Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management
Abstract
:1. Introduction
2. Materials and Methods
Collection of Pesticide Residue Monitoring Data for Chili Peppers
3. Results and Discussion
3.1. Monitoring Results for Pesticide Residues in Chili Peppers Worldwide
3.2. Monitoring Data for Pesticide Residues in Chili Peppers in the Republic of Korea
3.3. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, N.E.; Seo, D.Y.; Cheon, W.Y.; Choi, Y.M.; Lee, J.S.; Kim, Y.H. Bioactive nutritional compounds and antioxidant activity of green peppers consumed in Korea. J. Korean Soc. Food Sci. Nutr. 2020, 49, 141–148. [Google Scholar] [CrossRef]
- Zeid, A.A.O.; Yacine, B.H.A.; Mohamed, A.H.; Ayman, A.G. Determination of capsaicin and dihydrocapsaicin in capsicum fruit samples using high performance liquid chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef]
- Statistics Korea. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&aSeq=386685 (accessed on 23 July 2021).
- Korea Health Industry Development Institute. Available online: https://www.khidi.or.kr/nutristat (accessed on 23 July 2021).
- Gye, H.J.; Lee, D.H.; Jeong, M.H.; Byun, J.E. Monitoring and risk assessment of pesticide residues in red pepper powder focused on red pepper’s major production area in Korea (2015–2016). J. Korean Soc. Food Cult. 2020, 35, 285–293. [Google Scholar]
- Imported Food Information Maru. Available online: https://impfood.mfds.go.kr/CFDAA01F01 (accessed on 26 July 2021).
- Ministry of Food and Drug Safety. Year of Imported Food Inspection, 22nd ed.; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2021; pp. 168–171.
- Ministry of Food and Drug Safety. Year of Imported Food Inspection, 21st ed.; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2020; pp. 166–169.
- Ministry of Food and Drug Safety. Year of Imported Food Inspection, 19th ed.; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2018; pp. 159–162.
- Jee, Y.J. Monitoring and Risk Assessment of Pesticide Residue in Domestic and Foreign agricultural Products. Master’s Thesis, Daegu University, Gyeongsan-si, Republic of Korea, 2017. [Google Scholar]
- Moon, K.E. Monitoring Pesticide Residue in Agricultural Products for Comparison Before and After Applying the Positive List System. Master’s Thesis, Korea University, Seoul, Republic of Korea, 2017. [Google Scholar]
- Park, G.S.; Lim, M.H.; Choi, D.M.; Jung, J.Y.; Jang, M.I.; Kwon, K.I.; Hong, M.K.; Lee, C.W. Establishment of maximum residue limit among Korean food. Korean J. Pestic. Sci. 2005, 9, 51–59. [Google Scholar]
- Ministry of Food and Drug Safety. Monitoring of Pesticide Residues in Agro-Livestock Products-2018; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2018; pp. 11–15.
- Ministry of Food and Drug Safety. Year of Imported Food Inspection, 20th ed.; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2019; pp. 163–164.
- Food and Drug Administration. Pesticide Residue Monitoring Program Fiscal Year 2018 Pesticide Report; Food and Drug Administration: Silver Spring, MD, USA, 2018; p. 5.
- Food and Drug Administration. Available online: https://www.fda.gov/food/pesticides/pesticide-residue-monitoring-program-reports-and-data (accessed on 27 July 2021).
- United States Department of Agriculture. Available online: https://www.ams.usda.gov/datasets/pdp (accessed on 27 July 2021).
- Ministry of Health, Labor and Welfare. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/yunyu_kanshi/index_00017.html (accessed on 5 August 2021).
- Ministry of Health, Labor and Welfare. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/zanryu/index.html (accessed on 28 July 2021).
- European Food Safety Authority. Available online: https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.CHEMICALRESIDUES-DATA#heading-level-1-2 (accessed on 6 August 2021).
- European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/topics/topic/pesticides (accessed on 29 July 2021).
- European Commission. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search?event=SearchForm&cleanSearch=1 (accessed on 6 August 2021).
- Health and Safety Executive. Available online: https://www.hse.gov.uk/pesticides/reducing-environmental-impact/index.htm (accessed on 29 July 2021).
- UK Government. Available online: https://www.gov.uk/government/collections/pesticide-residues-in-food-results-of-monitoring-programme (accessed on 9 August 2022).
- Ministry of Food and Drug Safety. Monitoring of Pesticide Residues in Agricultural Products–2015; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2015.
- Ministry of Food and Drug Safety. Study on Safety Management by Risk Assessment of Pesticide Residues in Foods–2016; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2016.
- Ministry of Food and Drug Safety. Monitoring of Pesticide Residues in Agro-Livestock Products–2017; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2017.
- Ministry of Food and Drug Safety. Monitoring of Pesticide Residues in Agro-Livestock Products–2018; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2018.
