Blue Bounty: Italy’s Dual-Use Solution for Crab Invasion, Nutritional Value, Safety, and Valorization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crab Sampling and Sample Preparation
2.2. Chemical Analysis
2.2.1. Chemicals and Reagents
2.2.2. Proximate Composition
2.2.3. Lipid Extraction and Preparation of FAMEs
2.2.4. GC-FID Analysis
2.2.5. Atherogenicity Index (AI) and Thrombogenicity Index (TI)
2.2.6. Flesh-Lipid Quality Index
2.2.7. Elemental Analysis
2.2.8. ICP-MS Analysis
2.3. Microbiological Analysis
2.4. Analysis of Microplastics
2.4.1. Sample Preparation and Digestion
2.4.2. Polymer Identification of Microplastics
2.4.3. Quality Assurance and Quality Control
2.5. Data Analysis
3. Results
3.1. Blue Crab Chemical Characteristics
3.2. Mineral Contents
3.3. Fatty Acid Composition
3.4. Microbiology
3.5. Microplastic Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Türeli, C.; Çelik, M.; Erdem, Ü. Comparison of Meat Composition and Yield of Blue Crab (Callinectes Sapidus RATHBUN, 1896) and Sand Crab (Portunus Pelagicus LINNE, 1758) Caught in Iskenderun Bay, North-East Mediterranean. Turk. J. Vet. Anim. Sci. 2000, 24, 195–204. [Google Scholar]
- Miller, T.J.; Martell, S.J.; Bunnell, D.B.; Bonzek, C.F.; Hewitt, D.; Hoenig, J.; Lipcius, R. Stock Assessment of the Blue Crab in Chesapeake Bay 2005; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 2005. [Google Scholar]
- Zenetos, A.; Corsini-Foka, M.; Crocetta, F.; Gerovasileiou, V.; Karachle, P.K.; Simboura, N.; Tsiamis, K.; Pancucci-Papadopoulou, M.-A. Deep Cleaning of Alien and Cryptogenic Species Records in the Greek Seas (2018 Update). Manag. Biol. Invasions 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Longmire, K.S.; Seitz, R.D.; Seebo, M.S.; Brill, R.W.; Lipcius, R.N. Biological Responses of the Predatory Blue Crab and Its Hard Clam Prey to Ocean Acidification and Low Salinity. Mar. Ecol. Prog. Ser. 2022, 701, 67–81. [Google Scholar] [CrossRef]
- Galil, B.S. A Sea Under Siege—Alien Species in the Mediterranean. Biol. Invasions 2000, 2, 177–186. [Google Scholar] [CrossRef]
- Nehring, S. Invasion History and Success of the American Blue Crab Callinectes sapidus in European and Adjacent Waters. In In the Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts; Galil, B.S., Clark, P.F., Carlton, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 607–624. ISBN 978-94-007-0590-6. [Google Scholar]
- Olenin, S.; Narščius, A.; Minchin, D.; David, M.; Galil, B.; Gollasch, S.; Marchini, A.; Occhipinti-Ambrogi, A.; Ojaveer, H.; Zaiko, A. Making Non-Indigenous Species Information Systems Practical for Management and Useful for Research: An Aquatic Perspective. Biol. Conserv. 2014, 173, 98–107. [Google Scholar] [CrossRef]
- Mancinelli, G.; Guerra, M.T.; Alujević, K.; Raho, D.; Zotti, M.; Vizzini, S. Trophic Flexibility of the Atlantic Blue Crab Callinectes sapidus in Invaded Coastal Systems of the Apulia Region (SE Italy): A Stable Isotope Analysis. Estuar. Coast. Shelf Sci. 2017, 198, 421–431. [Google Scholar] [CrossRef]
- Kampouris, T.E.; Porter, J.S.; Sanderson, W.G. Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae): An Assessment on Its Diet and Foraging Behaviour, Thermaikos Gulf, NW Aegean Sea, Greece: Evidence for Ecological and Economic Impacts. Crustac. Res. 2019, 48, 23–37. [Google Scholar] [CrossRef]
- Prado, P.; Peñas, A.; Ibáñez, C.; Cabanes, P.; Jornet, L.; Álvarez, N.; Caiola, N. Prey Size and Species Preferences in the Invasive Blue Crab, Callinectes sapidus: Potential Effects in Marine and Freshwater Ecosystems. Estuar. Coast. Shelf Sci. 2020, 245, 106997. [Google Scholar] [CrossRef]
- Khamassi, F.; Bahri, W.R.; Bhouri, A.M.; Chaffai, A.; Ghanem, R.; Souissi, J.B. Biochemical Composition, Nutritional Value and Socio-Economic Impacts of the Invasive Crab Callinectes sapidus Rathbun, 1896 in Central Mediterranean Sea. Mediterr. Mar. Sci. 2022, 23, 650–663. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Acar, S.; Gürkan, S.E.; Ateş, A.S.; Özdilek, Ş.Y. Presence of Microplastics in Stomach Contents of Blue Crab Callinectes sapidus (Rathbun, 1896) in Canakkale Strait. In Proceedings of the AGRIBALKAN, Edirne, Turkey, 31 August–2 September 2022; Volume 368. [Google Scholar]
- Raw, P. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 25; United States Department of Agriculture (USDA): Washington, DC, USA, 2012.
