Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella arenarum (Hensel, 1867) as Model Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Study Species
2.3. Experimental Design
2.3.1. Acute Lethality Test
2.3.2. Chronic Bioassay
2.4. Biomarkers
2.4.1. Biochemical Biomarkers
Enzyme Activities
Thyroid Hormone Levels
2.4.2. Genotoxic Biomarkers
2.4.3. Physiological Biomarkers
Heart Rate
Fecal Pellet Production (FPP)
2.5. Data Analysis
3. Results
3.1. Acute Lethality Test
3.2. Chronic Bioassay
3.2.1. Biochemical Biomarkers
3.2.2. Genotoxic Biomarkers
3.2.3. Physiological Biomarkers
Heart Rate
Fecal Pellet Production (FPP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. 2016. Lithium brines: A global perspective. Rev. Econ. Geol. 2020, 18, 339–365. [Google Scholar] [CrossRef]
- Herrington, R. Mining our green future. Nat. Rev. Mater. 2021, 6, 456–458. [Google Scholar] [CrossRef]
- Adeel, M.; Zain, M.; Shakoor, N.; Ahmad, M.A.; Azeem, I.; Aziz, M.A.; Tulcan, R.X.; Rathore, A.; Thair, M.; Horton, R.; et al. Global navigation of Lithium in water bodies and emerging human health crisis. NPJ Clean. Water 2023, 6, 33. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Noudeng, V.; Quan, N.V.; Xuan, T.D. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. Int. J. Environ. Res. Public. Health. 2022, 19, 16169. [Google Scholar] [CrossRef]
- Baudino, L.; Santos, C.; Pirri, C.F.; La Mantia, F.; Lamberti, A. Recent advances in the lithium recovery from water resources: From passive to electrochemical methods. Adv. Sci. 2022, 9, 2201380. [Google Scholar] [CrossRef] [PubMed]
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. [Google Scholar] [CrossRef]
- Chordia, M.; Wickerts, S.; Nordelöf, A.; Arvidsson, R. Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene. Resour. Conserv. Recycl. 2022, 187, 106634. [Google Scholar] [CrossRef]
- De Roos, N.M.; de Vries, J.H.; Katan, M.B. Serum lithium as a compliance marker for food and supplement intake. Am. J. Clin. Nutr. 2001, 73, 75–79. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
- Godfrey, L.; Álvarez-Amado, F. Volcanic and saline lithium inputs to the Salar de Atacama. Minerals 2020, 10, 201. [Google Scholar] [CrossRef]
- Voica, C.; Roba, C.; Iordache, A. Lithium levels in food from the Romanian market by inductively coupled Plasma–Mass Spectrometry (ICP-MS): A pilot study. Anal. Lett. 2021, 54, 242–254. [Google Scholar] [CrossRef]
- Gajardo, G.; Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 2019, 1, e94. [Google Scholar] [CrossRef]
- Marconi, P.; Arengo, F.; Clark, A. The arid Andean plateau waterscapes and the lithium triangle: Flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetl. Ecol. Manag. 2022, 30, 827–852. [Google Scholar] [CrossRef]
- Salica, M.J.; Gastón, M.S.; Akmentins, M.S.; Vaira, M. Threatened aquatic Andean frogs and mining activity in the Lithium Triangle of South America: Can both coexist? Aquat. Conserv. Mar. Freshw. 2023, 34, e4044. [Google Scholar] [CrossRef]
- Gutiérrez, J.S.; Moore, J.N.; Donnelly, J.P.; Dorador, C.; Navedo, J.G.; Senner, N.R. Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proc. R. Soc. B 2022, 289, 20212388. [Google Scholar] [CrossRef]
- Marazuela, M.A.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A.; Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: The damping capacity of salt flats. Sci. Total Environ. 2019, 654, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Lazou, A.; Beis, A. Lithium induces changes in the plasma membrane protein pattern of early amphibian embryos. Biol. Cell 1993, 77, 265–268. [Google Scholar] [CrossRef]
- Boğa Pekmezekmek, A.; Binokay, U.S.; Kizilkanat, E.D.; Kendirci, A.; Özgünen, T. Morphological Changes in Xenopus laevis Embryos with Lithium and Evaluation of the Fetax Test. Turk. J. Biol. 2000, 24, 177–188. [Google Scholar]
- Siebel, A.M.; Vianna, M.R.; Bonan, C.D. Pharmacological and toxicological effects of lithium in zebrafish. ACS Chem. Neurosci. 2014, 5, 468–476. [Google Scholar] [CrossRef]
