Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of the Study Location and Climate
2.2. Soil Sampling and Preparation
2.3. Laboratory Analysis for Irrigation Water Quality
2.4. Amendments Preparation and Application
2.5. Experimental Design, Treatments and Laboratory Analysis
2.6. Data Analysis
- μ: overall mean;
- Ai: the effect of ith % (GYP: 0, 50, 100, and 150);
- Bj: the effect of jth ton/ha (FYM: 0, 10, 20 and 30);
- ABij: interaction of the effect of ith GYP and jth FYM;
- eij: error.
- α = intercept;
- X1, X2, X3, … Xn = the amendment level (GYP + FYM) used to reclaim sodic soil;
- β1, β2, β3, … βn = regression coefficient of the independent variables X1, X2, X3, … Xn;
- ej = residual error.
3. Results and Discussion
3.1. Initial Soil and Irrigation Water Laboratory Analysis
3.2. Effects of Gypsum and Farmyard Manure on Chemical Properties of Sodic Soil under Incubation and Leaching Study
3.2.1. Soil pH and Electrical Conductivity
3.2.2. Soil Exchangeable Cations (Na+, Mg2+, Ca2+, and K+)
3.2.3. Soil Exchangeable Sodium Percentage (ESP)
3.3. Soil Color Change
3.4. Multivariate Analysis of Combined Application of Gypsum and Farmyard Manure Effect on Sodic Soil Chemical Properties under Incubation and Leaching Study
3.4.1. Correlation between Chemical Properties of Reclaimed Sodic Soil
3.4.2. Prediction of Exchangeable Sodium Percentages (ESP)
3.4.3. Principal Components Analysis (PCA) of Reclaimed Sodic Soil Chemical Properties Concerning Different Gypsum and Farmyard Manure Treatments
3.4.4. Hierarchical Cluster Analysis of Reclaimed Sodic Soils’ Chemical Properties Concerning Different Gypsum and Farmyard Manure Treatments
3.4.5. K-Means Clustering of Reclaimed Sodic Soils’ Chemical Properties Concerning Different Gypsum and Farmyard Manure Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahane, A.A.; Shivay, Y.S. Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Dotaniya, L.M.; Meena, M.D.; Choudhary, R.L.; Meena, M.K.; Singh, H.; Dotaniya, C.K.; Meena, L.K.; Doutaniya, R.K.; Meena, K.N.; Jat, R.S.; et al. Management of plant nutrient dynamics under alkaline soils through graded application of pressmud and gypsum. PLoS ONE 2023, 18, e0288784. [Google Scholar] [CrossRef]
- Abbas, G.; Rehman, S.; Siddiqui, M.H.; Ali, H.M.; Farooq, M.A.; Chen, Y. Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants 2022, 11, 263. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Eftekhari, M. Land suitability assessment for maize farming using a GIS-AHP method for a semi-arid region, Iran. J. Saudi Soc. Agric. Sci. 2020, 19, 332–338. [Google Scholar] [CrossRef]
- Chhabra, R. Classification of salt-affected soils. Arid Land Res. Manag. 2004, 19, 61–79. [Google Scholar] [CrossRef]
- Marchuk, A. Effect of Cations on Structural Stability of Salt-Affected Soils. Ph.D. Thesis, University of Adelaide, School of Agriculture, Food and Wine, Adelaide, Australia, 2013. [Google Scholar]
- Levy, G.J.; Sumner, M.E. Mined and by-product gypsum as soil amendments and conditioners. In Handbook of Soil Conditioners; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2020; pp. 187–215. ISBN 100306468X. [Google Scholar]
- Hailu, B.; Mehari, H. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. J. Nat. Sci. Res. 2021, 12, 1–10. [Google Scholar]
- FAO. Mapping of Salt-Affected Soils: Technical Manual; FAO: Rome, Italy, 2020; ISBN 9789251326879. [Google Scholar] [CrossRef]
- Kumar; Sharma, P.K. Soil salinity and food security in India. Front. Sustain. Food Syst. 2020, 4, 533781. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–61. [Google Scholar]
- Muniruzzaman, A.N.M. Coastal Vulnerabilities and Climate Change: Insights from Bangladesh and beyond. In Climate Diplomacy in Perspective: From Early Warning to Early Action; Berliner Wissenschafts-Verlag: Berlin, Germany, 2012; p. 97. [Google Scholar]
- Zaman, M.; Shahid, S.A.; Heng, L.; Shahid, S.A.; Zaman, M.; Heng, L. Introduction to soil salinity, sodicity and diagnostics techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 1–42. [Google Scholar]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric. Water Manag. 2021, 245, 106558. [Google Scholar] [CrossRef]