- PN-EN ISO 5509:2001; Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. Polish National Standard Based on ISO 5509:2000; Polish Committee for Standardization: Warszawa, Poland, 2001.
- Nava, V.; Turco, V.L.; Licata, P.; Panayotova, V.; Peycheva, K.; Fazio, F.; Rando, R.; Di Bella, G.; Potortì, A.G. Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods 2023, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Choo, P.Y.; Azlan, A.; Khoo, H.E. Cooking Methods Affect Total Fatty Acid Composition and Retention of DHA and EPA in Selected Fish Fillets. Sci. Asia 2018, 44, 92–101. [Google Scholar] [CrossRef]
- Abrami, G.; Natiello, F.; Bronzi, P.; McKenzie, D.; Bolis, L.; Agradi, E. A Comparison of Highly Unsaturated Fatty Acid Levels in Wild and Farmed Eels (Anguilla anguilla). Comp. Biochem. Physiol. B 1992, 101, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Virga, A.; Nava, V.; Mannino, F.; Salvo, A.; Monaco, F.; Giorgianni, M.; Cicero, N. Toxic and Potentially Toxic Mineral Elements of Edible Gastropods Land Snails (Mediterranean Escargot). Toxics 2023, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, E.; Tardugno, R.; Nava, V.; Naccari, C.; Virga, A.; Salvo, A.; Corbo, F.; Clodoveo, M.L.; Cicero, N. Gourmet Table Salts: The Mineral Composition Showdown. Toxics 2023, 11, 705. [Google Scholar] [CrossRef] [PubMed]
- Lo Turco, V.; Di Bella, G.; Furci, P.; Cicero, N.; Pollicino, G.; Dugo, G. Heavy Metals Content by ICP-OES in Sarda sarda, Sardinella aurita and Lepidopus caudatus from the Strait of Messina (Sicily, Italy). Nat. Prod. Res. 2013, 27, 518–523. [Google Scholar] [CrossRef] [PubMed]
- EPA, Washington, DC, 1998, Pp. SW 846, Method 7473. Available online: http://www.epa.gov/osw/hazard/testmethods/sw7846/pdfs/7473.pdf (accessed on 10 July 2024).
- Nava, V.; Di Bella, G.; Fazio, F.; Potortì, A.G.; Lo Turco, V.; Licata, P. Hg Content in EU and Non-EU Processed Meat and Fish Foods. Appl. Sci. 2023, 13, 793. [Google Scholar] [CrossRef]
- Graci, S.; Collura, R.; Cammilleri, G.; Buscemi, M.D.; Giangrosso, G.; Principato, D.; Gervasi, T.; Cicero, N.; Ferrantelli, V. Mercury Accumulation in Mediterranean Fish and Cephalopods Species of Sicilian Coasts: Correlation between Pollution and the Presence of Anisakis Parasites. Nat. Prod. Res. 2017, 31, 1156–1162. [Google Scholar] [CrossRef]
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- Gram, L.; Trolle, G.; Huss, H.H. Detection of Specific Spoilage Bacteria from Fish Stored at Low (0 °C) and High (20 °C) Temperatures. Int. J. Food Microbiol. 1987, 4, 65–72. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- ISO/TS 21872-1:2007; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Potentially Enteropathogenic Vibrio spp.—Part 1: Detection of Vibrio Parahaemolyticus and Vibrio Cholera. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- Thiele, C.J.; Hudson, M.D.; Russell, A.E. Evaluation of Existing Methods to Extract Microplastics from Bivalve Tissue: Adapted KOH Digestion Protocol Improves Filtration at Single-Digit Pore Size. Mar. Pollut. Bull. 2019, 142, 384–393. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://Environmentlive.Unep.Org/Media/Docs/Marine_plastics/Une_science_dvision_gesamp_reports.Pdf (accessed on 10 July 2024).
