Mixtures
2.2. HepG2 Cell Line Culture and Cytotoxicity Assay
2.3. Mixtures Experimental Design
2.4. Data Analysis
3. Results and Discussions
3.1. Cytotoxicity of Single Substances
3.2. Mixture Toxicity and Their Interaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ECHA. Biocidal Products Regulation. Available online: https://echa.europa.eu/regulations/biocidal-products-regulation/legislation (accessed on 22 September 2023).
- Ministry of Environment (MOE). Act No. 15511 of the Korean Ministry of Environment of the Council of 20 March 2018 Concerning Household Chemical Products and Biocidal Products Safety; Ministry of Environment: Sejong, Republic of Korea, 2018. (In Korean)
- Martin, O.; Scholze, M.; Ermler, S.; McPhie, J.; Bopp, S.K.; Kienzler, A.; Parissis, N.; Kortenkamp, A. Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ. Int. 2021, 146, 106206. [Google Scholar] [CrossRef]
- Kortenkamp, A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr. Opin. Pharmacol. 2014, 19, 105–111. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Report on Mixture Toxicity—Final Report; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Loewe, S.; Muischnek, H. Über Kombinationswirkungen. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1926, 114, 313–326. [Google Scholar] [CrossRef]
- Bliss, C.I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 1939, 26, 585–615. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Vinggaard, A.M.; Mengelers, M.; Slama, R.; Silva, M.J.; Louro, H.; Viegas, S.; Tavares, A.; Goen, T.; Ermler, S.; et al. Deliverable 15.5 Case Study Reports on Mixture Health Effects; HBM4EU: Dessau-Roßlau, Germany, 2021. [Google Scholar]
- Valerio, L.G., Jr. In silico toxicology for the pharmaceutical sciences. Toxicol. Appl. Pharmacol. 2009, 241, 356–370. [Google Scholar] [CrossRef]
- Howard, G.J.; Webster, T.F. Generalized concentration addition: A method for examining mixtures containing partial agonists. J. Theor. Biol. 2009, 259, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Walter, H.; Grote, M. What contributes to the combined effect of a complex mixture? Environ. Sci. Technol. 2004, 38, 6353–6362. [Google Scholar] [CrossRef] [PubMed]
- Ermler, S.; Scholze, M.; Kortenkamp, A. Genotoxic mixtures and dissimilar action: Concepts for prediction and assessment. Arch. Toxicol. 2014, 88, 799–814. [Google Scholar] [CrossRef]
- Ezechias, M.; Cajthaml, T. Novel full logistic model for estimation of the estrogenic activity of chemical mixtures. Toxicology 2016, 359–360, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seo, M.; Choi, J.; Na, M. MRA Toolbox v. 1.0: A web-based toolbox for predicting mixture toxicity of chemical substances in chemical products. Sci. Rep. 2022, 12, 8880. [Google Scholar] [CrossRef]
- Baas, J.; Willems, J.; Jager, T.; Kraak, M.H.; Vandenbrouck, T.; Kooijman, S.A. Prediction of daphnid survival after in situ exposure to complex mixtures. Environ. Sci. Technol. 2009, 43, 6064–6069. [Google Scholar] [CrossRef] [PubMed]