- Habtamu, A.; Wassie, H. Review on Causes and Management Strategies of Salt Affected Soils in Lowlands of Ethiopia. Arch. Crop. Sci. 2022, 5, 151–163. [Google Scholar] [CrossRef]
- Asad, S.Q.; Tesfaye, E.; Melese, M. Prospects of alternative copping systems for salt-affected soils in Ethiopia. J. Soil Sci. Environ. Manag. 2018, 9, 98–107. [Google Scholar] [CrossRef]
- Dagar, J.C. Greening salty and waterlogged lands through agroforestry systems for livelihood security and better environment. In Agroforestry Systems in India: Livelihood Security & Ecosystem Services; Springer: Berlin/Heidelberg, Germany, 2013; pp. 273–332. [Google Scholar]
- Al-Busaidi, A.S.; Cookson, P. Salinity–pH relationships in calcareous soils. J. Agric. Mar. Sci. 2003, 8, 41–46. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble salts in compost and their effects on soil and plants: A review. Compost Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Sharma, P.C.; Singh, A. Reviving the productivity of salt-affected lands: Technological options, constraints and research needs. In Research Developments in Saline Agriculture; Springer: Singapore, 2019; pp. 591–627. [Google Scholar]
- Paz, A.M.; Amezketa, E.; Canfora, L.; Castanheira, N.; Falsone, G.; Gonçalves, M.C.; Gould, I.; Hristov, B.; Mastrorilli, M.; Ramos, T. Salt-affected soils: Field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Li, Y.; Tong, Z.; Gao, B. Potential management practices of saltwater intrusion impacts on soil health and water quality: A review. J. Water Clim. Chang. 2021, 12, 1327–1343. [Google Scholar] [CrossRef]
- Gupta, S.R.; Dagar, J.C.; Teketay, D. Agroforestry for rehabilitation of degraded landscapes: Achieving livelihood and environmental security. In Agroforestry for Degraded Landscapes; Springer: Singapore, 2020; Volume 1, pp. 23–68. [Google Scholar]
- Chaganti, V.N.; Crohn, D.M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 2015, 259, 45–55. [Google Scholar] [CrossRef]
- Choudhary, O.P. Use of amendments in ameliorating soil and water sodicity. In Bioremediation of Salt Affected Soils: An Indian Perspective; Springer: Cham, Switzerland, 2017; pp. 195–210. [Google Scholar]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Kharche, V.K. Soil salinity and sodicity. Soil Sci. Introd. 2018, 12, 353–384. [Google Scholar]
- Yazdanpanah, N.; Mahmoodabadi, M. Reclamation of calcareous saline–sodic soil using different amendments: Time changes of soluble cations in leachate. Arab. J. Geosci. 2013, 6, 2519–2528. [Google Scholar] [CrossRef]
- Kripal, S. Microbial and enzyme activities of saline and sodic soils. Land Degrad. Dev. 2016, 27, 706–718. [Google Scholar]
- Gangwar, P.; Singh, R.; Trivedi, M.; Tiwari, R.K. Sodic soil: Management and reclamation strategies. In Environmental Concerns and Sustainable Development; Springer: Singapore, 2020; Volume 2, pp. 175–190. [Google Scholar]
- Srivastava, P.; Wu, Q.-S.; Giri, B. Salinity: An overview. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Cham, Switzerland, 2019; pp. 3–18. [Google Scholar]
- Li, X.; Kang, Y. Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manag. 2020, 231, 105995. [Google Scholar] [CrossRef]
- Kudakwashe, M.; Qiang, L.I.U.; Shuai, W.U.; Yanfei, Y. Plant-and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: A review. Pedosphere 2022, 32, 211–221. [Google Scholar]
- Prapagar, K.; Indraratne, S.P.; Premanandharajah, P. Effect of soil amendments on reclamation of saline-sodic soil. Trop. Agric. Res. 2012, 23, 168–176. [Google Scholar] [CrossRef]
- Öztürk, H.S.; Saygın, S.D.; Copty, N.K.; İzci, E.; Erpul, G.; Demirel, B.; Saysel, A.K.; Babaei, M. Hydro-physical deterioration of a calcareous clay-rich soil by sodic water in Central Anatolia, Türkiye. Geoderma Reg. 2023, 33, e00649. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Spangenberg, J.E.; Verrecchia, E.P. Evidence linking calcium to increased organo-mineral association in soils. Biogeochemistry 2021, 153, 223–241. [Google Scholar] [CrossRef]