- Pinto-Vidal, F.A.; Carvalho, C.D.S.; Abdalla, F.C.; Utsunomiya, H.S.M.; Salla, R.F.; Jones-Costa, M. Effects of lithium and selenium in the tail muscle of American bullfrog tadpoles (Lithobates catesbeianus) during premetamorphosis. Environ. Sci. Pollut. Res. 2022, 29, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Draaisma, D. Lithium: The gripping history of a psychiatric success story. Nature 2019, 572, 584–585. [Google Scholar] [CrossRef]
- Nagato, E.G.; D’eon, J.C.; Lankadurai, B.P.; Poirier, D.G.; Reiner, E.J.; Simpson, A.J.; Simpson, M.J. 1H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium. Chemosphere 2013, 93, 331–337. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.C.; Gould, T.D. The behavioral actions of lithium in rodent models: Leads to develop novel therapeutics. Neurosci. Biobehav. Rev. 2007, 31, 932–962. [Google Scholar] [CrossRef]
- Srinivasan, C.; Toon, J.; Amari, L.; Abukhdeir, A.M.; Hamm, H.; Geraldes, C.F.; de Freitas, D.M. Competition between lithium and magnesium ions for the G-protein transducin in the guanosine 5′-diphosphate bound conformation. J. Inorg. Biochem. 2004, 98, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Lenox, R.H.; Hahn, C.G. Overview of the mechanism of action of lithium in the brain: Fifty-year update. J. Clin. Psychiatr. 2000, 61, 5–15. [Google Scholar]
- El-Tekreti, S.; Çilingir Yeltekin, A. The Effect of Lithium Toxicity on the Goldfish (Carassius auratus) Brain. Eur. J. Sci. Technol. 2022, 38, 435–439. [Google Scholar] [CrossRef]
- Mehta, N.; Vannozzi, R. Lithium-induced electrocardiographic changes: A complete review. Clin. Cardiol. 2017, 40, 1363–1367. [Google Scholar] [CrossRef]
- Kuloğlu, S.S.; Yalçin, E.; Çavuşoğlu, K.; Acar, A. Dose-dependent toxicity profile and genotoxicity mechanism of lithium carbonate. Sci. Rep. 2022, 12, 13504. [Google Scholar] [CrossRef]
- Kibirige, D.; Luzinda, K.; Ssekitoleko, R. Spectrum of lithium: A current perspective. Thyroid. Res. 2013, 6, 3. [Google Scholar] [CrossRef]
- Lopes, A.T.C.; de Benvindo-Souza, M.; Sotero, D.F.; Pedroso, T.M.A.; Guerra, V.; Vieira, T.B.; Andreani, T.L.; Benetti, E.J.; Simões, K.; Bastos, R.P.; et al. The Use of Multiple Biomarkers to Assess the Health of Anuran Amphibians in the Brazilian Cerrado Savanna: An Ecotoxicological Approach. Environ. Toxicol. Chem. 2023, 42, 2422–2439. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, P.M.; Cuzziol Boccioni, A.P.; Attademo, A.M.; Curi, L.M.; Sandoval, M.T.; Bassó, A.; Lajmanovich, R.C. Hierarchical Levels of Biomarkers in Amphibian Tadpoles Exposed to Contaminants from Enzyme Disruptions to Etho-Toxicology Studies in Argentina. In Toxicology of Amphibian Tadpoles; CRC Press: Boca Raton, FL, USA, 2024; pp. 63–77. [Google Scholar]
- Chapman, P.M. Integrating toxicology and ecology: Putting the “eco” into ecotoxicology. Mar. Pollut. Bull. 2002, 44, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Tozer, L. Water pollution ‘timebomb’ threatens global health. Nature 2023. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Rinklebe, J. From mine to mind and mobiles–Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef] [PubMed]
- Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 2014, 35, 183–193. [Google Scholar] [CrossRef]
- Pan, X.J.; Dou, Z.H.; Zhang, T.A.; Meng, D.L.; Fan, Y.Y. Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis. Sep. Purif. Technol. 2020, 251, 117316. [Google Scholar] [CrossRef]
- Pinto Vidal, F.A.; Abdalla, F.C.; Carvalho, C.D.S.; Moraes Utsunomiya, H.S.; Teixeira Oliveira, L.A.; Salla, R.F.; Jones-Costa, M. Metamorphic acceleration following the exposure to lithium and selenium on American bullfrog tadpoles (Lithobates catesbeianus). Ecotoxicol. Environ. Saf. 2021, 207, 111101. [Google Scholar] [CrossRef]
- Frost, D.R. Amphibian Species of the World: An Online Reference (Version 6.0). Available online: http://research.amnh.org/vz/herpetology/amphibia/ (accessed on 3 January 2024).