- Joint Research Centre, Institute for Health and Consumer Protection; Worth, A.; Kienzler, A.; Bopp, S. Scientific Methodologies for the Assessment of Combined Effects—A Survey and Literature Review; EUR 27471 EN; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Donnelly, K.C.; Lingenfelter, R.; Cizmas, L.; Falahatpisheh, M.H.; Qian, Y.; Tang, Y.; Garcia, S.; Ramos, K.; Tiffany-Castiglioni, E.; Mumtaz, M.M. Toxicity assessment of complex mixtures remains a goal. Environ. Toxicol. Pharmacol. 2004, 18, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Sobus, J.R.; DeWoskin, R.S.; Tan, Y.M.; Pleil, J.D.; Phillips, M.B.; George, B.J.; Christensen, K.; Schreinemachers, D.M.; Williams, M.A.; Hubal, E.A.; et al. Uses of NHANES Biomarker Data for Chemical Risk Assessment: Trends, Challenges, and Opportunities. Env. Health Perspect. 2015, 123, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Luijten, M.; Vlaanderen, J.; Kortenkamp, A.; Antignac, J.P.; Barouki, R.; Bil, W.; van den Brand, A.; den Braver-Sewradj, S.; van Klaveren, J.; Mengelers, M.; et al. Mixture risk assessment and human biomonitoring: Lessons learnt from HBM4EU. Int. J. Hyg. Environ. Health 2023, 249, 114135. [Google Scholar] [CrossRef] [PubMed]
- Vlaanderen, J.; Ottenbros, I.; Crépet, A.; Trocellier, L.; Lebret, E.; Bogers, R.; Vermeulen, R.; Roth, C.; Govarts, E. Deliverable Report D15.3. Report Real-Life Exposure Profiles from Re-Analysis of Existing HBM Mixture Data; HBM4EU: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Kim, S.; Kang, K.; Kim, J.; Na, M.; Choi, J. Toxicity of organophosphorus flame retardants (OPFRs) and their mixtures in Vibrio fischeri and human hepatocyte HepG2. J. Environ. Health Sci. 2023, 49, 88–98. (In Korean) [Google Scholar] [CrossRef]
- An, J.; Hu, J.; Shang, Y.; Zhong, Y.; Zhang, X.; Yu, Z. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2016, 51, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.; Kim, S.; Ji, K.; Kho, Y.; Choi, K. Influence of Vegetarian Dietary Intervention on Urinary Paraben Concentrations: A Pilot Study with ‘Temple Stay’ Participants. Toxics 2020, 8, 3. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Levesque, C.; Chenier, M.; Gardner, H.D.; Jones-Otazo, H.; Petrovic, S. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Sci. Total Environ. 2013, 443, 520–529. [Google Scholar] [CrossRef]
- Plichta, V.; Steinwider, J.; Vogel, N.; Weber, T.; Kolossa-Gehring, M.; Murinova, L.P.; Wimmerova, S.; Tratnik, J.S.; Horvat, M.; Koppen, G.; et al. Risk Assessment of Dietary Exposure to Organophosphorus Flame Retardants in Children by Using HBM-Data. Toxics 2022, 10, 234. [Google Scholar] [CrossRef]
- Belden, J.B.; Gilliom, R.J.; Lydy, M.J. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manag. 2007, 3, 364–372. [Google Scholar] [CrossRef]
- Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat. Toxicol. 2001, 56, 13–32. [Google Scholar] [CrossRef]
- Li, C.H.; Ren, X.M.; Guo, L.H. Adipogenic activity of oligomeric hexafluoropropylene oxide (Perfluorooctanoic acid alternative) through peroxisome proliferator-activated receptor γ pathway. Environ. Sci. Technol. 2019, 53, 3287–3295. [Google Scholar] [CrossRef]
- Li, C.H.; Ren, X.M.; Ruan, T.; Cao, L.Y.; Xin, Y.; Guo, L.H.; Jiang, G. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate. Environ. Sci. Technol. 2018, 52, 3232–3239. [Google Scholar] [CrossRef]
- Jung, S.K.; Choi, W.; Kim, S.Y.; Hong, S.; Jeon, H.L.; Joo, Y.; Lee, C.; Choi, K.; Kim, S.; Lee, K.J.; et al. Profile of environmental chemicals in the Korean population—Results of the Korean National Environmental Health Survey (KoNEHS) Cycle 3, 2015–2017. Int. Environ. Res. Public Health 2022, 19, 626. [Google Scholar] [CrossRef]