- Argüello, D.; Dekeyrel, J.; Chavez, E.; Smolders, E. Gypsum application lowers cadmium uptake in cacao in soils with high cation exchange capacity only: A soil chemical analysis. Eur. J. Soil Sci. 2022, 73, e13230. [Google Scholar] [CrossRef]
- Wijitkosum, S. Applying rice husk biochar to revitalise saline sodic soil in Khorat Plateau Area–A case study for food security purposes. In Biochar Applications in Agriculture and Environment Management; Springer: Cham, Switzerland, 2020; pp. 1–31. [Google Scholar]
- Pratiwi, E.P.A.; Shinogi, Y. Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ. 2016, 14, 521–532. [Google Scholar] [CrossRef]
- Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016, 23, 1120–1132. [Google Scholar] [CrossRef]
- Hafeez, A.; Pan, T.; Tian, J.; Cai, K. Modified biochars and their effects on soil quality: A review. Environments 2022, 9, 60. [Google Scholar] [CrossRef]
- Minhas, P.S.; Qadir, M.; Yadav, R.K. Groundwater irrigation induced soil sodification and response options. Agric. Water Manag. 2019, 215, 74–85. [Google Scholar] [CrossRef]
- Yash, S.P.; Arora, S.; Mishra, V.K.; Singh, A.K. Synergizing microbial enriched municipal solid waste compost and mineral gypsum for optimizing rice-wheat productivity in sodic soils. Sustainability 2022, 14, 7809. [Google Scholar]
- Rathi, D.; Antil, R.S.; Sharma, M.K.; Sheoran, S. Effect of fym and gypsum on distribution of micronutrient in soil under sodic water irrigation: A long-term study. J. Indian Soc. Soil Sci. 2020, 68, 100–106. [Google Scholar] [CrossRef]
- Tiruneh, T.A. Water Quality Monitoring in Lake Abaya and Lake Chamo Region: A Research Based on Water Resources of the Abaya-Chamo Basin—South Ethiopia, Fachbereich 8, Chemie—Biologie. 2005. Available online: https://dspace.ub.uni-siegen.de/handle/ubsi/104 (accessed on 25 December 2022).
- Walche, A.; Haile, W.; Kiflu, A.; Tsegaye, D. Assessment and Characterization of Agricultural Salt-Affected Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley. Appl. Environ. Soil Sci. 2023, 2023, 3946508. [Google Scholar] [CrossRef]
- Abdi, D.; Gebrekristos, S. Regionalization of Low Flow Analysis in Data Scarce Region: The Case of the Lake Abaya-Chamo Sub-basin, Rift Valley Lakes Basin, Ethiopia. J. Water Manag. Model. 2022, 30, C487. [Google Scholar] [CrossRef]
- Mengistu, H.A.; Demlie, M.B.; Abiye, T.A. Groundwater resource potential and status of groundwater resource development in Ethiopia. Hydrogeol. J. 2019, 27, 1051–1065. [Google Scholar] [CrossRef]
- Tessema, N.; Yadeta, D.; Kebede, A.; Ayele, G.T. Soil and Irrigation Water Salinity, and Its Consequences for Agriculture in Ethiopia: A Systematic Review. Agriculture 2022, 13, 109. [Google Scholar] [CrossRef]
- Regional Salinity Laboratory (U.S.). Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Clayton, Australia, 2011; Volume 3, ISBN 064306768X. [Google Scholar]
- Sahlemedhin, S.; Taye, B. Procedure for soil and plant analysis: National Soil Research Center, Ethiopia Agricultural Research Organization. Tech. Pap. 2000, 74, 110. [Google Scholar]
- Jackson, M. Soil Chemical Analysis Prentice; Hall of India Pvt. Ltd.: New Delhi, India, 1967; Volume 498. [Google Scholar]
- Rowell, D. The meaning of pH and its measurement, the determination of organic nitrogen and the dichromate method for the determination of oxidizable carbon and soil organic matter. In Soil Science, Methods and Applications; Routledge: London, UK, 1994; pp. 48–161. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 891–901. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; LWW, Regional Salinity Laboratory (U.S.): Riverside, CA, USA, 1954; Volume 78, ISBN 0038-075X. [Google Scholar]
- Alemu, M.M.; Desta, F.Y. Irrigation water quality of River Kulfo and its implication in irrigated agriculture, South West Ethiopia. Int. J. Water Resour. Environ. Eng. 2017, 9, 127–132. [Google Scholar]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Shah, A. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere 2008, 70, 1845–1856. [Google Scholar] [CrossRef]
