A Review of the Distribution and Health Effect of Organophosphorus Flame Retardants in Indoor Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Search Strategy Description
3. Concentration Profiles
3.1. Worldwide Distribution of OPFRs in Indoor Dust and Air
3.2. OPFRs from Different Indoor Sources and Materials
4. Health Effect
4.1. Human Exposure to OPFRs in Indoor Dust and Air
4.1.1. Inhalation
4.1.2. Ingestion
4.1.3. Dermal Contact
4.2. Toxicity of Several Typical OPFRs
5. Discussion and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van den Eede, N.; Dirtu, A.C.; Ali, N.; Neels, H.; Covaci, A. Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust. Talanta 2012, 89, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Heindel, J.J.; Kasten, T.; Kidd, K.A.; Jobling, S.; Neira, M.; Zoeller, R.T.; Becher, G.; Bjerregaard, P.; Bornman, R.; et al. The Impact of Endocrine Disruption: A Consensus Statement on the State of the Science. Environ. Health Perspect. 2013, 121, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Malliari, E.; Kalantzi, O.-I. Children’s exposure to brominated flame retardants in indoor environments—A review. Environ. Int. 2017, 108, 146–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, L.; Li, Y.; Zhao, F.; Zhang, S.; Mu, D.; Liu, J.; An, L.; Wan, Y.; Hu, J. Occurrence, Bioaccumulation, and Trophic Transfer of Oligomeric Organophosphorus Flame Retardants in an Aquatic Environment. Environ. Sci. Technol. Lett. 2019, 6, 323–328. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, M.; Zhang, Q.; Wu, X.; Zhao, H.; Xie, Q.; Chen, J. Organophosphorus Flame Retardants and Plasticizers in Building and Decoration Materials and Their Potential Burdens in Newly Decorated Houses in China. Environ. Sci. Technol. 2017, 51, 10991–10999. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Abdallah, M.A.-E.; Harrad, S. Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants? Environ. Sci. Technol. 2016, 50, 13052–13061. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.L.; Li, D.Q.; Zhuo, M.N.; Liao, Y.S.; Xie, Z.Y.; Guo, T.L.; Li, J.J.; Zhang, S.Y.; Liang, Z.Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Blum, A.; Behl, M.; Linda, S.; Miriam, L.; Phillips, A.; Singla, V.; Nisha, S.; Heather, M.; Venier, M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett. 2019, 6, 638–649. [Google Scholar] [CrossRef]
- Hou, R.; Xu, Y.; Wang, Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef]
- Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- Venier, M.; Audy, O.; Vojta, S.; Becanova, J.; Romanak, K.; Melymuk, L.; Kratka, M.; Kukucka, P.; Okeme, J.; Saini, A.; et al. Brominated flame retardants in the indoor environment—Comparative study of indoor contamination from three countries. Environ. Int. 2016, 94, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Vykoukalova, M.; Venier, M.; Vojta, S.; Melymuk, L.; Becanova, J.; Romanak, K.; Prokes, R.; Okeme, J.O.; Saini, A.; Diamond, M.L.; et al. Organophosphate esters flame retardants in the indoor environment. Environ. Int. 2017, 106, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, C.; Lundanes, E.; Becher, G. Brominated flame retardants in plasma samples from three different occupational groups in Norway. J. Environ. Monit. 2001, 3, 366–370. [Google Scholar] [CrossRef] [PubMed]
- 1u, M.; Yu, G.; Cao, Z.; Wu, D.; Liu, K.; Deng, S.; Huang, J.; Wang, B.; Wang, Y. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. Chemosphere 2016, 150, 465–471. [Google Scholar]