- Ministry of Food and Drug Safety. Method Validation and Monitoring of Pesticide Residues in Agro-Livestock Products; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2019.
- Ministry of Food and Drug Safety. Method Validation and Monitoring of Pesticide Residues Agricultural Products; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2020.
- Ministry of Food and Drug Safety. Monitoring of Pesticide Residue in Agricultural Products using Newly Notified Method; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2021.
- Uneme, H.; Konobe, M.; Akayama, A. Discovery and Development of a Novel Insecticide “Clothianidin”; Sumitomo Chemical Co., Ltd.: Tokyo, Janpan, 2006. [Google Scholar]
- Son, S.W.; Kim, B.J.; Ahn, S.H. Inspection of the fragmentation pathway for thiamethoxam. Mass spectrom Lett. 2017, 8, 65–68. [Google Scholar]
- Ihm, Y.B.; Kyung, K.S.; Kim, C.S.; Choi, B.R.; Hong, S.M.; Lee, J.K. Photolysis of the insecticide imidacloprid in water and water-paddy soil systems. Korean J. Pestic. Sci. 2004, 8, 38–45. [Google Scholar]
- Kim, D.H.; Choi, C.L.; Kim, T.H.; Park, M.; Kim, J.E. Degradation patterns of orgaonophosphorus insecticide, chlorpyrifos by functionalized zerovalent iron. J. Korean Soc. Appl. Biol. Chem. 2007, 50, 321–326. [Google Scholar]
- Adolphe, M.; Michael, S. Degradation of metalaxyl and mefenoxam and effects on the microbiological properties of tropical and temperate soils. Int. J. Environ. Res. Public Health 2005, 2, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Lee, S.J.; Lee, D.Y.; Kim, Y.J.; Kim, K.Y.; Chung, B.K.; Kang, K.Y. Persistence of chlorfenapyr in paprika leaf and its residual biological activity to two spotted spider mite, Tetranychus urticae. Korean J. Pestic. Sci. 2011, 15, 317–322. [Google Scholar]
- Song, M.H.; Yu, J.W.; Kim, J.; Lee, K. Residual characteristics and risk assessments of metalaxyl-M and dinotefuran in crown daisy. Korean J. Environ. Agric. 2022, 41, 108–114. [Google Scholar] [CrossRef]
- Gope, A.; Chakraborty, G.; Ghosh, S.M.; Sau, S.; Mondal, K.; Biswas, A.; Sarkar, S.; Sarkar, P.K.; Roy, D. Toxicity and sublethal effects of fluxametamide on the key biological parameters and life history traits of diamondback moth Plutella xylostella (L.). Agronomy 2022, 12, 1656. [Google Scholar] [CrossRef]
- Han, S.S.; Lo, S.C.; Ma, S.Y. Effect of some variation factors on dissipation of tebuconazole in grape. Korean J. Environ. Agric. 2004, 23, 142–147. [Google Scholar] [CrossRef]
- Morita, M.; Uedo, T.; Yoneda, T.; Koyanagi, T.; Haga, T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest. Manag. Sci. 2007, 63, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Fussell, R.J. An Overview of Regulation and Control of Pesticide Residues in Food; Thermo Fisher Scientific: Hemel Hempstead, UK, 2016. [Google Scholar]
- Galt, R.E. Overlap of US FDA residue tests and pesticides used on imported vegetables: Empirical findings and policy recommendations. Food Policy 2009, 34, 468–476. [Google Scholar] [CrossRef]
- Mert, A.; Qi, A.; Bygrave, A.; U. Stotz, H. Trends of pesticide residues in foods imported to the United Kingdom from 2000 to 2020. Food Control 2022, 133, 108616. [Google Scholar] [CrossRef]
No. | Detected Pesticide | Number of Sampled Cases | Number of Detected Cases | Detection Rate (%) | Residue Concentration (Max, mg/kg) | MRL a (mg/kg) |
---|---|---|---|---|---|---|
1 | Clothianidin | 977 | 280 | 28.66 | 0.10 | 2.0 |
2 | Thiamethoxam | 967 | 277 | 28.65 | 0.01 | 1.0 |