- Zamanpoore, M.; Daremipouran, M.R.; Ghaed-Abdi, M.R.; Ahmadi, N.K. Chemical and physical properties of Maharlu Salt Lake (Iran) prior to an extensive drought. Ecopersia 2019, 7, 59–67. [Google Scholar]
- Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Raghunath, H.M. Groundwater; Wiley Eastern Ltd: New Delhi, India, 1987. [Google Scholar]
- Wogi, L.; Dechassa, N.; Haileselassie, B.; Mekuria, F.; Abebe, A.; Tamene, L. A Guide to Standardized Methods of Analysis for Soil, Water, Plant, and Fertilizer Resources for Data Documentation and Knowledge Sharing in Ethiopia; International Center for Tropical Agriculture: Addis Ababa, Ethiopia, 2021; p. 41. [Google Scholar]
- Håkansson, I.; Lipiec, J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res. 2000, 53, 71–85. [Google Scholar] [CrossRef]
- Heluf, G. Evaluation of the Potential Use of Langbeinite (K2SO4·2MgSO4) as a Reclaiming Material for Sodic and Saline Sodic Soils. Ph.D. Dissertation, Department of Soil Water and Environmental Science, The University of Arizona, Tucson, AZ, USA, 1995. [Google Scholar]
- Zia, M.H.; Ghafoor, A.; Murtaza, G.; Saifullah; Basra, S.M.A. Growth response of rice and wheat crops during reclamation of saline-sodic soils. Pak. J. Bot. 2006, 38, 249–266. [Google Scholar]
- Bunt, B.R. Media and Mixes for Container-Grown Plants: A Manual on the Preparation and Use of Growing Media for Pot Plants; Springer Science & Business Media: London, UK, 2012; ISBN 9401179042. [Google Scholar]
- Maguire, K.; Woods, T. RHS Big Ideas, Small Spaces: Creative Ideas and 30 Projects for Balconies, Roof Gardens, Windowsills and Terraces; Mitchell Beazley: London, UK, 2017; ISBN 178472338X. [Google Scholar]
- McGeorge, W.T. Diagnosis and Improvement of Saline and Alkaline Soils. By Staff of U. S. Salinity Laboratory, Agriculture Handbook No. 60 U. S. Dept. Agric., Supt. Documents, U.S. Government Printing Office Washington 25, D.C., 1954, 160 pages, $2.00. Soil Sci. Soc. Am. J. 1954, 18, 348. [Google Scholar] [CrossRef]
- Alemayehu, K.; Sheleme, B.; Schoenau, J. Phosphorus fractions in sodic soils of the great Ethiopian rift valley soils as affected by reclamation. Commun. Soil Sci. Plant Anal. 2017, 48, 2477–2484. [Google Scholar] [CrossRef]
- Lamb, D.T.; Venkatraman, K.; Bolan, N.; Ashwath, N.; Choppala, G.; Naidu, R. Phytocapping: An alternative technology for the sustainable management of landfill sites. Crit. Rev. Environ. Sci. Technol. 2014, 44, 561–637. [Google Scholar] [CrossRef]
- Sarah, P. Soil sodium and potassium adsorption ratio along a Mediterranean–arid transect. J. Arid Environ. 2004, 59, 731–741. [Google Scholar] [CrossRef]
- Chopra, S.H.; Kanwar, J.S. Analysis agricultural chemistry Kalyni publishe r Ludhiana New Delhi. Commun. Soil Sci. Plant Anal. 1976, 33, 1537–1575. [Google Scholar]
- Barbudo, A.; Agrela, F.; Ayuso, J.; Jiménez, J.R.; Poon, C.S. Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Constr. Build. Mater. 2012, 28, 129–138. [Google Scholar] [CrossRef]
- Alka, U.; Satyendra, T.; Pandey, S.N. Effects of soil sodicity on growth, nutrients uptake and bio-chemical responses of Ammi majus L. Res. J. Soil Biol. 2012, 4, 69–80. [Google Scholar]
- Amer, M. Effect of gypsum, sugar factory lime and molas on some soil proprieties and productivity of sugar beet (Beta vulgaris L.) grown on saline-sodic soils of Nile North Delta. J. Soil Sci. Agric. Eng. 2015, 6, 385–401. [Google Scholar] [CrossRef]
- Husson, O. How pH and Eh influence soil nutrient dynamics with microbial mediation. In Biological Approaches to Regenerative Soil Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 221–238. [Google Scholar]
- Eshete, A.Y. Effects of Gypsum and Filter Cake on Saline-Sodic Soil and Yield and Yield Components of Wheat (Triticum aestivum) at Amibara Area, Central Rift Valley, EthiopiaEffects of Gypsum and Filter Cake on Saline-Sodic Soil and Yield and Yield Components of Wheat; publication.eiar.gov.et; Haramaya Universality: Dawa, Ethiopia, 2022. [Google Scholar]
- Abdel-Fattah, M.K. Role of gypsum and compost in reclaiming saline-sodic soils. J. Agric. Vet. Sci 2012, 1, 30–38. [Google Scholar] [CrossRef]