- Peng, C.; Tan, H.; Guo, Y.; Wu, Y.; Chen, D. Emerging and legacy flame retardants in indoor dust from East China. Chemosphere 2017, 186, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.D.; Sousa, A.C.A.; Isobe, T.; Kim, J.-W.; Kunisue, T.; Nogueira, A.J.A.; Tanabe, S. Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal. Sci. Total Environ. 2016, 569, 442–449. [Google Scholar] [CrossRef]
- Luongo, G.; Ostman, C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air 2016, 26, 414–425. [Google Scholar] [CrossRef]
- Liagkouridis, I.; Cequier, E.; Lazarov, B.; Cousins, A.P.; Thomsen, C.; Stranger, M.; Cousins, I.T. Relationships between estimated flame retardant emissions and levels in indoor air and house dust. Indoor Air 2017, 27, 650–657. [Google Scholar] [CrossRef]
- Reemtsma, T.; Benito Quintana, J.; Rodil, R.; Garcia-Lopez, M.; Rodriguez, I. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. Trac-Trends Anal. Chem. 2008, 27, 727–737. [Google Scholar] [CrossRef]
- Kanazawa, A.; Saito, I.; Araki, A.; Takeda, M.; Ma, M.; Saijo, Y.; Kishi, R. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 2010, 20, 72–84. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, H.; Kannan, K. Organophosphorus Flame Retardants and Plasticizers in Breast Milk from the United States. Environ. Sci. Technol. Lett. 2019, 6, 525–531. [Google Scholar] [CrossRef]
- Bluyssen, P. The Indoor Environment Handbook: How to Make Buildings Healthy and Comfortable; Routledge: London, UK, 2009; Volume 95. [Google Scholar]
- Schreder, E.D.; Uding, N.; La Guardia, M.J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere 2016, 150, 499–504. [Google Scholar] [CrossRef]
- Kademoglou, K.; Xu, F.; Padilla-Sanchez, J.A.; Haug, L.S.; Covaci, A.; Collins, C.D. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. Environ. Int. 2017, 102, 48–56. [Google Scholar] [CrossRef]
- Zheng, X.; Qiao, L.; Covaci, A.; Sun, R.; Guo, H.; Zheng, J.; Luo, X.; Xie, Q.; Mai, B. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments: Implications for human exposure via dust ingestion and dermal contact. Chemosphere 2017, 184, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, M.; Vorkamp, K.; Thomsen, M.; Knudsen, L.E. Human internal and external exposure to PBDEs—A review of levels and sources. Int. J. Hyg. Environ. Health 2009, 212, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Lyche, J.L.; Rosseland, C.; Berge, G.; Polder, A. Human health risk associated with brominated flame-retardants (BFRs). Environ. Int. 2015, 74, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B.; Stapleton, H.M.; Dills, R.L.; Violette, H.D.; Christakis, D.A.; Sathyanarayana, S. Demographic and dietary risk factors in relation to urinary metabolites of organophosphate flame retardants in toddlers. Chemosphere 2017, 185, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.-E.; Covaci, A. Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.K.; Wang, G.W.; Gao, S.X.; Wang, Z.Y. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By the disturbing expression of the transcriptional regulators. Aquat. Toxicol. 2015, 161, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Aragao Bele, T.G.; Lacorte, S.; Rodrigues de Marchi, M.R. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environ. Pollut. 2018, 237, 695–703. [Google Scholar] [CrossRef]