3 | Imidacloprid | 1014 | 277 | 27.32 | 0.02 | 1.0 |
4 | Chlorpyrifos | 975 | 204 | 20.92 | 0.09 c | - |
5 | Metalaxyl | 936 | 123 | 13.14 | 1.83 b | 1.0 |
6 | Thiacloprid | 973 | 125 | 12.85 | 0.02 | 1.0 |
7 | Myclobutanil | 903 | 114 | 12.62 | 0.03 | 1.0 |
8 | Azoxystrobin | 933 | 111 | 11.90 | 0.02 | 2.0 |
9 | Methamidophos | 849 | 97 | 11.43 | 0.06 | 1.0 |
10 | Cyhalothrin | 932 | 98 | 10.52 | 0.44 | 0.5 |
11 | Boscalid | 900 | 93 | 10.33 | 0.03 | 3.0 |
12 | Acetamiprid | 946 | 83 | 8.77 | 0.63 | 2.0 |
13 | Pyraclostrobin | 946 | 82 | 8.67 | 0.23 | 1.0 |
14 | Chlorantraniliprole | 837 | 72 | 8.60 | 0.01 | 1.0 |
15 | Cypermethrin | 908 | 78 | 8.59 | 0.79 b | 0.5 |
16 | Carbendazim | 1277 | 107 | 8.38 | 0.45 | 5.0 |
17 | Omethoate | 858 | 71 | 8.28 | 0.07 c | - |
18 | Chlorfenapyr | 879 | 72 | 8.19 | 0.04 | 1.0 |
19 | Acephate | 882 | 71 | 8.05 | 0.06 | 3.0 |
20 | Dimethoate | 860 | 69 | 8.02 | 0.01 c | - |
21 | Fipronil | 807 | 63 | 7.81 | 0.22 b | 0.05 |
22 | Diflubenzuron | 812 | 63 | 7.76 | 0.22 | 2.0 |
23 | Cyfluthrin | 766 | 59 | 7.70 | 0.10 | 1.0 |
24 | Tebuconazole | 897 | 69 | 7.69 | 1.26 | 3.0 |
25 | Bifenthrin | 857 | 65 | 7.58 | 0.01 | 1.0 |
26 | Difenoconazole | 848 | 64 | 7.55 | 0.03 | 1.0 |
27 | Methomyl | 905 | 66 | 7.29 | 0.69 | 5.0 |
28 | Malathion | 762 | 52 | 6.82 | 0.40 b | 0.1 |
No. | Detected Pesticide | Number of Inspections | Number of Detections | Detection Rate (%) | Residue Concentration (Max, mg/kg) | MRL a (mg/kg) |
---|---|---|---|---|---|---|
1 | Chlorfenapyr | 89 | 29 | 32.58 | 0.75 | 1.0 |
2 | Tebuconazole | 79 | 18 | 22.78 | 2.68 | 3.0 |
3 | Flonicamid | 89 | 18 | 20.22 | 0.36 | 2.0 |
4 | Dinotefuran | 51 | 15 | 29.41 | 0.24 | 2.0 |
5 | Boscalid | 89 | 14 | 15.73 | 0.09 | 3.0 |
6 | Pyraclostrobin | 89 | 14 | 15.73 | 0.38 | 1.0 |
7 | Fluxametamide | 51 | 12 | 23.53 | 0.21 | 1.0 |
8 | Thiamethoxam | 89 | 11 | 12.36 | 0.38 | 1.0 |
9 | Pyridaben | 51 | 10 | 19.61 | 0.22 | 5.0 |
10 | Azoxystrobin | 72 | 10 | 13.89 | 0.53 | 2.0 |
11 | Acetamiprid | 51 | 9 | 17.65 | 0.15 | 2.0 |
12 | Spirotetramat | 51 | 9 | 17.65 | 1.75 | 2.0 |
13 | Trifloxystrobin | 79 | 9 | 11.39 | 0.50 | 2.0 |
14 | Sulfoxaflor | 51 | 8 | 15.69 | 0.07 | 0.5 |
15 | Tetraconazole | 79 | 8 | 10.13 | 0.13 | 1.0 |
16 | Clothianidin | 62 | 7 | 11.29 | 0.34 | 2.0 |
17 | Procymidone | 89 | 7 | 7.87 | 0.76 | 5.0 |
18 | Difenoconazole | 41 | 6 | 14.63 | 0.28 | 1.0 |
19 | Fluopyram | 62 | 6 | 9.68 | 0.68 | 3.0 |
20 | Indoxacarb | 72 | 6 | 8.33 | 0.08 | 1.0 |
21 | Flubendiamide | 48 | 5 | 10.42 | 0.40 | 1.0 |
22 | Carbendazim | 51 | 5 | 9.80 | 0.39 | 5.0 |
23 | Pyflubumide | 51 | 5 | 9.80 | 0.17 | 1.0 |
24 | Chlorantraniliprole | 72 | 5 | 6.94 | 0.06 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Kim, S.-H.; Bae, S.; Im, M.-H. Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management. Toxics 2024, 12, 508. https://doi.org/10.3390/toxics12070508
Park M, Kim S-H, Bae S, Im M-H. Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management. Toxics. 2024; 12(7):508. https://doi.org/10.3390/toxics12070508
Chicago/Turabian StylePark, Minsoo, Seo-Hong Kim, Subin Bae, and Moo-Hyeog Im. 2024. "Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management" Toxics 12, no. 7: 508. https://doi.org/10.3390/toxics12070508
APA StylePark, M., Kim, S.-H., Bae, S., & Im, M.-H. (2024). Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management. Toxics, 12(7), 508. https://doi.org/10.3390/toxics12070508