The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material and Experimental Design
2.2. Sample Analysis/Experimental Methods
2.3. Data Analysis
3. Results and Discussion
3.1. Soil
3.1.1. The Variation of Soil pH in Indoor/Plot Incubation
3.1.2. Immobile Effects of Three Amendments on Soil Cu and Cd in Short/Long Term Incubation
3.1.3. Variations of the Extraction Fraction of Soil Cu and Cd with Three Amendments in Short/Long Term Incubation
3.2. Soil/Colloid
3.2.1. Variations of In-Situ Iron Speciations in Soil/Colloid with Three Amendments in Short/Long Term Incubation
3.2.2. Aging Trends of Cu and Cd in Various Speciations in Soil/Colloid
3.2.3. Impact of Soil Colloid Characteristics on the Transfer Trends of Soil Cu and Cd in Short/Long Term Incubation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Xi, L.; Wu, Y.; Chen, Y.; Guo, X.; Shi, H.; Cai, S. Spatial Differentiation Characteristics and Evaluation of Cu and Cd in Paddy Soil around a Copper Smelter. Toxics 2023, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The Influence of pH and Organic Matter Content in Paddy Soil on Heavy Metal Availability and Their Uptake by Rice Plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Shen, F.; Li, R.; Guo, D.; Liang, W.; Liu, T.; Zhang, Z. Remediation of Cd and Zn Contaminated Soil by Zero Valent Iron (Fe 0): A Field Trial. Environ. Technol. Innov. 2022, 28, 102603. [Google Scholar] [CrossRef]
- Ma, G.; Ren, J.; Tao, L.; Han, X.; Liao, C.; Zhou, Y.; Ding, J.; Zhou, Y.; Bi, K. Effectiveness and Potential Mechanism of Hydrothermal Modification of Attapulgite for Cadmium Passivation in Soil. Int. J. Environ. Sci. Technol. 2023, 21, 2953–2964. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Zhou, H.; Zou, Z.-J.; Zhu, W.; Yang, W.-T.; Peng, P.-Q.; Zeng, M.; Liao, B.-H. A Three-Year in-Situ Study on the Persistence of a Combined Amendment (Limestone+sepiolite) for Remedying Paddy Soil Polluted with Heavy Metals. Ecotoxicol. Environ. Saf. 2016, 130, 163–170. [Google Scholar] [CrossRef]
- Cui, H.; Fan, Y.; Fang, G.; Zhang, H.; Su, B.; Zhou, J. Leachability, Availability and Bioaccessibility of Cu and Cd in a Contaminated Soil Treated with Apatite, Lime and Charcoal: A Five-Year Field Experiment. Ecotoxicol. Environ. Saf. 2016, 134, 148–155. [Google Scholar] [CrossRef]
- Danila, V.; Kumpiene, J.; Kasiuliene, A.; Vasarevičius, S. Immobilisation of Metal(Loid)s in Two Contaminated Soils Using Micro and Nano Zerovalent Iron Particles: Evaluating the Long-Term Stability. Chemosphere 2020, 248, 126054. [Google Scholar] [CrossRef]
- Hartley, W.; Edwards, R.; Lepp, N.W. Arsenic and Heavy Metal Mobility in Iron Oxide-Amended Contaminated Soils as Evaluated by Short- and Long-Term Leaching Tests. Environ. Pollut. 2004, 131, 495–504. [Google Scholar] [CrossRef]
- Feizi, M.; Jalali, M.; Renella, G. Nanoparticles and Modified Clays Influenced Distribution of Heavy Metals Fractions in a Light-Textured Soil Amended with Sewage Sludges. J. Hazard Mater. 2018, 343, 208–219. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of Heavy Metals in Soils and Their Immobilization at Micro-Scale Interfaces among Diverse Soil Components. Sci. Total. Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Giannetta, B.; Oliveira De Souza, D.; Aquilanti, G.; Celi, L.; Said-Pullicino, D. Redox-Driven Changes in Organic C Stabilization and Fe Mineral Transformations in Temperate Hydromorphic Soils. Geoderma 2022, 406, 115532. [Google Scholar] [CrossRef]
- Kato, S.; Chan, C.; Itoh, T.; Ohkuma, M. Functional Gene Analysis of Freshwater Iron-Rich Flocs at Circumneutral pH and Isolation of a Stalk-Forming Microaerophilic Iron-Oxidizing Bacterium. Appl. Environ. Microbiol. 2013, 79, 5283–5290. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Liu, C.; Zhu, J.; Li, F.; Deng, D.-M.; Wang, Q.; Liu, C. Cadmium Availability in Rice Paddy Fields from a Mining Area: The Effects of Soil Properties Highlighting Iron Fractions and pH Value. Environ. Pollut. 2016, 209, 38–45. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; He, C.; Hu, X.; Yin, L.; Zhang, Y.; Zhang, J.; Huang, H.; Yang, S.; He, H.; et al. Distribution Characteristics and Relevance of Heavy Metals in Soils and Colloids Around a Mining Area in Nanjing, China. Bull. Environ. Contam. Toxicol. 2021, 107, 996–1003. [Google Scholar] [CrossRef]