- Bergh, C.; Torgrip, R.; Emenius, G.; Ostman, C. Organophosphate and phthalate esters in air and settled dust—A multi-location indoor study. Indoor Air 2011, 21, 67–76. [Google Scholar] [CrossRef]
- Zhou, L.; Hiltscher, M.; Puettmann, W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. Indoor Air 2017, 27, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Takigami, H.; Suzuki, G.; Hirai, Y.; Ishikawa, Y.; Sunami, M.; Sakai, S.-I. Flame retardants in indoor dust and air of a hotel in Japan. Environ. Int. 2009, 35, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Sugeng, E.J.; Leonards, P.E.G.; van de Bor, M. Brominated and organophosphorus flame retardants in body wipes and house dust, and estimation of house dust hand-loadings in Dutch toddlers. Environ. Res. 2017, 158, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Faiz, Y.; Zhao, W.; Feng, J.; Sun, C.; He, H.; Zhu, J. Occurrence of triphenylphosphine oxide and other organophosphorus compounds in indoor air and settled the dust of an institute building. Build. Environ. 2016, 106, 196–204. [Google Scholar] [CrossRef]
- He, R.; Li, Y.; Xiang, P.; Li, C.; Zhou, C.; Zhang, S.; Cui, X.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef]
- He, C.; Zheng, J.; Qiao, L.; Chen, S.; Yang, J.; Yuan, J.; Yang, Z.; Mai, B. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. Chemosphere 2015, 133, 47–52. [Google Scholar] [CrossRef]
- Mizouchi, S.; Ichiba, M.; Takigami, H.; Kajiwara, N.; Takamuku, T.; Miyajima, T.; Kodama, H.; Someya, T.; Ueno, D. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere 2015, 123, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tajima, S.; Araki, A.; Kawai, T.; Tsuboi, T.; Bamai, Y.A.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings. Sci. Total Environ. 2014, 478, 190–199. [Google Scholar] [CrossRef]
- Araki, A.; Saito, I.; Kanazawa, A.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; Chikara, H.; et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air 2014, 24, 3–15. [Google Scholar] [CrossRef]
- Kim, J.-W.; Isobe, T.; Sudaryanto, A.; Malarvannan, G.; Chang, K.-H.; Muto, M.; Prudente, M.; Tanabe, S. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure. Environ. Sci. Pollut. Res. 2013, 20, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and profiles of organochlorines and flame retardants in cars and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef]
- Garcia, M.; Rodriguez, I.; Cela, R. Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples. J. Chromatogr. A 2007, 1152, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Hurtado, A.; Gomez-Canela, C.; Lacorte, S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environ. Res. 2016, 149, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Lahrz, T.; Kraft, M.; Fembacher, L.; Mach, C.; Dietrich, S.; Burkardt, R.; Voelkel, W.; Goeen, T. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3). Environ. Int. 2014, 71, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magner, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef]
- Castorina, R.; Butt, C.; Stapleton, H.M.; Avery, D.; Harley, K.G.; Holland, N.; Eskenazi, B.; Bradman, A. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort). Chemosphere 2017, 179, 159–166. [Google Scholar] [CrossRef]
- Stapleton, H.M.; Klosterhaus, S.; Eagle, S.; Fuh, J.; Meeker, J.D.; Blum, A.; Webster, T.F. Detection of Organophosphate Flame Retardants in Furniture Foam and US House Dust. Environ. Sci. Technol. 2009, 43, 7490–7495. [Google Scholar] [CrossRef]