- Adane, A.; Gebrekidan, H.; Kibret, K. Effects of treatment application rates (fym and gypsum) on selected chemical properties of saline sodic soils under water limited condition in eastern lowlands Ethiopia. For. Res. Eng. Int. J. 2019, 3, 106–113. [Google Scholar] [CrossRef]
- Challa, A.; Kitila, K.; Workina, M. Evaluation of Gypsum and Leaching Application on Salinity Reclamation and Crop Yield at Dugada District, East Shoa Zone of Oromia. Int. J. Environ. Chem. 2022, 6, 1. [Google Scholar]
- Osman, K.T.; Osman, K.T. Saline and sodic soils. In Management of Soil Problems; Springer: Cham, Switzerland, 2018; pp. 255–298. [Google Scholar]
- Khan, A.; Khan, A.A.; Khan, M.J.; Ijaz, M.; Hassan, S.S. Combined effect of organic amendments and seed placement techniques on sorghum yield under salt-stressed conditions. J. Soil Sci. Plant Nutr. 2022, 22, 4752–4767. [Google Scholar] [CrossRef]
- Tertre, E.; Prêt, D.; Ferrage, E. Influence of the ionic strength and solid/solution ratio on Ca (II)-for-Na+ exchange on montmorillonite. Part 1: Chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. J. Colloid Interface Sci. 2011, 353, 248–256. [Google Scholar] [CrossRef]
- Minkina, T.M.; Pinskii, D.L.; Mandzhieva, S.S.; Bauer, T.V.; Sushkova, S.N.; Kushnareva, A.V. Effect of an attendant anion on the balance of cations in the soil-solution system with an ordinary chernozem as an example. Eurasian Soil Sci. 2014, 47, 772–780. [Google Scholar] [CrossRef]
- Hafez, E.M.; Osman, H.S.; Gowayed, S.M.; Okasha, S.A.; Omara, A.E.-D.; Sami, R.; Abd El-Monem, A.M.; Abd El-Razek, U.A. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy 2021, 11, 676. [Google Scholar] [CrossRef]
- Rengasamy, P.; de Lacerda, C.F.; Gheyi, H.R. Salinity, sodicity and alkalinity. In Subsoil Constraints for Crop Production; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–107. [Google Scholar]
- Page, K.L.; Dang, Y.P.; Dalal, R.C.; Kopittke, P.M.; Menzies, N.W. The impact, identification and management of dispersive soils in rainfed cropping systems. Eur. J. Soil Sci. 2021, 72, 1655–1674. [Google Scholar] [CrossRef]
- Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Day, S.J.; Norton, J.B.; Strom, C.F.; Kelleners, T.J.; Aboukila, E.F. Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline–sodic soils. Int. J. Environ. Sci. Technol. 2019, 16, 295–304. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Bouajila, K.; Hechmi, S.; Mechri, M.; Ben Jeddi, F.; Jedidi, N. Short-term effects of Sulla residues and farmyard manure amendments on soil properties: Cation exchange capacity (CEC), base cations (BC), and percentage base saturation (PBS). Arab. J. Geosci. 2023, 16, 410. [Google Scholar] [CrossRef]
- Fekadu, E.; Kibret, K.; Melese, A.; Bedadi, B. Yield of faba bean (Vicia faba L.) as affected by lime, mineral P, farmyard manure, compost and rhizobium in acid soil of Lay Gayint District, northwestern highlands of Ethiopia. Agric. Food Secur. 2018, 7, 16. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Wang, S.; Li, Y.; Zhuo, Y.; Liu, J. Soil salinity and sodicity changes after a one-time application of flue gas desulphurization gypsum to paddy fields. Land Degrad. Dev. 2021, 32, 4193–4202. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Wang, S.; Sun, Z.; Liu, J.; Li, Y.; Zhuo, Y.; Xu, L.; Zhao, Y. A quantitative assessment of the dynamic process and potential capacity of using gypsum to reclaim sodic soil. J. Soils Sediments 2023, 23, 3082–3095. [Google Scholar] [CrossRef]
- Aytenew, M.; Bore, G. Effects of organic amendments on soil fertility and environmental quality: A review. Plant Sci 2020, 8, 112–119. [Google Scholar] [CrossRef]
- Singht, V.K.; Gautam, P.; Nanda, G.; Dhaliwal, S.S.; Pramanick, B.; Meena, S.S.; Alsanie, W.F.; Gaber, A.; Sayed, S.; Hossain, A. Soil test based fertilizer application improves productivity, profitability and nutrient use efficiency of rice (Oryza sativa L.) under direct seeded condition. Agronomy 2021, 11, 1756. [Google Scholar] [CrossRef]
