Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Scientometric Mapping and Scientific Production
3.1.1. (2000–2007) Initial Growth Phase
3.1.2. (2008–2014) Thematic Development Phase
3.1.3. (2015–2022) High Productivity Phase
3.2. Production by Countries
3.3. Production by Authors
3.4. Production by Journals
3.5. Tree of Science (ToS)
3.5.1. Classic Documents (Root)
3.5.2. Structural Documents (Trunk)
3.5.3. Emerging Trends Documents (Leaves and Branches)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimenez-Relinque, E.; Lee, S.F.; Plaza, L.; Castellote, M. Synergetic Adsorption–Photocatalysis Process for Water Treatment Using TiO2 Supported on Waste Stainless Steel Slag. Environ. Sci. Pollut. Res. 2022, 29, 39712–39722. [Google Scholar] [CrossRef] [PubMed]
- Kocijan, M.; Ćurković, L.; Gonçalves, G.; Podlogar, M. The Potential of RGO@TiO2 Photocatalyst for the Degradation of Organic Pollutants in Water. Sustainability 2022, 14, 12703. [Google Scholar] [CrossRef]
- Shehab, M.A.; Sharma, N.; Valsesia, A.; Karacs, G.; Kristály, F.; Koós, T.; Leskó, A.K.; Nánai, L.; Hernadi, K.; Németh, Z. Preparation and Photocatalytic Performance of TiO2 Nanowire-Based Self-Supported Hybrid Membranes. Molecules 2022, 27, 2951. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The Photocatalytic Process in the Treatment of Polluted Water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Benitez, C. Contaminación de Crudo Llegó Hasta Imbilí En Tumaco. Available online: https://www.diariodelsur.com.co/contaminacion-de-crudo-llego-hasta-imbili-en-tumaco/ (accessed on 28 August 2024).
- Estrada Loaiza, J. Análisis Técnico Económico de Alternativas Para El Procesamiento de Los Residuos Solidos de La Truchicultura En Belmira, Antioquia, Con Énfasis En El Ensilaje Biológico. Master’s Thesis, Universidad de Antioquia, Medellín, Colombia, 2022. [Google Scholar]
- Barkul, R.P.; Patil, M.K.; Patil, S.M.; Shevale, V.B.; Delekar, S.D. Sunlight-Assisted Photocatalytic Degradation of Textile Effluent and Rhodamine B by Using Iodine Doped TiO2 Nanoparticles. J. Photochem. Photobiol. A Chem. 2017, 349, 138–147. [Google Scholar] [CrossRef]
- Rincón, G.J.; La Motta, E.J. A Fluidized-Bed Reactor for the Photocatalytic Mineralization of Phenol on TiO2-Coated Silica Gel. Heliyon 2019, 5, e01966. [Google Scholar] [CrossRef]
- Mahajan, M.R.; Ramachandran, K.; Sathyamurthy, R.; Geetha, B.T.; Sathish, T.; Anderson, A.; Rajasimman, M.; Saravanan, R.; Ghfar, A.A.; Dragoi, E.-N. Annealed Titanium Dioxide Nanomaterials for Rapid Hydrogen Production and Rhodamine-B Degradation. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Alahiane, S.; Sennaoui, A.; Sakr, F.; Dinne, M.; Qourzal, S.; Assabbane, A. Synchronous Role of Coupled Adsorption-Photocatalytic Degradation of Direct Red 80 with Nanocrystalline TiO2-Coated Non-Woven Fibres Materials in a Static Batch Photoreactor. Groundw. Sustain. Dev. 2020, 11, 100396. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Yu, S.; Wen, X.; Wu, D. Highly Efficient Solar-Light-Driven Photocatalytic Degradation of Pollutants in Petroleum Refinery Wastewater on Hierarchically-Structured Copper Sulfide (CuS) Hollow Nanocatalysts. Sep. Purif. Technol. 2022, 284, 120254. [Google Scholar] [CrossRef]
- Haolat, J.O.; George, A.; Issa Suleiman, M.; Berthod, M.; Wang, K. UV-TiO2 Treatment of the Cooling Water of an Oil Refinery. J. Water Process Eng. 2018, 26, 176–181. [Google Scholar] [CrossRef]
- Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green Synthesis of TiO2 Nanoparticles from Syzygium Cumini Extract for Photo-Catalytic Removal of Lead (Pb) in Explosive Industrial Wastewater. Green Process. Synth. 2020, 9, 171–181. [Google Scholar] [CrossRef]