- Blum, A.; Behl, M.; Birnbaum, L.; Diamond, M.L.; Phillips, A.; Singla, V.; Sipes, N.S.; Stapleton, H.M.; Venier, M. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? Environ. Sci Technol. Lett. 2019, 6, 638–649. [Google Scholar] [CrossRef]
- Kizhedath, A.; Wilkinson, S.; Glassey, J. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicol. Vitro 2019, 55, 108–115. [Google Scholar] [CrossRef]
- Muthusamy, S.; Peng, C.; Ng, J.C. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells. Chemosphere 2016, 165, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Cordier, W.; Yousaf, M.; Nell, M.J.; Steenkamp, V. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicol. Vitro 2021, 72, 105101. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ. Pollut. 2020, 263, 114182. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, V.H.; Cengo, A.; Gehres, F.; Sijm, D.; Vrolijk, M.F. Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology 2022, 480, 153312. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.; Braun, G.; Zarfl, C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model. Environ. Toxicol. Chem. 2020, 39, 2552–2559. [Google Scholar] [CrossRef]
- Altenburger, R.; Scholze, M.; Busch, W.; Escher, B.I.; Jakobs, G.; Krauss, M.; Kruger, J.; Neale, P.A.; Ait-Aissa, S.; Almeida, A.C.; et al. Mixture effects in samples of multiple contaminants—An inter-laboratory study with manifold bioassays. Environ. Int. 2018, 114, 95–106. [Google Scholar] [CrossRef]
- Szelag, S.; Zablocka, A.; Trzeciak, K.; Drozd, A.; Baranowska-Bosiacka, I.; Kolasa, A.; Goschorska, M.; Chlubek, D.; Gutowska, I. Propylparaben-induced disruption of energy metabolism in human HepG2 cell line leads to increased synthesis of superoxide anions and apoptosis. Toxicol. Vitro 2016, 31, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Bopp, S.K.; Barouki, R.; Brack, W.; Dalla Costa, S.; Dorne, J.C.M.; Drakvik, P.E.; Faust, M.; Karjalainen, T.K.; Kephalopoulos, S.; van Klaveren, J.; et al. Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 2018, 120, 544–562. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ji, K. Identification of combinations of endocrine disrupting chemicals in household chemical products that require mixture toxicity testing. Ecotoxicol. Environ. Saf. 2022, 240, 113677. [Google Scholar] [CrossRef] [PubMed]
- Gabb, H.A.; Blake, C. An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors. Environ. Health Perspect. 2016, 124, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, M.; Na, M.; Kim, J. Investigation on Combined Inhalation Exposure Scenarios to Biocidal Mixtures: Biocidal and Household Chemical Products in South Korea. Toxics 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Leszczynski, J. Computational approaches in assessments of mixture toxicity. Curr. Opin. Toxicol. 2022, 29, 31–35. [Google Scholar] [CrossRef]
- Zhu, X.W.; Chen, J.Y. Mixtox: An R package for mixture toxicity assessment. R J. 2016, 8, 422–434. [Google Scholar] [CrossRef]
No. | Group | Chemical Name | Abbr. | CAS No. | MW |
---|---|---|---|---|---|
1 | Phenols | 2,4-dichlorophenol | 2,4-DCP | 120-83-2 | 163.0 |
2 | Phenols | 2,5-dichlorophenol | 2,5-DCP | 583-78-8 | 163.0 |