- Vaira, M.; Akmentins, M.; Attademo, M.; Baldo, D.; Barrasso, D.; Barrionuevo, S.; Zaracho, V. Categorización del estado de conservación de los anfibios de la República Argentina. Cuad. Herpetol. 2012, 26, 131–159. [Google Scholar]
- Cabagna, M.; Lajmanovich, R.C.; Stringhini, G.; Peltzer, P.M. Hematological studies in the common toad (Bufo arenarum) in agrosystems of Argentina. Appl. Herpetol. 2005, 2, 373–380. [Google Scholar] [CrossRef]
- Brodeur, J.C.; Sassone, A.; Hermida, G.N.; Codugnello, N. Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles. Ecotox. Environ. Safe. 2013, 92, 10–17. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Junges, C.M.; Attademo, A.M.; Peltzer, P.M.; Cabagna-Zenklusen, M.C.; Basso, A. Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Wat. Air Soil. Pollut. 2013, 224, 1404. [Google Scholar] [CrossRef]
- Cuzziol Boccioni, A.P.; García-Effron, G.; Peltzer, P.M.; Lajmanovich, R.C. Effect of glyphosate and ciprofloxacin exposure on enteric bacteria of tadpoles. Rev. Argent. Microbiol. 2023, 55, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Cuzziol Boccioni, A.P.; Lener, G.; Peluso, J.; Peltzer, P.M.; Attademo, A.M.; Aronzon, C.; Lajmanovich, R.C. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. Chemosphere 2022, 309, 136554. [Google Scholar] [CrossRef] [PubMed]
- Gosner, K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Cuzziol Boccioni, A.P.; Lajmanovich, R.C.; Peltzer, P.M.; Attademo, A.M.; Martinuzzi, C.S. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. Chemosphere 2021, 273, 128475. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Habdous, M.; Vincent-Viry, M.; Visvikis, S.; Siest, G. Rapid spectrophotometric method for serum glutathione S-transferases activity. Clin. Chim. Acta 2002, 326, 131–142. [Google Scholar] [CrossRef]
- Attademo, A.M.; Curi, L.M.; Cuzziol Boccioni, A.P.; Barrios, C.E.; Peltzer, P.M.; Simoniello, M.F.; Ríos, J.M. Microplastics and plastic additives as contaminants of emerging concern: A multi-biomarker approach using Rhinella arenarum tadpoles. Environ. Adv. 2023, 14, 100444. [Google Scholar] [CrossRef]
- Gomori, G. Human esterases. J. Lab. Clin. Med. 1953, 42, 445–453. [Google Scholar] [CrossRef]
- Bunyan, P.J.; Jennings, D.M.; Taylor, A. Organophosphorus poisoning. Properties of avian esterases. J. Agric. Food Chem. 1968, 16, 326–331. [Google Scholar] [CrossRef]
- Loteste, A.; Scagnetti, J.; Simoniello, M.F.; Campana, M.; Parma, M.J. Hepatic enzymes activity in the fish Prochilodus lineatus (Valenciennes, 1836) after sublethal cypermethrin exposure. Bull. Environ. Contam. Toxicol. 2013, 90, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Attademo, A.M.; Lajmanovich, R.C.; Peltzer, P.M.; Cuzziol Boccioni, A.P.; Martinuzzi, C.; Simonielo, F.; Repetti, M.R. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: An underestimated toxicity risk? Environ. Sci. Pollut. Res. 2021, 28, 31962–31974. [Google Scholar] [CrossRef] [PubMed]
- Cabagna, M.; Lajmanovich, R.; Peltzer, P.; Attademo, A.; Ale, E. Induction of micronuclei in tadpoles of Odontophrynus americanus (Amphibia: Leptodactylidae) by the pyrethroid insecticide cypermethrin. Toxicol. Environ. Chem. 2006, 88, 729–737. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Cabagna, M.; Peltzer, P.M.; Stringhini, G.A.; Attademo, A.M. Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: Hylidae) exposed to insecticide endosulfan. Mutat. Res. 2005, 587, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.C.; Cabagna-Zenklusen, M.C.; Attademo, A.M.; Junges, C.M.; Peltzer, P.M.; Bassó, A.; Lorenzatti, E. Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 769, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, K.R.; Tilbury, K.L.; Myers, M.S. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can. J. Fish. Aquat. Sci. 1990, 47, 2123–2136. [Google Scholar] [CrossRef]