- Ali, N.; Eqani, S.A.M.A.S.; Ismail, I.M.I.; Malarvannan, G.; Kadi, M.W.; Albar, H.M.S.; Rehan, M.; Covaci, A. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure. Sci. Total Environ. 2016, 569, 269–277. [Google Scholar] [CrossRef]
- Ali, N.; Dirtu, A.C.; Van den Eede, N.; Goosey, E.; Harrad, S.; Neels, H.; t Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 2012, 88, 1276–1282. [Google Scholar] [CrossRef]
- Yang, F.; Ding, J.; Huang, W.; Xie, W.; Liu, W. Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter. Environ. Sci. Technol. 2014, 48, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Van Esch, G.J.; World Health Organization. Flame Retardants: Tris(2-butoxyethyl) Phosphate, Tris(2-Ethylhexyl) Phosphate and Tetrakis(hydroxymethyl) Phosphonium Salts; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Dirtu, A.C.; Ali, N.; Van den Eede, N.; Neels, H.; Covaci, A. Country specific comparison for a profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010. Environ. Int. 2012, 49, 1–8. [Google Scholar] [CrossRef]
- Schramm, E.; Leisewitz, A.; Kruse, H. Substituting Environmentally Relevant Flame Retardants; Umweltbundesamt: Berlin, Germany, 2001. [Google Scholar]
- Zhang, X.; Suehring, R.; Serodio, D.; Bonnell, M.; Sundin, N.; Diamond, M.L. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. Chemosphere 2016, 144, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Kemmlein, S.; Hahn, O.; Jann, O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003, 37, 5485–5493. [Google Scholar] [CrossRef]
- Brandsma, S.H.; de Boer, J.; van Velzen, M.J.M.; Leonards, P.E.G. Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment. Chemosphere 2014, 116, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Brommer, S.; Harrad, S.; Van den Eede, N.; Covaci, A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J. Environ. Monit. 2012, 14, 2482–2487. [Google Scholar] [CrossRef]
- Abdallah, M.A. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)-A review. Environ. Int. 2016, 94, 235–250. [Google Scholar] [CrossRef]
- Fang, M.; Stapleton, H.M. Evaluating the Bioaccessibility of Flame Retardants in House Dust Using an In Vitro Tenax Bead-Assisted Sorptive Physiologically Based Method. Environ. Sci. Technol. 2014, 48, 13323–13330. [Google Scholar] [CrossRef]
- Khan, M.U.; Besis, A.; Li, J.; Zhang, G.; Malik, R.N. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure. Chemosphere 2017, 184, 1372–1387. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.; Abdallah, M.A.-E. Brominated flame retardants in dust from UK cars—Within-vehicle spatial variability, evidence for degradation and exposure implications. Chemosphere 2011, 82, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L.; Li, J.; Zhang, G. Occurrence and source apportionment of halogenated flame retardants in the indoor air of Nepalese cities: Implication on human health. Atmos. Environ. 2017, 161, 122–131. [Google Scholar] [CrossRef]
- Lassen, C.; Løkke, S.; Andersen, L.I. Brominated flame retardants–substance flow analysis and assessment of alternatives. Environ. Proj. 1999, 494, 221. [Google Scholar]
- World Health Organization. Flame Retardants: Tris(Chloropropyl) Phosphate and Tris(2-Chloroethyl) Phosphate; World Health Organization: Geneva, Switzerland, 1998; Volume 71, pp. 687–690. [Google Scholar]