- He, D.; Cui, J.; Gao, M.; Wang, W.; Zhou, J.; Yang, J.; Wang, J.; Li, Y.; Jiang, C.; Peng, Y. Effects of Soil Amendments Applied on Cadmium Availability, Soil Enzyme Activity, and Plant Uptake in Contaminated Purple Soil. Sci. Total Environ. 2019, 654, 1364–1371. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, J.; Du, Z.; Fan, Y.; Si, Y. Field Remediation of Cu/Cd Polluted Soil by Apatite and Other Amendments. Soils 2010, 42, 611–617. (In Chinese) [Google Scholar] [CrossRef]
- Du, Z.; Hao, J.; Zhou, J.; Li, H.; Gao, Q.; Cui, H.; Zheng, X.; Ma, C.; Liang, J. Field In-Situ Remediation of Cu-Cd Polluted Soil by Four Amendments. Acta Pedol. Sin. 2012, 49, 508–517. (In Chinese) [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Ao, S. The Regulating Effects and Mechanism of Biochar and Maifanite on Copper and Cadmium in a Polluted Soil-Lolium perenne L. System. PeerJ 2021, 9, e11921. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H. Soil Chemistry and Laboratory Guide, 3rd ed.; China Agriculture Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Takeda, A.; Tsukada, H.; Takaku, Y.; Hisamatsu, S.; Inaba, J.; Nanzyo, M. Extractability of Major and Trace Elements from Agricultural Soils Using Chemical Extraction Methods: Application for Phytoavailability Assessment. Soil Sci. Plant Nutr. 2006, 52, 406–417. [Google Scholar] [CrossRef]
- Yin, H.; Tan, N.; Liu, C.; Wang, J.; Liang, X.; Qu, M.; Feng, X.; Qiu, G.; Tan, W.; Liu, F. The Associations of Heavy Metals with Crystalline Iron Oxides in the Polluted Soils around the Mining Areas in Guangdong Province, China. Chemosphere 2016, 161, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.; Kapoor, B.S.; Rhoades, J.D. Effect of Aluminum and Iron Oxides and Organic Matter on Flocculation and Dispersion of Arid Zone Soils. Soil Sci. 1990, 150, 588–593. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, J.; Si, Y.; Mao, J.; Zhao, Q.; Fang, G.; Liang, J. Immobilization of Cu and Cd in a Contaminated Soil: One-and Four-Year Field Effects. J. Soils Sediments 2014, 14, 1397–1406. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, J.; Li, X.; Zhang, K.; Wang, Y. The Effects of the Long-Term Freeze–Thaw Cycles on the Forms of Heavy Metals in Solidified/Stabilized Lead–Zinc–Cadmium Composite Heavy Metals Contaminated Soil. Appl. Sci. 2022, 12, 2934. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Mao, P.; Li, Y.; Li, Y.; McBride, M.B.; Wu, J.; Zhuang, P. Heavy Metal Availability, Bioaccessibility, and Leachability in Contaminated Soil: Effects of Pig Manure and Earthworms. Environ. Sci. Pollut. Res. 2019, 26, 20030–20039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tang, H.; Chang, Y. Long-term Effects of Different Amendments on Reduction of Water Soluble Heavy Metals in a Mine Contaminated Soil. J. Soil Water Conserv. 2012, 26, 144–148. [Google Scholar] [CrossRef]
- Cui, H.; Fan, Y.; Xu, L.; Zhou, J.; Zhou, D.; Mao, J.; Fang, G.; Cang, L.; Zhu, Z. Sustainability of in Situ Remediation of Cu- and Cd-Contaminated Soils with One-Time Application of Amendments in Guixi, China. J. Soils Sediments 2016, 16, 1498–1508. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, W.; Zhou, J.; Xu, L.; Zhang, X.; Zhang, S.; Zhou, J. Availability and Vertical Distribution of Cu, Cd, Ca, and P in Soil as Influenced by Lime and Apatite with Different Dosages: A 7-Year Field Study. Environ. Sci. Pollut. Res. 2018, 25, 35143–35153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Deng, F.; Zhang, H.; Gu, W.; Chen, H.; Huang, S. Experimental Study on the Redistribution Law of Heavy Metals in Sludge Disintegration. J. Environ. Manag. 