- Guilherme, S.; Válega, M.; Pereira, M.E.; Santos, M.A.; Pacheco, M. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotox. Environ. Safe 2008, 70, 411–421. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Lajmanovich, R.C.; Martinuzzi, C.; Attademo, A.M.; Curi, L.M.; Sandoval, M.T. Biotoxicity of diclofenac on two larval amphibians: Assessment of development, growth, cardiac function and rhythm, behavior and antioxidant system. Sci. Total Environ. 2019, 683, 624–637. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Cuzziol Boccioni, A.P.; Attademo, A.M.; Martinuzzi, C.S.; Colussi, C.L.; Lajmanovich, R.C. Risk of chlorine dioxide as emerging contaminant during SARS-CoV-2 pandemic: Enzyme, cardiac, and behavior effects on amphibian tadpoles. Toxicol. Environ. Health Sci. 2022, 14, 47–57. [Google Scholar] [CrossRef]
- Chan, P.K.; Lin, C.C.; Cheng, S.H. Non invasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol. 2009, 9, 11. [Google Scholar] [CrossRef]
- Kang, R.; Jeong, J.S.; Yoo, J.C.; Lee, J.H.; Choi, S.J.; Gwak, M.S.; Ko, J.S. Effective dose of intravenous dexmedetomidine to prolong the analgesic duration of interscalene brachial plexus block: A single-center, prospective, double-blind, randomized controlled trial. Reg. Anesth. Pain. Med. 2008, 43, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Song, J.; Song, H.; Zeng, Q.; Shi, K. A robust noninvasive approach to study gut microbiota structure of amphibian tadpoles by feces. Asian Herpetol. Res. 2019, 9, 1–12G. [Google Scholar] [CrossRef]
- Narayan, E.J.; Forsburg, Z.R.; Davis, D.R.; Gabor, C.R. Non-invasive Methods for Measuring and Monitoring Stress Physiology in Imperiled Amphibians. Front. Ecol. Evol. 2019, 7, 431. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Sandoval, M.T.; Peltzer, P. Induction of mortality and malformation in Scinax nasicus tadpoles exposed by glyphosate formulations. Bull. Environ. Contam. Toxicol. 2003, 70, 612–6182003. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719. [Google Scholar] [CrossRef]
- Jin, X.; Zha, J.; Xu, Y.; Wang, Z.; Kumaran, S.S. Derivation of aquatic predicted no-effect concentration (PNEC) for 2, 4-dichlorophenol: Comparing native species data with non-native species data. Chemosphere 2011, 84, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.E.; Myers, J.P.; Vandenberg, L.N. Nonmonotonic dose–response curves occur in dose ranges that are relevant to regulatory decision-making. Dose-Response 2018, 16, 1559325818798282. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Ayres, M.; Júnior Aires, M.; Ayres, D.L.; Santos, A.D.A.S. Bio Estat 5.0: Aplicações estatística nas áreas das ciências biológicas e médicas; Sociedade Civil Mamirauá: Belém, Brazil, 2007; p. 364. [Google Scholar]
- Long, K.; Brown, P.; Woodburn, K.B. Lithium chloride: A flow-through embryo-larval toxicity test with the fathead minnow, Pimephales promelas Rafinesque. Bull. Environ. Contam. Toxicol. 1998, 60, 312–317. [Google Scholar] [CrossRef]
- Kszos, L.A.; Stewart, A.J. Review of lithium in the aquatic environment: Distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 2003, 12, 439–447. [Google Scholar] [CrossRef]
- Martins, A.; da Silva, D.D.; Silva, R.; Carvalho, F.; Guilhermino, L. Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to ‘One Health’. Sci. Total Environ. 2022, 838, 155934. [Google Scholar] [CrossRef]
- Hector, K.L.; Bishop, P.J.; Nakagawa, S. Consequences of compensatory growth in an amphibian. J. Zool. 2012, 286, 93–101. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Lajmanovich, R.C. Amphibians. In The Middle Parana River: Limnology of a Subtropical Wetland, Iriondo, H.M., Paggi, J.C., Parma, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 327–340. [Google Scholar]
- Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna. Environ. Toxicol. Chem. 1992, 11, 513–520. [Google Scholar] [CrossRef]