- Sundhari, T.; Thilagavathi, T.; Baskar, M.; Thuvasan, T.; Eazhilkrishna, N. Effect of gypsum incubated organics used as an amendment for sodic soil in green gram. Int. J. Chem. Stud 2018, 6, 304–308. [Google Scholar]
- Haque, A.N.A.; Haque, M.E.; Hossain, M.E.; Khan, M.K.; Razzaque, A.H.M. Effect of farm yard manure, gypsum and nitrogen on growth and yield of rice in saline soil of Satkhira District, Bangladesh. J. Biosci. Agric. Res. 2015, 3, 65–72. [Google Scholar] [CrossRef]
- Osman, K.T. Management of Soil Problems; Springer: Cham, Switzerland, 2018; ISBN 3319755277. [Google Scholar]
- Mau, Y.; Porporato, A. Optimal control solutions to sodic soil reclamation. Adv. Water Resour. 2016, 91, 37–45. [Google Scholar] [CrossRef]
- O’geen, A. Drought Tip: Reclaiming Saline, Sodic, and Saline-Sodic Soils; Powered by the California Digital Librar; University of California Agriculture and Natural Resources: Davis, CA, USA, 2015. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, R.; Jha, A.; Singh, I. Varietal Assessment in Partially Reclaimed Sodic Soil. Pharma Innov. J. 2022, 11, 1899–1901. [Google Scholar]
- Qadir, M.; Schubert, S.; Badia, D.; Sharma, B.R.; Qureshi, A.S.; Murtaza, G. Amelioration and nutrient management strategies for sodic and alkali soils. CABI Rev. 2007, 2, 1–13. [Google Scholar] [CrossRef]
- Opfergelt, S.; Burton, K.W.; Georg, R.B.; West, A.J.; Guicharnaud, R.A.; Sigfusson, B.; Siebert, C.; Gislason, S.R.; Halliday, A.N. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland. Geochim. Cosmochim. Acta 2014, 125, 110–130. [Google Scholar] [CrossRef]
- Rachana, S.; Gupta, D.; Siddiqui, F.A.; Alam, M.A. Prashant Water quality assessment of Kusheshwar Asthan wetlands: Recognizing its hydrogeochemical variability and suitability for agriculture use. Water Supply 2022, 22, 8849–8879. [Google Scholar]
- Zayed, B.A.; El-Kellawy, W.H.; Okasha, A.M.; El-Hamed, A. Improvement of salinity soil properties and rice productivity under different irrigation intervals and gypsum rates. J. Plant Prod. 2017, 8, 361–368. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V. Nutrient management in salt affected soils for sustainable crop production. Ann. Plant Soil Res. 2022, 24, 182–193. [Google Scholar] [CrossRef]
- Chhabra, R.; Chhabra, R. Nutrient Management in Salt-affected Soils. In Salt-Affected Soils and Marginal Waters: Global Perspectives and Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 349–429. [Google Scholar]
- Bui, E.N. Causes of soil salinization, sodification, and alkalinization. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Reemtsma, T.; Bredow, A.; Gehring, M. The nature and kinetics of organic matter release from soil by salt solutions. Eur. J. Soil Sci. 1999, 50, 53–64. [Google Scholar] [CrossRef]
- Charlet, L.; Tournassat, C. Fe (II)-Na (I)-Ca (II) cation exchange on montmorillonite in chloride medium: Evidence for preferential clay adsorption of chloride–metal ion pairs in seawater. Aquat. Geochem. 2005, 11, 115–137. [Google Scholar] [CrossRef]
- Dutrizac, J.E. The behaviour of the rare earth elements during gypsum (CaSO4· 2H2O) precipitation. Hydrometallurgy 2017, 174, 38–46. [Google Scholar] [CrossRef]
- Das, S.R.; Nayak, B.K.; Dey, S.; Sarkar, S.; Chatterjee, D.; Saha, S.; Sarkar, D.; Pradhan, A.; Saha, S.; Nayak, A.K. Potential soil organic carbon sequestration vis-a-vis methane emission in lowland rice agroecosystem. Environ. Monit. Assess. 2023, 195, 1099. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, D.; Fang, D.; Dong, X.; Li, W. Enhanced darkening effect from the interaction of MnO2 and oxygen on the component evolution of amino-phenolic humic-like substances. Chemosphere 2021, 263, 127956. [Google Scholar] [CrossRef]
- McKenzie, N.N.; Jacquier, D.D.; Isbell, R.R.F.; Brown, K.K. Australian Soils and Landscapes: An Illustrated Compendium; CSIRO Publishing: Collingwood, Australia, 2004; ISBN 064310433X. [Google Scholar]
- Kaledhonkar, M.J.; Meena, B.L.; Sharma, P.C. Reclamation and Nutrient Management for Salt-Affected Soils. 2019. Available online: https://krishi.icar.gov.in/jspui/handle/123456789/24691 (accessed on 20 December 2023).