- Dishaw, L.V.; Powers, C.M.; Ryde, I.T.; Roberts, S.C.; Seidler, F.J.; Slotkin, T.A.; Stapleton, H.M. Is the PentaBDE Replacement, Tris (1,3-dichloro-2-propyl) Phosphate (TDCPP), a Developmental Neurotoxicant? Studies in PC12 Cells. Toxicol. Appl. Pharmacol. 2011, 256, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Alzualde, A.; Behl, M.; Sipes, N.S.; Hsieh, J.-H.; Alday, A.; Tice, R.R.; Paules, R.S.; Muriana, A.; Quevedo, C. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol. Teratol. 2018, 70, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef]
- Fisk, P.R.; Girling, A.E.; Wildey, R.J. Prioritisation of Flame Retardants For Environmental Risk Assessment; Environment Agency: Wallingford, UK, 2003.
- Kojima, H.; Takeuchi, S.; Itoh, T.; Iida, M.; Kobayashi, S.; Yoshida, T. In vitro endocrine disruption potential of organophos-phate flame retardants via human nuclear receptors. Toxicology 2013, 314, 76–83. [Google Scholar] [CrossRef]
Name | Abbreviations | Chemical Formula | CAS Number | Molecular Weight | Water Solubility (mg/L) at 25 °C [28,30] | Vapor Pressure (Torr) [16,20] | LogKoa (25 °C) [31] | LogKow (n-Octanol/Water Partition Coefficient) [30] | Identification Ions or m/z (EI) |
---|---|---|---|---|---|---|---|---|---|
Triethyl phosphate | TEP | C6H15O4P | 78-40-0 | 182.15 | 5 × 10−5 | 1.77 × 10−1 | 2.4 | 0.8 | 99,127,155 |
Tri-phenyl phosphate | TPHP | C18H15O4P | 115-86-6 | 326.29 | 1.9 | 6.28 × 10−6 | 7.8 | 4.59 | 169.1,325.7 |
Tripropyl phosphate | TPP | C9H21O4P | 513-08-6 | 224.23 | 827 | 2.9 × 10 | 3.7 | 2.67 | 170,233,325 |
Tri-n-butyl phosphate | TNBP (TBP) | C12H27O4P | 126-73-8 | 266.32 | 280 | 1.13 × 10−3 | 5.0 | 4.00 | 211,99,155 |
Tris(2-chloroethyl) phosphate | TCEP | C6H12Cl3O4P | 115-96-8 | 285.49 | 7 × 10−3 | 1.08 × 10−4 | 5.2 | 1.44 | 63,143,249 |
Tris(1-chloro-2-propyl) phosphate | TCIPP (TCPP) | C9H18Cl3O4P | 13674-84-5 | 327.56 | 1.6 × 10−3 | 2.02 × 10−5 | 5.0 | 2.59 | 279,201 |
Tris(1,3-dichloro-2-propyl) phosphate | TDCIPP (TDCPP) | C9H15Cl6O4P | 13674-87-8 | 430.90 | 1.5 | 4.07 × 10−8 | 7.1 | 3.80 | 381,379,191 |
Tris(2-butoxyethyl) phosphate | TBOEP (TBEP) | C18H39O7P | 78-51-3 | 398.48 | 1.2 × 10−3 | 2.50 × 10−8 | 9.6 | 3.65 | 199,299 |
2-ethylhexyl diphenyl phosphate | EHDPP | C20H27O4P | 1241–94-7 | 362.40 | 1.9 | 2.55 × 10−6 | 11.3 | 5.37 | 250.8,77 |
Tris(2-ethylhexyl) phosphate | TEHP | C24H51O4P | 78-42-2 | 434.64 | 0.6 | 2.04 × 10−6 | 8.5 | 4.22 | 211.2,99 |
Tris(methylphenyl) phosphate | TMPP (TCP) | C21H21O4P | 1330-78-5 | 368.37 | 0.36 | 6.00 × 10−7 | 8.6 | 5.11 | 368,277,165 |
Tris(isobutyl) phosphate | TIBP | C12H27O4P | 126-71-6 | 266.31 | 3.72 | 1.30 × 10−2 | 3.6 | 3.60 | 99,155,211 |
Region | Year | Microenvironments | Sample Number | TEP | TIBP | TNBP | TCEP | TCPP | TDCPP | TBEP | TPHP /TPP | EHDPP | TEHP | TMPP /TCP | ∑OPFRs | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asia | China, Guangzhou | 2015 | AC filter dust | n = 8 | - | - | - | 433 | 272 | 217 | - | 160 | 210 | 143 | - | 1435 | [35] |
Bed dust | n = 9 | - | - | - | 65.6 | 1005 | 1050 | - | 172 | 86.9 | 368 | - | 2747.5 | ||||
Floor dust | n = 9 | - | - | - | 106 | 251 | 327 | - | 281 | 180 | 194 | - | 1339 | ||||
Window dust | n = 9 | - | - | - | 167 | 339 | 95.7 | - | 199 | 140 | - | - | 940.7 | ||||
China, Beijing | 2012–2013 | Daycare center room floor dust | n = 9 | 76 | 32 | 124 | 4114 | 435 | 791 | 1010 | 1116 | - | - | 336 | 8034 | [14] | |