3 | Phenols | Propyl paraben | pPB | 94-13-3 | 180.2 |
4 | Phenols | Butyl paraben | bPB | 94-26-8 | 194.2 |
5 | Phenols | Benzophenone-3 | BP-3 | 131-57-7 | 228.1 |
6 | Phenols | Triclosan | TCS | 3380-34-5 | 289.5 |
7 | Heavy metal | Lead chloride | Pb | 7758-95-4 | 278.1 |
8 | Heavy metal | Cupric sulfate | Cu | 7758-98-7 | 249.7 |
9 | Heavy metal | Sodium selenite | Se | 10102-18-8 | 172.9 |
10 | Heavy metal | Cadmium chloride hydrate | Cd | 654054-66-7 | 183.3 |
11 | Heavy metal | Antimony(III) chloride | Sb | 10025-91-9 | 228.1 |
12 | Heavy metal | Cobalt chloride | Co | 7646-79-9 | 129.8 |
13 | Heavy metal | Nickel dichloride | Ni | 7718-54-9 | 129.6 |
14 | Heavy metal | Zinc sulfate heptahydrate | Zn | 7446-20-0 | 287.6 |
15 | Heavy metal | Methylmercury chloride | Hg | 115-09-3 | 251.1 |
16 | PFASs | Perfluorooctanoic acid | PFOA | 335-67-1 | 414.1 |
17 | PFASs | Perfluorononanoic acid | PFNA | 375-95-1 | 464.1 |
18 | PFASs | Perfluorohexanesulfonic acid | PFHxS | 355-46-4 | 438.2 |
19 | OPFRs | Tri-n-butyl phosphate | TnBP | 126-73-8 | 326.3 |
20 | OPFRs | Triphenyl phosphate | TPhP | 115-86-6 | 362.4 |
21 | OPFRs | Tris(1-chloro-2-propyl)phosphate | TCPP | 13674-84-5 | 398.5 |
22 | OPFRs | 2-Ethylhexyl diphenyl phosphate | EHDPHP | 1241-94-7 | 362.4 |
23 | OPFRs | Tris(2-butoxyethyl) phosphate | TBOEP | 78-51-3 | 398.5 |
24 | OPFRs | Tris (1,3-dichloropropyl) phosphate | TDCIPP | 13674-87-8 | 430.9 |
25 | OPFRs | Tri (2-ethylhexyl)phosphate | TEHP | 78-42-2 | 434.6 |
Representative Mixtures * | |||||
1 | 2,4-DCP, 2,5-DCP, pPB, bPB, Hg, Cu, Se, Pb, PFHxS | ||||
2 | pPB, BP-3, TCS, Hg, Cd, Sb, PFNA, PFOA | ||||
3 | bBP, BP-3, Co, Cu, Pb, Cd, Se, Zn, Ni | ||||
4 | TnBP, TPhP, TCPP, EHDPHP, TBOEP, TDCIPP, TEHP |
No. | Abbr. | CAS No. | EC50 | EC10 | Dose–Response Curve Model 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
(μM) | (mg/L) | (μM) | (mg/L) | Model | α | β | γ | |||
1 | 2,4-DCP | 120-83-2 | 682.2 | 111.2 | 328.6 | 53.57 | Chapman | 100.0 | 0.003 | 4.83 |
2 | 2,5-DCP | 583-78-8 | 867.8 | 141.5 | 305.3 | 49.77 | Chapman | 114.7 | 0.001 | 2.26 |
3 | pPB | 94-13-3 | 742.4 | 133.8 | 269.8 | 48.62 | Logistic | 114.4 | −2.067 | 839.1 |
4 | bPB | 94-26-8 | 346.2 | 67.23 | 191.7 | 37.24 | Sigmoid | 99.22 | 70.05 | 345.0 |
5 | BP-3 | 131-57-7 | 1166 | 266.2 | 227.1 | 51.84 | Logistic | 76.13 | −1.551 | 767.9 |
6 | TCS | 3380-34-5 | 19.29 | 5.590 | 5.041 | 1.460 | Logistic | 102.0 | −1.624 | 19.77 |
7 | Pb | 7758-95-4 | 917.1 | 255.1 | 380.0 | 105.7 | Chapman | 83.33 | 0.002 | 3.901 |
8 | Cu | 7758-98-7 | 60.45 | 15.09 | 5.349 | 1.336 | Logistic | 107.4 | −0.882 | 70.68 |
9 | Se | 10102-18-8 | 84.59 | 14.63 | 4.213 | 0.729 | Gompertz | 102.2 | 68.15 | 61.69 |
10 | Cd | 654054-66-7 | 5.560 | 1.020 | 0.841 | 0.154 | Logistic | 99.76 | −1.165 | 5.537 |
11 | Sb | 10025-91-9 | 225.7 | 51.49 | 69.33 | 15.82 | Chapman | 104.9 | 0.005 | 1.932 |
12 | Co | 7646-79-9 | 612.0 | 79.46 | 272.7 | 35.41 | Chapman | 91.63 | 0.003 | 4.234 |
13 | Ni | 7718-54-9 | 372.4 | 48.27 | 213.6 | 27.68 | Chapman | 85.17 | 0.008 | 11.59 |
14 | Zn | 7446-20-0 | 336.9 | 96.88 | 243.0 | 69.88 | Chapman | 98.29 | 0.013 | 50.16 |
15 | Hg | 115-09-3 | 27.68 | 6.950 | 11.55 | 2.900 | Logistic | 27675 | −1.843 | 851.1 |
16 | PFOA | 335-67-1 | 290.4 | 120.2 | 150.4 | 62.29 | Sigmoid | 98.52 | 63.31 | 288.5 |