- Truedson, P.; Ott, M.; Lindmark, K.; Ström, M.; Maripuu, M.; Lundqvist, R.; Werneke, U. Effects of Toxic Lithium Levels on ECG—Findings from the LiSIE Retrospective Cohort Study. J. Clin. Med. 2022, 11, 5941. [Google Scholar] [CrossRef] [PubMed]
- Bencharit, S.; Morton, C.L.; Hyatt, J.L.; Kuhn, P.; Danks, M.K.; Potter, P.M.; Redinbo, M.R. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: From binding promiscuity to selective inhibition. Chem. Biol. 2003, 10, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 2008, 13, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Ensibi, C.; Moreno, D.H.; Rodríguez, F.S.; Yahya, M.D.; Míguez-Santiyán, M.P.; Pérez-López, M. Effects of subchronic exposure to carbofuran on antioxidant defence system and malondialdehyde levels in common carp (Cyprinus carpio L.). Toxicol. Environ. Chem. 2012, 94, 748–759. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Attademo, A.M.; Peltzer, P.M.; Junges, C.M.; Cabagna, M.C. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch. Environ. Contam. Toxicol. 2011, 60, 681–689. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Attademo, A.M.; Lener, G.; Cuzziol Boccioni, A.P.; Peltzer, P.M.; Martinuzzi, C.S.; Repetti, M.R. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. Sci. Total Environ. 2022, 804, 150177. [Google Scholar] [CrossRef]
- Attademo, A.M.; Cuzziol Boccioni, A.P.; Peltzer, P.M.; Franco, V.G.; Simoniello, M.F.; Passeggi, M.C.; Lajmanovich, R.C. Effect of microplastics on the activity of carboxylesterase and phosphatase enzymes in Scinax squalirostris tadpoles. Environ. Monit. Assess. 2022, 194, 718. [Google Scholar] [CrossRef]
- Prabha, M.; Bhavana, G.; Sunitha, P.; Lokesh, K.N. The role of carboxyl esterase and acid phosphatase in aged and lithium treated rats in regulation of neuronal function. J. Biochem. Technol. 2015, 6, 889–893. [Google Scholar]
- Cunha, M.; Cruz, I.; Pinto, J.; Benito, D.; Ruiz, P.; Soares, A.M.; Freitas, R. The influence of temperature on the effects of lead and lithium in Mytilus galloprovincialis through biochemical, cell and tissue levels: Comparison between mono and multi-element exposures. Sci. Total Environ. 2023, 902, 165786. [Google Scholar] [CrossRef]
- Borges, A.; Scotti, L.; Siqueira, D.; Zanini, R.; do Amaral, F.; Jurinitz, D.; Wassermann, G. Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 2007, 69, 920–926. [Google Scholar] [CrossRef]
- Rahman, M.F.; Siddiqui, M.K.; Jamil, K. Acid and alkaline phosphatase activities in a novel phosphorothionate (RPR-11) treated male and female rats. Evidence of dose and time-dependent response. Drug Chem. Toxicol. 2000, 23, 497–509. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Radhakrishnan, J.; Kambham, N.; Valeri, A.M.; Hines, W.H.; D’Agati, V.D. Lithium nephrotoxicity: A progressive combined glomerular and tubulointerstitial nephropathy. J. Am. Soc. Nephrol. 2000, 11, 1439–1448. [Google Scholar] [CrossRef]
- Lepkifker, E.; Sverdlik, A.; Iancu, I.; Ziv, R.; Segev, S.; Kotler, M. Renal insufficiency in long-term lithium treatment. Clin. Psychiatry 2004, 65, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Samad, N.; Bilal, K.; Yasmin, F.; Khaliq, S.; Zaman, A.; Ayaz, M.M. Effect of lithium chloride on d-galactose induced organs injury: Possible antioxidative role. Pak. J. Pharm. Sci. 2020, 33, 1795–1803. [Google Scholar] [PubMed]
- Marcus, S.R.; Nadiger, H.A.; Chandrakala, M.V.; Rao, T.I.; Sadasivudu, B. Acute and short-term effects of lithium on glutamate metabolism in rat brain. Biochem. Pharmacol. 1986, 35, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Palmér, M.; Bergström, R.; Akerstrom, G.; Adami, H.O.; Jakobsson, S.; Ljunghall, S. Survival and renal function in untreated hypercalcaemia: Population-based cohort study with 14 years of follow-up. Lancet 1987, 329, 59–62. [Google Scholar] [CrossRef]