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- Das, B.S.; Wani, S.P.; Benbi, D.K.; Muddu, S.; Bhattacharyya, T.; Mandal, B.; Santra, P.; Chakraborty, D.; Bhattacharyya, R.; Basak, N. Soil health and its relationship with food security and human health to meet the sustainable development goals in India. Soil Secur. 2022, 8, 100071. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Ferreira, J.F.S.; Wang, M.; Na, J.; Huang, J.; Liang, Z. Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil Tillage Res. 2022, 215, 105222. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Josan, A.S.; Bajwa, M.S.; Kapur, M.L. Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field Crop. Res. 2004, 87, 103–116. [Google Scholar] [CrossRef]
- Gonçalo, F.F.; da Silva Dias, N.; Suddarth, S.R.P.; Ferreira, J.F.S.; Anderson, R.G.; dos Santos Fernandes, C.; de Lira, R.B.; Neto, M.F.; Cosme, C.R. Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water 2019, 12, 57. [Google Scholar] [CrossRef]
- Kaiser, M.; Ellerbrock, R.H.; Gerke, H.H. Cation exchange capacity and composition of soluble soil organic matter fractions. Soil Sci. Soc. Am. J. 2008, 72, 1278–1285. [Google Scholar] [CrossRef]
- Hemmat, A.; Aghilinategh, N.; Rezainejad, Y.; Sadeghi, M. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Tillage Res. 2010, 108, 43–50. [Google Scholar] [CrossRef]
- Jalali, M.; Ranjbar, F. Effects of sodic water on soil sodicity and nutrient leaching in poultry and sheep manure amended soils. Geoderma 2009, 153, 194–204. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Irshad, M.; Sher, S.; Hayat, F.; Ashraf, A.; Masood, S.; Bibi, S.; Ali, J.; Waseem, M. Relationship of selected soil properties with the micronutrients in salt-affected soils. Land 2022, 11, 845. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Das, B.; Morajkar, S.; Desai, A.; Murgaokar, D.; Patel, K.P.; Kulkarni, R.M. Comparison of soil quality indexing methods for salt-affected soils of Indian coastal region. Environ. Earth Sci. 2021, 80, 725. [Google Scholar] [CrossRef]
Soil | Irrigation Water | ||||
---|---|---|---|---|---|
Parameter | Units | Value | Parameter | Units | Value |
Texture | --- | Heavy Clay | pH | ----- | 8.3 |
Clay | % | 64 | ECw | dS m−1 | 1.184 |
Silt | % | 30 | Na+ | mg L−1 | 17.96 |
Sand | % | 6 | K+ | mg L−1 | 3.90 |
Bulk Density | gcm−3 | 1.4 | Ca2+ | mg L−1 | 26.20 |
Gypsum Requirement | tons ha−1 | 10 | Mg2+ | mg L−1 | 13.56 |
Farmyard Manure | tons ha−1 | 20 | Cl− | meq L−1 | 0.45 |
pH | ----- | 10.6 | CO32− | meq L−1 | Nil |
EC | dSm−1 | 3.5 | HCO3− | meq L−1 | 2.46 |
Ex. Na | cmol(+) kg−1 | 48 | PO43− | meq L−1 | Nil |
Ex. K | cmol(+) kg−1 | 1.16 | NO3− | meq L−1 | 1 |
Ex. Ca | cmol(+) kg−1 | 3.19 | NO2− | meq L−1 | 1 |
Ex. Mg | cmol(+) kg−1 | 2.18 | SO42− | meq L−1 | 0.46 |
CEC | cmol(+) kg−1 | 52.1 | Salinity | % (ppt) | 0.59 |
ESP | % | 95 | SAR | ---- | 1.04 |
SAR | --- | 37.1 | RSC | meq L−1 | 0.02 |
GYP (%) | FYM t ha−1 | ||||||
---|---|---|---|---|---|---|---|
Treatments | pH | Ex. Ca | Ex. K | Treatments | PH | Ex. Ca | Ex. K |
0 | 9.86 | 7.15 c | 0.6 | 0 | 9.86 | 9.59 | 0.52 b |
50 | 9.81 | 8.79 b | 0.6 | 10 | 9.77 | 9.79 | 0.68 a |
100 | 9.86 | 10.64 a | 0.55 | 20 | 9.78 | 8.96 | 0.52 b |
150 | 9.65 | 11.69 a | 0.53 | 30 | 9.77 | 9.94 | 0.56 b |
LSD (0.05) | ns | 1.31 | ns | LSD (0.05) | ns | ns | 0.09 |
CV% | 2.6 | 24 | 23 | CV% | 2.7 | 30 | 20 |
GYP (%) | FYM (t ha−1) | EC | Ex. Na | Ex. Mg | SAR | ESP |