China, Shanghai | 2017 * | Living room | n = 15 | 50 | - | 200 | 1200 | 1500 | 600 | 1600 | 900 | 900 | 1200 | - | 8150 | [15] | |
Bedroom | n = 15 | 30 | - | 300 | 1000 | 1600 | 700 | 2000 | 900 | 900 | 1400 | - | 8830 | ||||
Balcony | n = 7 | 70 | - | 200 | 400 | 2200 | 500 | 2000 | 1200 | 300 | 500 | - | 7370 | ||||
China, Nanjing | 2014–2015 | Office dust | n = 5 | - | - | 68 | 166 | 238 | - | - | 30 | - | 32 | - | 534 | [36] | |
China, Nanjing | 2014–2015 | Office dust | n = 12 | - | - | - | 1530 | 910 | 1330 | - | 900 | - | - | - | 4670 | [37] | |
House dust | n = 6 | - | - | - | 2140 | 720 | 110 | - | 600 | - | - | - | 3570 | ||||
China, Guangzhou and Qingyuan | 2013–2014 | Rural home dust | n = 25 | 60 | - | 140 | 1930 | 1220 | - | 200 | 1090 | 310 | 190 | - | 5140 | [38] | |
Urban home dust | n = 11 | 110 | - | 80 | 3780 | 750 | - | 320 | 150 | 360 | 140 | - | 5690 | ||||
Japan | 2009–2010 | Domestic house dust | n = 10 | - | - | 130 | 2700 | 1700 | 2200 | 82,000 | 820 | 200 | - | 1200 | 90,950 | [39] | |
Japan, Sapporo | 2009–2010 | Floor dust | n = 48 | - | - | - | - | 740 | - | 30880 | 870 | - | - | - | 32490 | [40] | |
Japan | 2006 | Floor dust | n = 148 | - | - | 1030 | 5830 | 8690 | 2800 | 508,320 | 4510 | - | 2070 | - | 533,250 | [41] | |
Philippines | 2008 | House dust (malate) | n = 17 | - | - | 19 | 34 | - | - | - | 89 | 110 | 140 | 18 | 410 | [42] | |
House dust (payatas) | n = 20 | - | - | 20 | 16 | - | - | - | 71 | 34 | 41 | 7.7 | 189.7 | ||||
Pakistan | 2011 | House dust | n = 15 | <5 | 25 | <20 | 15 | <20 | <5 | 16.5 | 175 | 67 | 20 | - | 318.5 | [43] | |
Europe | Netherlands | 2013 | Floor dust | n = 14 | - | - | - | 157 | 815 | 1051 | - | 404 | - | - | 58 | 2485 | [35] |
Surface dust | n = 14 | - | - | - | 205 | 3641 | 3752 | - | 357 | - | - | 57 | 8012 | ||||
Germany, Rhine | 2015 | Home dust | n = 15 | - | 380 | 250 | - | 4200 | - | 4300 | 1200 | - | - | - | 10,330 | [33] | |
Office dust | n = 11 | 420 | 660 | 280 | - | 8500 | 3200 | 8600 | 2900 | - | - | 340 | 24,900 | ||||
Spain | 2007 * | House dust | n = 8 | - | 210 | 250 | 1700 | 3900 | - | 9900 | 2600 | - | - | - | 18,560 | [44] | |
Romania, Spain, Belgium | 2012 * | Indoor dust | n = 6 | <30 | - | 190 | 680 | 860 | 3180 | 63,000 | 1160 | - | - | 1140 | 70,210 | [1] | |
Spain, Barcelona | 2016 * | Home dust | n = 5 | - | 143 | 121 | 1790 | 2623 | 706 | - | 1102 | - | 454 | - | 6939 | [45] | |
Belgium, Flemish | 2011 * | House dust | n = 33 | <50 | 2990 | 130 | 230 | 1380 | 360 | 2030 | 500 | - | - | 240 | 7860 | [1] | |
Germany | 2011–2012 | Daycare center dust | n = 63 | - | <300 | <300 | 400 | 2680 | - | 225,000 | 500 | - | 500 | - | 229,080 | [46] | |
Stockholm | 2011 * | Private home dust | n = 10 | - | 1100 | 300 | 2100 | 1600 | 10,000 | 4000 | 1200 | - | - | - | 20,300 | [32] | |
Daycare center dust | n = 10 | 200 | 700 | 1200 | 30,000 | 3100 | 9100 | 1,600,000 | 1900 | - | 100 | - | 1,646,300 | ||||
Workplace dust | n = 10 | 100 | 1300 | 200 | 6700 | 19,000 | 17,000 | 87,000 | 5300 | - | - | - | 136,600 | ||||
Norway | 2012 | Residential living room dust | n = 48 | - | - | 55 | 414 | 2680 | - | 13,400 | 981 | 617 | - | 307 | 18,454 | [30] | |
Norway | 2012 | Household dust | n = 38 | - | - | 54.9 | 403 | 2510 | 501 | 15,000 | 1010 | - | - | 266 | 19,744.9 | [19] | |
Norway, Oslo | 2016 * | Living room floor dust | n = 61 | - | - | - | 435 | 1997 | 397 | 8146 | 722 | - | 401 | 179 | 12,277 | [47] | |