- Prata, J.C.; Castro, J.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.; Cerqueira, M. The Importance of Contamination Control in Airborne Fibers and Microplastic Sampling: Experiences from Indoor and Outdoor Air Sampling in Aveiro, Portugal. Mar. Pollut. Bull. 2020, 159, 111522. [Google Scholar] [CrossRef]
- Gökoðlu, N.; Yerlikaya, P. Determinaton of Proximate Composition and Mineral Contents of Blue Crab (Callinectes sapidus) and Swim Crab (Portunus pelagicus) Caught off the Gulf of Antalya. Food Chem. 2003, 80, 495–498. [Google Scholar] [CrossRef]
- Adams, D.H.; Engel, M.E. Mercury, Lead, and Cadmium in Blue Crabs, Callinectes sapidus, from the Atlantic Coast of Florida, USA: A Multipredator Approach. Ecotoxicol. Environ. Saf. 2014, 102, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Nabavi, S.M.B.; Pazooki, J.; Parsa, Y. The Levels of Toxic Metals in Blue Crab Portunus segnis from Persian Gulf. J. Mar. Sci. Res. Dev. 2014, 4, 1. [Google Scholar] [CrossRef]
- Mutlu, C.; Türkmen, M.; Türkmen, A.; Tepe, Y. Comparison of Metal Concentrations in Tissues of Blue Crab, Callinectes sapidus from Mediterranean Lagoons. Bull. Environ. Contam. Toxicol. 2011, 87, 282–286. [Google Scholar] [CrossRef]
- Çelik, M.; Türeli, C.; Çelik, M.; Yanar, Y.; Erdem, Ü.; Küçükgülmez, A. Fatty Acid Composition of the Blue Crab (Callinectes sapidus Rathbun, 1896) in the North Eastern Mediterranean. Food Chem. 2004, 88, 271–273. [Google Scholar] [CrossRef]
- Kuley, E.; Özoğul, F.; Özogul, Y.; Olgunoglu, A.I. Comparison of Fatty Acid and Proximate Compositions of the Body and Claw of Male and Female Blue Crabs ( Callinectes sapidus) from Different Regions of the Mediterranean Coast. Int. J. Food Sci. Nutr. 2008, 59, 573–580. [Google Scholar] [CrossRef]
- Ayas, D.; Özogul, Y. The Chemical Composition of Sexually Mature Blue Swimmer Crab (Portunus pelagicus, Linnaeus 1758) in the Mersin Bay. J. Fish. Com 2011, 5, 308. [Google Scholar] [CrossRef]
- Ayas, D.; Özogul, Y. The Chemical Composition of Carapace Meat of Sexually Mature Blue Crab (Callinectes sapidus, Rathbun 1896) in the Mersin Bay. J. Fish. Com 2011, 5, 262. [Google Scholar] [CrossRef]
- Küçükgülmez, A.; Celik, M.; Yanar, Y.; Ersoy, B.; Çikrikçi, M. Proximate Composition and Mineral Contents of the Blue Crab (Callinectes sapidus) Breast Meat, Claw Meat and Hepatopancreas. Int. J. Food Sci. Technol. 2006, 41, 1023–1026. [Google Scholar] [CrossRef]
- Al-Mohanna, S.Y.; Subrahmanyam, M.N.V. Flux of Heavy Metal Accumulation in Various Organs of the Intertidal Marine Blue Crab, Portunus pelagicus (L.) from the Kuwait Coast after the Gulf War. Environ. Int. 2001, 27, 321–326. [Google Scholar] [CrossRef] [PubMed]
- USFDA. Guidance Document for Chromium in Shellfish; DHHS/PHS/FDA/ CFSAN/Office of Seafood: Washington, DC, USA, 1993.
- Commission Regulation (EU) 2023/915 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006.|FAOLEX. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC217510/ (accessed on 9 April 2024).