17 | PFNA | 375-95-1 | 176.8 | 82.04 | 122.6 | 56.88 | Chapman | 98.92 | 0.022 | 32.37 |
18 | PFHxS | 355-46-4 | 223.4 | 97.87 | 117.6 | 51.54 | Chapman | 99.10 | 0.010 | 6.501 |
19 | TnBP 2 | 126-73-8 | 270.5 | 72.05 | 167.4 | 44.58 | Sigmoid | 98.90 | 46.72 | 269.5 |
20 | TPhP | 115-86-6 | 288.0 | 93.98 | 53.32 | 17.40 | Logistic | 0.961 | 87.47 | −1.385 |
21 | TCPP | 13674-84-5 | 306.6 | 100.4 | 175.8 | 57.59 | Chapman | 0.937 | 100.9 | 0.001 |
22 | EHDPHP | 1241-94-7 | 327.0 | 118.5 | 86.71 | 31.42 | Gompertz | 0.965 | 96.56 | 194.2 |
23 | TBOEP | 78-51-3 | 308.6 | 123.0 | 119.9 | 47.76 | Sigmoid | 0.995 | 99.19 | 85.59 |
24 | TDCIPP | 13674-87-8 | 617.8 | 266.2 | 142.2 | 61.28 | Logistic | 0.940 | 971.3 | −1.125 |
25 | TEHP | 78-42-2 | 878.4 | 381.8 | 265.8 | 115.5 | Gompertz | 0.858 | 493.5 | 1150 |
Mixtures | EC10 (μM) | MDR | Interaction | Mixtures | EC10 (μM) | MDR | Interaction |
---|---|---|---|---|---|---|---|
1 | 208.0 | 0.86 | Additivity | 26 | 348.0 | 0.53 | Additivity |
2 | 175.8 | 0.61 | Additivity | 27 | 296.0 | 0.96 | Additivity |
3 | 194.6 | 0.83 | Additivity | 28 | 338.7 | 0.54 | Additivity |
4 | 175.3 | 0.82 | Additivity | 29 | 267.8 | 0.58 | Additivity |
5 | 175.3 | 1.09 | Additivity | 30 | 160.9 | 0.50 | Additivity |
6 | 112.5 | 0.94 | Additivity | 31 | 164.6 | 0.61 | Additivity |
7 | 161.3 | 0.83 | Additivity | 32 | 216.6 | 0.58 | Additivity |
8 | 244.5 | 0.56 | Additivity | 33 | 272.1 | 0.52 | Additivity |
9 | 331.8 | 0.56 | Additivity | 34 | 157.6 | 0.53 | Additivity |
10 | 223.6 | 0.53 | Additivity | 35 | 430.2 | 0.45 | Antagonism |
11 | 263.4 | 0.67 | Additivity | 36 | 504.7 | 0.31 | Antagonism |
12 | 126.0 | 0.95 | Additivity | 37 | 114.2 | 1.14 | Additivity |
13 | 154.0 | 0.73 | Additivity | 38 | 171.6 | 0.60 | Additivity |
14 | 241.5 | 0.51 | Additivity | 39 | 160.9 | 0.85 | Additivity |
15 | 264.2 | 0.44 | Antagonism | 40 | 209.6 | 0.55 | Additivity |
16 | 205.5 | 1.18 | Additivity | 41 | 232.2 | 0.66 | Additivity |
17 | 240.4 | 0.79 | Additivity | 42 | 215.9 | 0.48 | Antagonism |
18 | 185.4 | 1.03 | Additivity | 43 | 220.1 | 0.59 | Additivity |
19 | 189.6 | 0.77 | Additivity | 44 | 241.0 | 0.50 | Additivity |
20 | 504.5 | 0.37 | Antagonism | 45 | 255.1 | 0.51 | Additivity |
21 | 120.4 | 1.34 | Additivity | 46 | 252.0 | 0.54 | Additivity |
22 | 223.5 | 0.80 | Additivity | 47 | 510.0 | 0.33 | Antagonism |
23 | 190.3 | 0.99 | Additivity | 48 | 181.2 | 0.63 | Additivity |
24 | 292.6 | 0.58 | Additivity | 49 | 264.0 | 0.53 | Additivity |
25 | 222.7 | 0.71 | Additivity | 50 | 345.8 | 0.57 | Additivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kang, K.; Kim, H.; Seo, M. In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells. Toxics 2024, 12, 126. https://doi.org/10.3390/toxics12020126
Kim S, Kang K, Kim H, Seo M. In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells. Toxics. 2024; 12(2):126. https://doi.org/10.3390/toxics12020126
Chicago/Turabian StyleKim, Sunmi, Kyounghee Kang, Haena Kim, and Myungwon Seo. 2024. "In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells" Toxics 12, no. 2: 126. https://doi.org/10.3390/toxics12020126
APA StyleKim, S., Kang, K., Kim, H., & Seo, M. (2024). In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells. Toxics, 12(2), 126. https://doi.org/10.3390/toxics12020126