Living room surface dust | n = 61 | - | - | - | 455 | 5241 | 1130 | 6796 | 1228 | - | 710 | 334 | 15,894 | ||||
Portugal, Aveiro and Coimbra | 2010–2011 | House dust | n = 28 | - | - | 28 | 17 | - | 22 | - | 662.4 | 620 | 1700 | 97 | 3146.4 | [16] | |
America | US, California | 2000–2001 | House dust | n = 125 | - | - | - | 1067 | 410.4 | 2021 | - | 813.5 | - | - | - | 4311.9 | [48] |
US, Boston | 2002–2007 | House dust | n = 50 | - | - | - | - | 572 | 1890 | - | 7360 | - | - | - | 9822 | [49] | |
US, Longview and Vancouver, WA | 2011–2012 | House dust | n = 20 | - | - | - | 1380 | 4820 | 1620 | - | - | - | - | - | 7820 | [23] | |
Canada, Toronto | 2013 | House dust | n = 23 | - | - | - | 181 | 1470 | 917 | - | 2350 | 754 | 101 | 6.9 | 5779.9 | [12] | |
Brazil, Sao Paulo State, Araraquara city | 2017 * | Apartment dust | n = 10 | - | 40.1 | 28.1 | 237 | 1870 | 2250 | 22,100 | 3830 | 1750 | 549 | - | 32,654.2 | [31] | |
House dust | n = 10 | - | 30.7 | 12.3 | 230 | 771 | 1370 | 15,900 | 3900 | 1590 | 397 | - | 24,201 | ||||
Office dust | n = 5 | - | 51.7 | 40.8 | 237 | 1820 | 4480 | 72,800 | 6420 | 2140 | 500 | - | 88,489.5 | ||||
Africa Middle East | KSA, Jeddah | 2016 | House floor dust | n = 15 | - | - | 35 | 410 | 1650 | 500 | 205 | 230 | 220 | 70 | - | 3320 | [50] |
AC filter dust | n = 15 | - | - | 10 | 820 | 2000 | 7800 | 50 | 600 | 350 | 130 | - | 11,760 | ||||
Egypt, Assiut | 2012–2013 | House dust | n = 20 | - | 23 | 17 | 22 | 28 | 72 | 18 | 67 | 42 | - | - | 289 | [46] | |
Kuwait | 2011 | House dust | n = 15 | 19 | 54 | 58 | 710 | 1460 | 360 | 855 | 430 | 190 | 65 | - | 4201 | [43] | |
Oceania | New Zealand, Wellington | 2012 * | Indoor dust | n = 34 | - | - | 80 | 110 | 350 | 230 | 4020 | 600 | - | - | 120 | 5510 | [51] |
n = 16 | - | - | 70 | 40 | 250 | 110 | 1550 | 240 | - | - | 160 | 2420 | |||||
Australia, Brisbane | 2015 | Indoor dust | n = 3 | - | <30 | 140 | 550 | 1000 | 1500 | 63,000 | 870 | 1300 | <450 | 950 | 69,310 | [51] |
Region | Year | Microenvironments | Sample number | TEP | TIBP | TNBP- | TCEP | TCPP | TDCPP | TBEP | TPHP /TPP | EHDPP | TEHP | TMPP /TCP | ∑OPFRs | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asia | China, Nanjing | 2014–2015 | Office air | n = 5 | - | - | 0.53 | 36 | 10 | - | - | 0.4 | - | 0.3 | - | 47.23 | [36] |
n = 9 | - | - | 0.515 | 29.5 | 12.5 | - | - | 0.215 | - | 0.3 | - | 43.03 | |||||
China, Hangzhou | 2013 | Office air | n = 10 | - | - | 0.47 | 3.11 | 7.76 | 0.63 | 0.27 | 1.41 | 0.22 | 0.84 | - | 14.71 | [52] | |
Europe | Norway | 2012 | Residential living room air | n = 47 | - | - | 5.09 | 2.25 | 42.3 | - | 0.598 | 0.258 | 0.119 | - | - | 50.615 | [30] |
Norway | 2012 | Household air | n = 38 | - | - | 5.3 | 2.4 | 40.8 | 0.0753 | 0.637 | 0.241 | - | - | 0.0376 | 49.4909 | [18] | |
Norway, Oslo | 2016 * | Indoor stationary air | n = 58 | - | - | 14 | 3 | 128 | - | - | 1 | - | - | - | 146 | [48] | |
Germany | 2011–2012 | Daycare center air | n = 63 | - | - | 2.2 | <2 | 2.7 | - | 49 | - | - | - | - | 53.9 | [47] | |
Stockholm | 2011 * | Private home air | n = 10 | 7.3 | 13 | 9.1 | 4.8 | 5.6 | - | - | - | - | - | - | 39.8 | [31] | |
Daycare center air | n = 10 | 1.7 | 7.2 | 18 | 25 | 8.4 | - | 84 | - | - | - | - | 144.3 | ||||
Workplace air | n = 10 | 6.5 | 7.3 | 2.3 | 10 | 100 | 28 | 5.8 | - | - | - | - | 159.9 | ||||
Stockholm | 2010* | Living room air | n = 16 | 7 | 12 | 11 | 3.3 | 8.3 | - | - | - | - | - | - | 41.6 | [31] | |