- Bonacci, O.; Vrsalović, A. Differences in Air and Sea Surface Temperatures in the Northern and Southern Part of the Adriatic Sea. Atmosphere 2022, 13, 1158. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.; Long, X.; Zhu, W.; Ma, T.; Cheng, Y. Nutritional Quality of Different Grades of Adult Male Chinese Mitten Crab, Eriocheir sinensis. J. Food Sci. Technol. 2018, 55, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Ayas, D.; Ozogul, Y. The Chemical Composition and Meat Yield of Mature Blue Swimmer Crab (Portunus pelagicus, Linnaeus 1758) in Mersin Bay, Northeastern Mediterranean, Turkey. Adv. Food Sci. 2011, 33, 179–184. [Google Scholar]
- Rangasamy, E.; LBS, V.V.; Kamali, M.D.; Muniyandi, M. Determination of Proximate Composition on Some Edible Crabs with Special Reference to Nutritional Aspects Collected from Coastal Waters of Rameshwaram, Tamil Nadu. Food Chem. Adv. 2024, 4, 100686. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Rosa, R.; Nunes, M.L. Nutritional Quality of Red Shrimp, Aristeus antennatus (Risso), Pink Shrimp, Parapenaeus longirostris (Lucas), and Norway Lobster, Nephrops norvegicus (Linnaeus). J. Sci. Food Agric. 2004, 84, 89–94. [Google Scholar] [CrossRef]
- Bono, G.; Gai, F.; Peiretti, P.G.; Badalucco, C.; Brugiapaglia, A.; Siragusa, G.; Palmegiano, G.B. Chemical and Nutritional Characterisation of the Central Mediterranean Giant Red Shrimp (Aristaeomorpha foliacea): Influence of Trophic and Geographical Factors on Flesh Quality. Food Chem. 2012, 130, 104–110. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Michailidou, S.; Anagnostopoulos, D.A.; Koromilas, S.; Kios, K.; Pasentsis, K.; Psomopoulos, F.; Argiriou, A.; Haroutounian, S.A.; Boziaris, I.S. Bacterial Communities and Potential Spoilage Markers of Whole Blue Crab (Callinectes sapidus) Stored under Commercial Simulated Conditions. Food Microbiol. 2019, 82, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Compa, M.; Perelló, E.; Box, A.; Colomar, V.; Pinya, S.; Sureda, A. Ingestion of Microplastics and Microfibers by the Invasive Blue Crab Callinectes sapidus (Rathbun 1896) in the Balearic Islands, Spain. Environ. Sci. Pollut. Res. 2023, 30, 119329–119342. [Google Scholar] [CrossRef]
- Waddell, E.N.; Lascelles, N.; Conkle, J.L. Microplastic Contamination in Corpus Christi Bay Blue Crabs, Callinectes sapidus. Limnol. Oceanogr. Lett. 2020, 5, 92–102. [Google Scholar] [CrossRef]
Sampling Area | Sample Portion | Moisture (%) | Protein (%) | Ash (%) | Total Fat Content (%) |