2023, 330, 117128. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Collins, R.N.; Waite, T.D.; Hanna, K. Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review. Environ. Sci. Technol. 2018, 52, 12010–12025. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Carabante, I.; Kasiuliene, A.; Austruy, A.; Mench, M. LONG-TERM Stability of Arsenic in Iron Amended Contaminated Soil. Environ. Pollut. 2021, 269, 116017. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Kang, Y.; Sakurai, K. Selenium in Amorphous Iron (Hydr)Oxide-Applied Soil as Affected by Air-Drying and pH. Soil Sci. Plant Nutr. 2002, 48, 243–250. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, Y.; Wang, Y.; Song, Z.; Wu, Y.; Ma, W.; Hou, Y.; Zhang, W.; Yang, Y. Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. Appl. Sci. 2022, 12, 6591. [Google Scholar] [CrossRef]
- Ascar, L.; Ahumada, I.; Richter, P. Influence of Redox Potential (Eh) on the Availability of Arsenic Species in Soils and Soils Amended with Biosolid. Chemosphere 2008, 72, 1548–1552. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, J.; Fu, J.; Liu, A. Effect of Coexisting Ions on Crystal Phase Transformation of Nanoscale Zero-Valent Iron in Chromium-Containing Solutions. Environ. Chem. 2024, 43, 1–11. (In Chinese) [Google Scholar]
- Sørensen, M.A.; Stackpoole, M.M.; Frenkel, A.I.; Bordia, R.K.; Korshin, G.V.; Christensen, T.H. Aging of Iron (Hydr)Oxides by Heat Treatment and Effects on Heavy Metal Binding. Environ. Sci. Technol. 2000, 34, 3991–4000. [Google Scholar] [CrossRef]
- Hamdy, A. Experimental Study of the Relationship Between Dissolved Iron, Turbidity, and Removal of Cu(II) Ion From Aqueous Solutions Using Zero-Valent Iron Nanoparticles. Arab. J. Sci. Eng. 2021, 46, 5543–5565. [Google Scholar] [CrossRef]
- Ding, Y.; Long, Y.; Wang, W.; Wei, Z.; Cai, S. Iron (Oxyhydr)Oxides Are Responsible for the Stabilization of Cu and Zn in AMD after Treatment with Limestone. PeerJ 2023, 11, e14663. [Google Scholar] [CrossRef]
- Park, J.; An, J.; Chung, H.; Kim, S.H.; Nam, K. Reduction of Bioaccessibility of As in Soil through in Situ Formation of Amorphous Fe Oxides and Its Long-Term Stability. Sci. Total Environ. 2020, 745, 140989. [Google Scholar] [CrossRef]
- Ren, J.; Dai, L.; Tao, L. Stabilization of Heavy Metals in Sewage Sludge by Attapulgite. J. Air Waste Manag. Assoc. 2021, 71, 392–399. [Google Scholar] [CrossRef]
pH | SOM/% | Total Cu/mg·kg−1 | Total Cd/mg·kg−1 | Total Fe/g·kg−1 | |
---|---|---|---|---|---|
Soil | 4.23 ± 0.07 | 2.70 ± 0.09 | 664.31 ± 9.72 | 0.91 ± 0.03 | 19.14 ± 0.57 |
Short-Term | Long-Term | |||
---|---|---|---|---|
Cu/mg·kg−1 | Cd/μg·kg−1 | Cu/mg·kg−1 | Cd/μg·kg−1 | |
CK | / | / | 1509.99 ± 48.61 a | 869.71 ± 7.86 a |
L | 1904.21 ± 24.41 b | 973.49 ± 18.08 b | 1561.00 ± 80.78 a | 883.72 ± 12.37 a |
ZVI | 1974.96 ± 37.25 c | 1077.73 ± 91.02 b | 1835.89 ± 18.08 b | 1260.23 ± 51.69 c |
ATP | 2150.36 ± 10.18 b | 1390.02 ± 20.05 c | 1142.77 ± 7.74 a | 1263.65 ± 15.27 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Ding, Y.; Lai, Y.; Long, Y.; Shi, H.; Liu, M. The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term. Toxics 2024, 12, 157. https://doi.org/10.3390/toxics12020157
Liu Q, Ding Y, Lai Y, Long Y, Shi H, Liu M. The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term. Toxics. 2024; 12(2):157. https://doi.org/10.3390/toxics12020157
Chicago/Turabian StyleLiu, Qing, Yuan Ding, Yuqi Lai, Yan Long, Hong Shi, and Min Liu. 2024. "The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term" Toxics 12, no. 2: 157. https://doi.org/10.3390/toxics12020157
APA StyleLiu, Q., Ding, Y., Lai, Y., Long, Y., Shi, H., & Liu, M. (2024). The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term. Toxics, 12(2), 157. https://doi.org/10.3390/toxics12020157