Stockholm | 2008 | Apartment air | n = 62 | 5.3 | 8.9 | 13 | 3.9 | 19 | - | - | - | - | - | - | 50.1 | [17] | |
America | Canada, Toronto | 2013 | House air | n = 24 | - | - | - | 6.35 | 73.6 | 0.525 | - | 0.723 | 1.71 | 0.042 | 0.007 | 82.957 | [12] |
Different Microenvironments | Major FRs | Concentration Levels | Country | References |
---|---|---|---|---|
PVC floor coverings and floor waxes | TBEP | 14–5300 mg/kg dust | Sweden | [10] |
Computer screens and TV sets | TPP | 3300 mg/m2 | ||
Acoustic ceilings | TCEP | 0.19–94 mg/kg dust | ||
Upholstery (sofas) | TCIPP | 50 mg/kg dust | ||
EPS and XPS insulating boards | HBCD | 0.1–29 ng/m2/h | Europe | [32] |
PU foam products | TCIPP | 20 ng/m2/h–140 μg/m2/h | ||
Bedding Bedroom AC filters | TDCIPP TCEP | 1050 ng/g dust 433 ng/g | South China (Guangzhou) | [25] |
Bedroom windows | TCIPP | 339 ng/g dust | ||
Office printer table | TPHP | 5780 ng/g | ||
Office PC tables | TPHP | 1220 ng/g | ||
Car seats (PUF) | TDCIPP | 1100 μg/g | Netherlands | [58] |
TMPP | 380 μg/g | |||
Wallpaper (PVC) Wallpaper (non-woven) Wallpaper (pure paper) | TEHP TNBP TCIPP | 9984 ng/g 102,400 ng/g 177.9 ng/g | China | [5] |
Wall decoration powders | TCIPP | 5.84 ng/g | ||
Decoration paints | TDCIPP | 156.7 ng/g | ||
Window films | TCIPP TNBP | 566 ng/m2 72.6 ng/m2 | Czech Republic | [12] |
Reported 96 h-LC50 to Fish (mg/L) [30] | ECOSAR 96 h-LC50 to Fish (mg/L) [30] | Acute Toxicity | Long-Term Toxicity | |
---|---|---|---|---|
TCIPP | 51–84 | 8.9 | Oral: LD50 (rat) 500–4200 mg/kg bw Inhalative: LD50 (rat) >4.6 mg/L to >17.8 mg/L Dermal: LD50 (rabbit) 1230–5000 mg/kg bw [35] | NOEL = 36 mg/kg bw [35] |
TDCIPP | 1.1 | 4.7 | 48 h-EC50 (daphnia) 3.8–4.6 mg/L Oral:LC50 (rat) 2300 mg/kg Dermal:LC50 (rat) >2000 mg/kg [45] | NOEL = 15.3 mg/kg bw per day LOEL = 62 mg/kg perday [28] |
TCEP | 6.3–250 | 35 | ||
TBOEP | 6.8–24 | 9.5 | 15 min-IC25/IC50 (bacteria) 15.6–500 mg/L 72 h-IC25/IC50 (algae) 0.18–91 mg/L 96 h-LC50/EC50 (invertebrates) 7.8–500 mg/L [7] | |
TMPP | 0.061–0.75 | 1 | ||
TPHP | 0.3–0.66 | 1 | LC50 (daphnia) 1.0–1.2 mg/L LC50 (rats) 3500–10,800 mg/kg [45] | NOEC = 0.1 mg/L (daphnia)/3500–10,800 mg/kg (rat) [28] |
TEHP | >100 | 0.005 | 15 min-IC25/IC50 (bacteria) 0.78–100 mg/L 72 h-IC25/IC50 (algae) 0.36–182 mg/L 96 h-LC50/EC50 (invertebrates) 3.13–100 mg/L [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Zhu, S.; Hu, L.; Chen, X.; Zhang, J.; Liu, Y.; Bu, Q.; Ma, Y. A Review of the Distribution and Health Effect of Organophosphorus Flame Retardants in Indoor Environments. Toxics 2024, 12, 195. https://doi.org/10.3390/toxics12030195
Song X, Zhu S, Hu L, Chen X, Zhang J, Liu Y, Bu Q, Ma Y. A Review of the Distribution and Health Effect of Organophosphorus Flame Retardants in Indoor Environments. Toxics. 2024; 12(3):195. https://doi.org/10.3390/toxics12030195
Chicago/Turabian StyleSong, Xingwei, Sheng Zhu, Ling Hu, Xiaojia Chen, Jiaqi Zhang, Yi Liu, Qingwei Bu, and Yuning Ma. 2024. "A Review of the Distribution and Health Effect of Organophosphorus Flame Retardants in Indoor Environments" Toxics 12, no. 3: 195. https://doi.org/10.3390/toxics12030195
APA StyleSong, X., Zhu, S., Hu, L., Chen, X., Zhang, J., Liu, Y., Bu, Q., & Ma, Y. (2024). A Review of the Distribution and Health Effect of Organophosphorus Flame Retardants in Indoor Environments. Toxics, 12(3), 195. https://doi.org/10.3390/toxics12030195