---|---|---|---|---|---|
Adriatic Sea | Crab meat | 78.22 ± 0.05 a | 15.22 ± 0.06 a | 1.62 ± 0.05 a | 4.47 ± 0.06 a |
Claw meat | 74.33 ± 0.06 b | 20.24 ± 0.09 b | 1.32 ± 0.03 b | 3.85 ± 0.05 b | |
Carapace | 76.31 ± 0.03 c | 21.04 ± 0.04 c | 0.84 ± 0.01 a | 1.02 ± 0.04 c | |
Mediterranean Sea (Maragani River) | Crab meat | 78.16 ± 0.10 a | 13.82 ± 0.14 d | 1.55 ± 0.03 c | 6.21 ± 0.06 d |
Claw meat | 74.94 ± 0.07 d | 19.52 ± 0.10 e | 1.07 ± 0.04 b | 4.27 ± 0.05 e | |
Carapace | 76.90 ± 0.02 e | 20.24 ± 0.05 b | 0.91 ± 0.01 d | 1.13 ± 0.04 f |
Adriatic Sea | Mediterranean Sea | |||||
---|---|---|---|---|---|---|
Minerals (mg/kg) | Crab Meat | Claw Meat | Carapace | Crab Meat | Claw Meat | Carapace |
Al | 49.01 ± 6.33 a | 28.76 ± 7.16 a | 253.21 ± 7.03 b | 59.32 ± 4.46 a | 32.19 ± 5.26 a | 354.44 ± 21.23 c |
As | 0.07 ± 0.01 a | 0.05 ± 0.01 a | n/d | 0.10 ± 0.02 b | 0.05 ± 0.01 a | n/d |
Be | n/d | n/d | n/d | n/d | n/d | n/d |
Ca | 1586.35 ± 56.83 a | 1343.37 ± 26.56 b | 3547.01 ± 41.28 c | 1555.42 ± 42.07 a | 1379.51 ± 20.55 b | 3504.38 ± 39.04 c |
Cd * | 0.11 ± 0.02 a | 0.08 ± 0.01 b | n/d | 0.13 ± 0.01 a | 0.06 ± 0.01 b | n/d |
Co | 0.10 ± 0.01 a | 0.15 ± 0.02 a | 2.80 ± 0.19 b | 0.12 ± 0.02 a | 0.13 ± 0.02 a | 3.30 ± 0.14 c |
Cr | 0.13 ± 0.01 a | 0.08 ± 0.01 b | n/d | 0.12 ± 0.02 b | 0.07 ± 0.01 b | n/d |
Cu | 12.77 ± 0.48 a | 7.24 ± 0.16 b | 3.12 ± 0.23 c | 11.41 ± 0.34 d | 8.45 ± 0.14 e | 3.55 ± 0.23 f |
Fe | 20.45 ± 0.40 a | 15.56 ± 0.30 b | 50.12 ± 0.28 c | 19.51 ± 0.45 a | 12.63 ± 0.28 d | 55.47 ± 0.49 e |
Hg * | 0.04 ± 0.01 a | 0.06 ± 0.01 a | 0.02 ± 0.01 b | 0.04 ± 0.01 a | 0.11 ± 0.02 c | 0.02 ± 0.01 b |
Li | n/d | n/d | n/d | n/d | n/d | n/d |
Mg | 945.67 ± 21.97 a | 871.44 ± 16.37 b | 1599.85 ± 22.87 c | 992.69 ± 8.94 a | 854.47 ± 19.39 b | 1643.31 ± 22.08 c |
Mn | 3.67 ± 0.23 a | 2.57 ± 0.21 a | 10.64 ± 0.43 b | 4.71 ± 0.20 c | 2.89 ± 0.18 d | 9.10 ± 0.12 e |
Mo | n/d | n/d | n/d | n/d | n/d | n/d |
Na | 4107.23 ± 53.96 a | 3800.09 ± 25.95 b | 4572.72 ± 44.63 c | 3984.41 ± 27.48 d | 3521.24 ± 53.44 e | 4505.31 ± 46.09 f |
Ni | 0.19 ± 0.02 a | 0.12 ± 0.03 a | n/d | 0.21 ± 0.04 b | 0.16 ± 0.03 b | n/d |
P | 1724.95 ± 45.55 a | 1591.02 ± 29.46 b | 2137.77 ± 35.91 c | 1793.69 ± 9.79 a | 1528.20 ± 38.44 b | 2105.09 ± 77.77 c |
Pb * | 0.21 ± 0.02 a | 0.23 ± 0.05 a | n/d | 0.19 ± 0.03 a | 0.25 ± 0.03 a | n/d |
Sb | n/d | n/d | n/d | n/d | n/d | n/d |
Se | 156.38 ± 5.33 a | 144.29 ± 4.43 b | 33.23 ± 1.87 c | 151.29 ± 1.98 a | 149.35 ± 1.31 b | 35.66 ± 0.47 c |
Ti | n/d | n/d | n/d | n/d | n/d | n/d |