---|---|---|---|---|---|---|
0 | 0 | 11.84 ab | 4.12 ab | 4.29 cd | 1.81 a | 1.66 a |
10 | 11.32 abc | 2.94 cde | 4.13 cd | 1.28 bcdef | 0.80 bcdef | |
20 | 11.24 abc | 4.41 a | 8.15 ab | 1.75 ab | 1.57 ab | |
30 | 9.33 d | 4.42 a | 7.72 ab | 1.70 ab | 1.49 ab | |
50 | 0 | 11.83 a | 4.32 a | 6.73 b | 1.59 abc | 1.31 abc |
10 | 11.09 ab | 4.35 a | 7.88 ab | 1.58 abc | 1.29 abc | |
20 | 11.12 abc | 3.10 bcde | 7.24 b | 1.17 cdef | 0.63 cdef | |
30 | 10.18 bcd | 2.99 cd | 10.11 a | 1.04 def | 0.42 def | |
100 | 0 | 11.14 abc | 2.58 e | 6.84 b | 0.87 f | 0.15 f |
10 | 10.79 abcd | 2.56 e | 7.99 ab | 0.86 f | 0.13 f | |
20 | 10.84 abcd | 4.00 abc | 3.85 d | 1.52 abcd | 1.19 abcd | |
30 | 11.99 a | 3.91 abcd | 6.12 bc | 1.47 abcde | 1.11 abcde | |
150 | 0 | 11.97 a | 2.90 d | 8.10 ab | 0.97 ef | 0.31 ef |
10 | 10.97 abc | 2.93 cde | 7.96 ab | 0.97 ef | 0.30 ef | |
20 | 10.05 cd | 2.83 de | 3.42 d | 1.14 cdef | 0.57 cdef | |
30 | 10.25 bcd | 2.77 e | 3.48 d | 0.97 ef | 0.31 ef | |
LSD (0.05) | 1.42 | 0.97 | 2.18 | 0.46 | 0.74 | |
CV (%) | 7.26 | 16.91 | 20 | 21.16 | 53.75 |
pH | EC | Ex. Na | Ex. Ca | Ex. Mg | Ex. K | ESP | |
---|---|---|---|---|---|---|---|
pH | 1.00 | ||||||
EC | 0.46 | 1.00 | |||||
Ex. Na | 0.47 | 0.14 | 1.00 | ||||
Ex. Ca | −0.49 | −0.16 | −0.68 ** | 1.00 | |||
Ex. Mg | 0.30 | −0.01 | 0.05 | 0.00 | 1.00 | ||
Ex. K | 0.15 | −0.02 | 0.12 | −0.18 | 0.63 ** | 1.00 | |
ESP | 0.47 | 0.15 | 0.95 ** | −0.82 ** | −0.13 | 0.03 | 1.00 |
Treatment (Gyp% + FYM t/ha) | Model | I(α) β1X1 β2X2 | R2 | F Value | Pr > F |
---|---|---|---|---|---|
Gyp100 + FYM10 | ESP | 1.65–0.33GYP | 0.255 | 15.78 | 0.000 |
Gyp100 + FYM10 | ESP | 1.58–0.33GYP + 0.28FYM | 0.257 | 7.79 | 0.001 |
Gyp100 + FYM10 | Ex. Na | 4.387–0.377GYP | 0.234 | 14.09 | 0.000 |
Gyp100 + FYM10 | Ex. Na | 4.387–0.377GYP + 0.052FYM | 0.239 | 7.0 | 0.002 |
Gyp100 + FYM10 | Ex.Ca | 5.69 + 1.55GYP | 0.038 | 28.33 | 0.000 |
Gyp100 + FYM10 | Ex. Ca | 5.65 + 1.55GYP + 0.020FYM | 0.038 | 13.8 | 0.000 |
PCA | Loading Matrix | PCA | Formatted Loading Matrix | ||||
---|---|---|---|---|---|---|---|
Prin1 | Prin2 | Prin3 | Prin1 | Prin2 | Prin3 | ||
Eigenvalue | 4.01 | 1.74 | 1.15 | Eigenvalue | 4.01 | 1.74 | 1.15 |
Variance (%) | 50.09 | 21.78 | 14.38 | Variance (%) | 50.09 | 21.78 | 14.38 |
Cumulative variance (%) | 50.09 | 71.87 | 86.25 | Cumulative variance (%) | 50.09 | 71.87 | 86.25 |
pH | 0.64 | 0.34 | 0.48 | ESP | 0.97 | −0.18 | −0.14 |
EC | 0.29 | 0.10 | 0.88 | SAR | 0.97 | −0.18 | −0.14 |
Ex. Na | 0.93 | −0.04 | −0.17 | Ex. Na | 0.93 | −0.04 | −0.17 |
Ex. Ca | −0.87 | 0.00 | 0.10 | pH | 0.64 | 0.34 | 0.48 |
Ex. Mg | 0.02 | 0.92 | −0.09 | Ex. Mg | 0.02 | 0.92 | −0.09 |
Ex. K | 0.15 | 0.83 | −0.27 | Ex. K | 0.15 | 0.83 | −0.27 |
SAR | 0.97 | −0.18 | −0.14 | EC | 0.29 | 0.10 | 0.88 |
ESP | 0.97 | −0.18 | −0.14 | Ex. Ca | −0.87 | 0.00 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walche, A.; Haile, W.; Kiflu, A.; Tsegaye, D. Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley. Toxics 2024, 12, 265. https://doi.org/10.3390/toxics12040265
Walche A, Haile W, Kiflu A, Tsegaye D. Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley. Toxics. 2024; 12(4):265. https://doi.org/10.3390/toxics12040265
Chicago/Turabian StyleWalche, Azmera, Wassie Haile, Alemayehu Kiflu, and Dereje Tsegaye. 2024. "Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley" Toxics 12, no. 4: 265. https://doi.org/10.3390/toxics12040265