- Bendz, H.; Sjodin, I.; Toss, G.; Berglund, K. Hyperparathyroidism and long-term lithium therapy: A cross-sectional study and the effect of lithium withdrawal. J. Intern. Med. 1996, 240, 357–365. [Google Scholar] [CrossRef]
- Szalat, A.; Mazeh, H.; Freund, H.R. Lithium-associated hyperparathyroidism: Report of four cases and review of the literature. Eur. J. Endocrinol. 2009, 160, 317–323. [Google Scholar] [CrossRef]
- Buchholz, D.R. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology. Dev. Biol. 2015, 408, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Bonett, R.M.; Hoopfer, E.D.; Denver, R.J. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis. Gen. Comp. Endocrinol. 2010, 168, 209–219. [Google Scholar] [CrossRef]
- Khalaf, S.D.; Sadeq, W.S. Effect of lithium carbonate on chromosomal aberrations and micronuclei in white mice. Biochem. Cell. Arch. 2020, 20, p4237. [Google Scholar]
- Hawrylak-Nowak, B.; Kalinowska, M.; Szymańska, M.A. Study on selected physiological parameters of plants grown under lithium supplementation. Biol. Trace Elem. Res. 2012, 149, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, A.; Kozlov, A.V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules 2015, 5, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Besson, A.; Dowdy, S.F.; Roberts, J.M. CDK Inhibitors: Cell Cycle Regulators and Beyond. Dev. Cell 2008, 14, 159–169. [Google Scholar] [CrossRef] [PubMed]
- 102 Stampone, E.; Bencivenga, D.; Barone, C.; Aulitto, A.; Verace, F.; Della Ragione, F.; Borriello, A. High dosage lithium treatment induces DNA damage and p57Kip2 decrease. Int. J. Mol. Sci. 2020, 21, 1169. [Google Scholar] [CrossRef]
- Singer, I.; Rotenberg, D. Mechanisms of lithium action. N. Engl. J. Med. 1973, 289, 254–260. [Google Scholar] [CrossRef]
- Shahzad, B.; Mughal, M.N.; Tanveer, M.; Gupta, D.; Abbas, G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ. Sci. Pollut. Res. 2017, 24, 103–115. [Google Scholar] [CrossRef]
- Maddala, R.N.M.; Ashwal, A.J.; Rao, M.S.; Padmakumar, R. Chronic lithium intoxication: Varying electrocardiogram manifestations. Indian J. Pharmacol. 2017, 49, 127–129. [Google Scholar] [CrossRef]
- Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord. 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Yang, L.; Lei, Y.; Yang, Y.; Zhang, X.; Song, Q.; Guo, J. High dose lithium chloride causes colitis through activating F4/80 positive macrophages and inhibiting expression of Pigr and Claudin-15 in the colon of mice. Toxicology 2021, 457, 152799. [Google Scholar] [CrossRef] [PubMed]
48 h | 72 h | 96 h | |
---|---|---|---|
LC50 | 319.52 (281.21–363.05) mg L−1 | 167.026 (107.68–246.47) mg L−1 | 66.92 (52.76–84.89) mg L−1 |
LOEC | n.a. | 119.09 mg L−1 | 56.51 mg L−1 |
NOEC | 250 mg L−1 | 92.98 mg L−1 | 44.08 mg L−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peltzer, P.M.; Cuzziol Boccioni, A.P.; Attademo, A.M.; Simoniello, M.F.; Lener, G.; Lajmanovich, R.C. Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella arenarum (Hensel, 1867) as Model Organisms. Toxics 2024, 12, 176. https://doi.org/10.3390/toxics12030176
Peltzer PM, Cuzziol Boccioni AP, Attademo AM, Simoniello MF, Lener G, Lajmanovich RC. Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella arenarum (Hensel, 1867) as Model Organisms. Toxics. 2024; 12(3):176. https://doi.org/10.3390/toxics12030176
Chicago/Turabian StylePeltzer, Paola M., Ana P. Cuzziol Boccioni, Andrés M. Attademo, María F. Simoniello, Germán Lener, and Rafael C. Lajmanovich. 2024. "Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella arenarum (Hensel, 1867) as Model Organisms" Toxics 12, no. 3: 176. https://doi.org/10.3390/toxics12030176
APA StylePeltzer, P. M., Cuzziol Boccioni, A. P., Attademo, A. M., Simoniello, M. F., Lener, G., & Lajmanovich, R. C. (2024). Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella arenarum (Hensel, 1867) as Model Organisms. Toxics, 12(3), 176. https://doi.org/10.3390/toxics12030176