V | n/d | n/d | n/d | n/d | n/d | n/d |
Zn | 86.13 ± 0.98 a | 66.57 ± 0.41 b | 105.47 ± 0.69 c | 88.99 ± 1.42 a | 64.87 ± 1.83 b | 110.92 ± 0.56 d |
Fatty Acid | Crab Meat | Claw Meat | Carapace |
---|---|---|---|
C 10:0 | 0.30 ± 0.04 a | 0.18 ± 0.02 b | 0.12 ± 0.04 b |
C 12:0 | 0.27 ± 0.03 a | 0.07 ± 0.03 b | 0.29 ± 0.02 a |
C 14:0 | 0.82 ± 0.03 a | 0.76 ± 0.05 b | 0.88 ± 0.04 a |
C 15:0 | 0.65 ± 0.03 a | 0.52 ± 0.03 b | 0.32 ± 0.02 c |
C 16:0 | 14.84 ± 0.04 a | 14.73 ± 0.02 b | 14.43 ± 0.04 c |
C 17:0 | 1.27 ± 0.05 a | 1.11 ± 0.02 b | 1.96 ± 0.05 c |
C 18:0 | 10.05 ± 0.04 a | 10.03 ± 0.04 a | 10.14 ± 0.04 b |
C 20:0 | 0.35 ± 0.05 a | 0.53 ± 0.04 b | 0.85 ± 0.04 c |
C 21:0 | 0.59 ± 0.03 a | 0.62 ± 0.01 a | 0.73 ± 0.04 b |
C 22:0 | 0.13 ± 0.03 a | 0.09 ± 0.03 a | 0.04 ± 0.01 b |
C 23:0 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
C 24:0 | 0.16 ± 0.04 a | 0.08 ± 0.02 b | 0.04 ± 0.02 b |
∑ SFA | 29.42 ± 0.17 a | 28.72 ± 0.04 b | 29.80 ± 0.02 c |
C 14:1 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
C 15:1 | 0.23 ± 0.01 a | 0.30 ± 0.02 a | 0.15 ± 0.04 b |
C 16:1 n-9 | 0.32 ± 0.01 a | 0.42 ± 0.02 b | 0.54 ± 0.03 c |
C 16:1 n-7 | 7.85 ± 0.04 a | 8.73 ± 0.02 b | 8.85 ± 0.04 c |
C 16:1 n-5 | 0.29 ± 0.03 a | 0.21 ± 0.02 b | 0.44 ± 0.04 c |
C 17:1 | 1.25 ± 0.04 a | 1.12 ± 0.03 b | 1.05 ± 0.02 b |
C 18:1 cis n-9 | 14.54 ± 0.13 a | 14.06 ± 0.02 b | 14.74 ± 0.04 c |
C 18:1 cis vaccenic | 3.83 ± 0.04 a | 3.43 ± 0.03 b | 3.66 ± 0.03 c |
C 20:1 n-11 | 0.74 ± 0.04 a | 0.55 ± 0.03 b | 0.25 ± 0.04 c |
C 20:1 n-9 | 0.47 ± 0.03 a | 0.33 ± 0.03 b | 0.69 ± 0.01 c |
C 20:1 n-7 | 0.95 ± 0.02 a | 1.01 ± 0.02 a | 0.93 ± 0.03 a |
C 22:1 n-11 | 0.51 ± 0.02 a | 0.73 ± 0.05 b | 0.16 ± 0.03 c |
C 22:1 n-9 | 0.09 ± 0.01 a | 0.15 ± 0.01 b | 0.12 ± 0.03 a |
C 22:1 n-7 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
∑ MUFA | 31.07 ± 0.04 a | 31.02 ± 0.02 a | 31.59 ± 0.11 b |
C 16:3 n-4 | 0.01 ± 0.00 | 0.35 ± 0.03 a | 0.01 ± 0.00 |
C 16:4 n-4 | 0.21 ± 0.03 a | 0.01 ± 0.00 | 0.04 ± 0.02 b |
C 18:3 n-3 | 0.87 ± 0.02 a | 0.83 ± 0.02 a | 0.76 ± 0.03 b |
C 18:4 n-3 | 0.28 ± 0.02 a | 0.31 ± 0.02 a | 0.35 ± 0.03 b |
C 18:2 cis | 2.03 ± 0.02 a | 2.24 ± 0.04 b | 2.14 ± 0.03 c |
C 20:2 n-6 | 0.23 ± 0.05 a | 0.41 ± 0.02 b | 0.20 ± 0.02 a |
C 20:3 n-6 | 0.20 ± 0.02 a | 0.15 ± 0.03 a | 0.05 ± 0.01 b |
C 20:4 n-6 | 5.77 ± 0.03 a | 5.68 ± 0.03 a | 5.55 ± 0.04 b |
C 20:5 n-3 | 17.12 ± 0.06 a | 17.24 ± 0.03 b | 17.13 ± 0.03 a |
C 21:5 n-3 | 0.49 ± 0.02 a | 0.01 ± 0.00 | 0.77 ± 0.05 b |
C 22:2 | 0.23 ± 0.02 a | 0.35 ± 0.04 b | 0.16 ± 0.05 a |
C 22:5 n-6 | 0.38 ± 0.02 a | 0.65 ± 0.03 b | 0.28 ± 0.02 c |
C 22:5 n-3 | 0.16 ± 0.05 a | 0.36 ± 0.02 b | 0.07 ± 0.04 c |
C 22:6 n-3 | 11.53 ± 0.03 a | 11.66 ± 0.04 b | 11.11 ± 0.01 c |
∑ PUFA | 39.50 ± 0.08 a | 40.26 ± 0.08 b | 38.61 ± 0.12 c |
∑ n3 | 30.45 ± 0.03 a | 30.41 ± 0.03 a | 32.32 ± 0.09 b |
∑ n6 | 6.59 ± 0.08 a | 6.89 ± 0.03 b | 6.08 ± 0.07 c |
n6/n3 | 0.22 ± 0.01 a | 0.23 ± 0.01 a | 0.19 ± 0.00 b |
n3/n6 | 4.62 ± 0.06 a | 4.41 ± 0.02 b | 5.32 ± 0.06 c |
IA | 0.27 ± 0.01 a | 0.26 ± 0.01 a | 0.26 ± 0.01 a |
TI | 0.22 ± 0.01 a | 0.22 ± 0.00 a | 0.21 ± 0.00 a |
FLQ | 5.59 ± 0.09 a | 5.58 ± 0.04 a | 6.02 ± 0.03 b |
Fatty Acid | Crab Meat | Claw Meat | Carapace |
---|---|---|---|
C 10:0 | 0.12 ± 0.03 b | 0.32 ± 0.02 a | 0.04 ± 0.02 c |
C 11:0 | 0.01 ± 0.00 | 0.31 ± 0.03 | 0.01 ± 0.00 |
C 12:0 | 0.17 ± 0.03 c | 0.18 ± 0.04 d | 0.28 ± 0.02 a |
C 14:0 | 0.52 ± 0.04 c | 0.67 ± 0.02 b | 0.89 ± 0.03 a |
C 15:0 | 0.57 ± 0.04 a | 0.53 ± 0.06 b | 0.36 ± 0.03 c |
C 16:0 | 14.86 ± 0.03 a | 14.84 ± 0.02 a | 14.85 ± 0.04 a |
C 17:0 | 1.18 ± 0.03 b | 1.15 ± 0.03 b | 1.50 ± 0.01 d |
C 18:0 | 10.37 ± 0.03 c | 10.72 ± 0.03 d | 10.25 ± 0.03 e |
C 20:0 | 0.30 ± 0.02 a | 0.49 ± 0.03 b | 0.95 ± 0.05 d |
C 21:0 | 0.22 ± 0.08 c | 0.54 ± 0.04 a | 0.91 ± 0.02 d |
C 22:0 | 0.10 ± 0.02 a | 0.05 ± 0.03 b | 0.02 ± 0.01 b |
C 23:0 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
C 24:0 | 0.13 ± 0.03 a | 0.04 ± 0.03 b | 0.03 ± 0.02 b |
∑ SFA | 28.48 ± 0.10 b | 29.88 ± 0.12 c | 30.09 ± 0.10 d |
C 14:1 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
C 15:1 | 0.17 ± 0.04 a | 0.27 ± 0.04 a | 0.10 ± 0.03 b |
C 16:1 n-9 | 0.43 ± 0.01 b | 0.36 ± 0.03 a | 0.58 ± 0.02 c |
C 16:1 n-7 | 8.34 ± 0.03 d | 7.96 ± 0.04 e | 8.97 ± 0.02 f |
C 16:1 n-5 | 0.20 ± 0.03 d | 0.26 ± 0.01 a | 0.28 ± 0.03 a |
C 17:1 | 1.08 ± 0.03 b | 1.04 ± 0.04 b | 0.93 ± 0.04 c |
C 18:1 cis n-9 | 14.26 ± 0.02 d | 14.15 ± 0.02 b | 14.46 ± 0.04 a |
C 18:1 cis vaccenic | 3.92 ± 0.02 d | 3.54 ± 0.04 e | 3.66 ± 0.03 f |
C 20:1 n-11 | 0.36 ± 0.02 d | 0.17 ± 0.02 e | 0.27 ± 0.02 d |
C 20:1 n-9 | 0.32 ± 0.03 b | 0.25 ± 0.03 e | 0.42 ± 0.03 a |
C 20:1 n-7 | 1.04 ± 0.04 b | 0.91 ± 0.03 c | 0.90 ± 0.02 d |
C 22:1 n-11 | 0.46 ± 0.08 a | 0.41 ± 0.02 a | 0.23 ± 0.02 c |
C 22:1 n-9 | 0.06 ± 0.03 c | 0.14 ± 0.03 b | 0.13 ± 0.02 b |
C 22:1 n-7 | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns | 0.01 ± 0.00 ns |
∑ MUFA | 30.48 ± 0.21 a | 29.46 ± 0.10 c | 30.95 ± 0.13 a |
C 16:3 n-4 | 0.01 ± 0.00 | 0.34 ± 0.06 a | 0.01 ± 0.00 |
C 16:4 n-4 | 0.18 ± 0.05 a | 0.01 ± 0.00 | 0.12 ± 0.03 c |
C 18:3 n-3 | 0.86 ± 0.03 a | 0.86 ± 0.04 a | 0.93 ± 0.03 a |
C 18:4 n-3 | 0.23 ± 0.02 a | 0.34 ± 0.03 b | 0.29 ± 0.02 a |
C 18:2 cis | 2.84 ± 0.04 c | 2.31 ± 0.03 b | 2.03 ± 0.04 a |
C 20:2 n-6 | 0.35 ± 0.04 b | 0.50 ± 0.02 c | 0.36 ± 0.03 b |
C 20:3 n-6 | 0.25 ± 0.04 a | 0.21 ± 0.02 a | 0.05 ± 0.04 b |
C 20:4 n-6 | 5.63 ± 0.04 b | 5.46 ± 0.06 b | 5.34 ± 0.03 c |
C 20:5 n-3 | 17.25 ± 0.04 b | 17.28 ± 0.02 b | 17.35 ± 0.04 c |
C 21:5 n-3 | 0.45 ± 0.04 c | 0.01 ± 0.00 | 0.75 ± 0.04 b |
C 22:2 | 0.13 ± 0.02 c | 0.38 ± 0.02 b | 0.23 ± 0.02 a |
C 22:5 n-6 | 0.54 ± 0.04 d | 0.86 ± 0.04 e | 0.32 ± 0.02 a |
C 22:5 n-3 | 0.15 ± 0.04 a | 0.15 ± 0.02 a | 0.12 ± 0.02 a |
C 22:6 n-3 | 12.17 ± 0.03 d | 11.95 ± 0.04 e | 11.04 ± 0.03 c |
∑ PUFA | 41.03 ± 0.13 d | 40.66 ± 0.17 d | 38.94 ± 0.08 e |
∑ n3 | 31.12 ± 0.06 c | 30.58 ± 0.10 a | 32.51 ± 0.06 d |
∑ n6 | 6.77 ± 0.08 b | 7.04 ± 0.05 b | 6.07 ± 0.05 d |
n6/n3 | 0.22 ± 0.01 a | 0.23 ± 0.01 c | 0.19 ± 0.01 b |
n3/n6 | 4.60 ± 0.06 a | 4.35 ± 0.02 b | 5.35 ± 0.04 c |
IA | 0.25 ± 0.01 a | 0.26 ± 0.00 a | 0.27 ± 0.00 a |
TI | 0.22 ± 0.00 a | 0.23 ± 0.01 a | 0.21 ± 0.01 a |
FLQ | 5.09 ± 0.05 c | 5.32 ± 0.05 d | 6.31 ± 0.03 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, E.; Virga, A.N.; Forgia, S.; Nalbone, L.; Genovese, C.; Nava, V.; Giorgianni, C.M.; Vadalà, R.; Cicero, N. Blue Bounty: Italy’s Dual-Use Solution for Crab Invasion, Nutritional Value, Safety, and Valorization. Toxics 2024, 12, 506. https://doi.org/10.3390/toxics12070506
Di Salvo E, Virga AN, Forgia S, Nalbone L, Genovese C, Nava V, Giorgianni CM, Vadalà R, Cicero N. Blue Bounty: Italy’s Dual-Use Solution for Crab Invasion, Nutritional Value, Safety, and Valorization. Toxics. 2024; 12(7):506. https://doi.org/10.3390/toxics12070506
Chicago/Turabian StyleDi Salvo, Eleonora, Antonino Nazareno Virga, Salvatore Forgia, Luca Nalbone, Claudia Genovese, Vincenzo Nava, Concetto Mario Giorgianni, Rossella Vadalà, and Nicola Cicero. 2024. "Blue Bounty: Italy’s Dual-Use Solution for Crab Invasion, Nutritional Value, Safety, and Valorization" Toxics 12, no. 7: 506. https://doi.org/10.3390/toxics12070506
APA StyleDi Salvo, E., Virga, A. N., Forgia, S., Nalbone, L., Genovese, C., Nava, V., Giorgianni, C. M., Vadalà, R., & Cicero, N. (2024). Blue Bounty: Italy’s Dual-Use Solution for Crab Invasion, Nutritional Value, Safety, and Valorization. Toxics, 12(7), 506. https://doi.org/10.3390/toxics12070506