- Amaya-Roncancio, S.; Torres-Ceron, D.A.; Velasquez-Tamayo, J.P.; Mercado, D.F.; Arellano-Ramírez, I.D.; Restrepo-Parra, E. Experimental and Theoretical Study of Cr(VI) Photoreduction and Adsorption onto SO42−-Doped TiO2 Obtained by Plasma Electrolytic Oxidation. Mater. Today Chem. 2023, 31, 101620. [Google Scholar] [CrossRef]
- Vargas-Villanueva, S.; Velásquez-Tamayo, J.P.; Torres-Cerón, D.A.; Mercado, D.F.; Torres-Palma, R.A.; Riassetto, D.; Riva, J.S.; Amaya-Roncancio, S.; Castilla-Acevedo, S.F.; Restrepo-Parra, E. Impact of the Duty Cycle on the Morphology and Photocatalytic Properties of S-TiO2 Obtained by Plasma Electrolytic Oxidation to Treat Real Electroplating Wastewater Contaminated with Cr6+. J. Environ. Chem. Eng. 2023, 11, 110246. [Google Scholar] [CrossRef]
- Cherni, Y.; Messaoud, M.; Ben, S.-B.O.; Salhi, R.; Elleuch, R.; Kasmi, M.; Chatti, A.; Trabelsi, I.; Elleuch, L. A Sustainable Nanobioremediation Approach for Tunisian Landfill Leachate Using Ag/Fe Co-Doped TiO2 Nanoparticles Combined with Saccharomyces Cerevisiae. Euro-Mediterr. J. Environ. Integr. 2023, 8, 287–302. [Google Scholar] [CrossRef]
- Godvin Sharmila, V.; Rajesh Banu, J.; Gunasekaran, M.; Angappane, S.; Yeom, I.T. Nano-layered TiO2 for Effective Bacterial Disintegration of Waste Activated Sludge and Biogas Production. J. Chem. Technol. Biotechnol. 2018, 93, 2701–2709. [Google Scholar] [CrossRef]
- Ghosh, S.; Harsha, N.V.M.S.; Singh, S.P.; Shriwastav, A. Simultaneous Removal of Ciprofloxacin and Disinfection from Wastewater by Combined Photocatalytic Reactor (PCR) and Membrane Bioreactor (MBR) System. J. Environ. Chem. Eng. 2023, 11, 110855. [Google Scholar] [CrossRef]
- Mohammadi Nezhad, A.; Talaiekhozani, A.; Mojiri, A.; Sonne, C.; Cho, J.; Rezania, S.; Vasseghian, Y. Photocatalytic Removal of Ceftriaxone from Wastewater Using TiO2/MgO under Ultraviolet Radiation. Environ. Res. 2023, 229, 115915. [Google Scholar] [CrossRef]
- Mingmongkol, Y.; Polnok, A.; Phuinthiang, P.; Channei, D.; Ratananikom, K.; Nakaruk, A.; Khanitchaidecha, W. Photocatalytic Degradation Mechanism of the Pharmaceutical Agent Salbutamol Using the Mn-Doped TiO2 Nanoparticles Under Visible Light Irradiation. ACS Omega 2023, 8, 17254–17263. [Google Scholar] [CrossRef]
- Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R.P.; Gopinath, K.P.; Lichtfouse, E. Synthesis and Application of Titanium Dioxide Photocatalysis for Energy, Decontamination and Viral Disinfection: A Review. Environ. Chem. Lett. 2023, 21, 339–362. [Google Scholar] [CrossRef]
- Ji, H.; Ni, J.; Zhao, D.; Liu, W. Application of Titanate Nanotubes for Photocatalytic Decontamination in Water: Challenges and Prospects. ACS EST Eng. 2022, 2, 1015–1038. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, A.; Chauhan, N.S.; Tahir, M.; Kumari, K.; Mittal, A.; Kumar, N. TiO2/Bi2O3/PANI Nanocomposite Materials for Enhanced Photocatalytic Decontamination of Organic Pollutants. Inorg. Chem. Commun. 2022, 146, 110093. [Google Scholar] [CrossRef]
- Wei, D.; Wu, J.; Wang, Y.; Zhong, J.; Li, D.; Jin, X.; Wu, Y.; Chen, P.; Liu, H.; Lv, W.; et al. Dual Defect Sites of Nitrogen Vacancy and Cyano Group Synergistically Boost the Activation of Oxygen Molecules for Efficient Photocatalytic Decontamination. Chem. Eng. J. 2023, 462, 142291. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Mahadik, M.A.; Moholkar, A.V.; Bhosale, C.H. Photoelectrocatalytic Degradation of Oxalic Acid Using WO3 and Stratified WO3/TiO2 Photocatalysts under Sunlight Illumination. Ultrason. Sonochem. 2017, 35, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Joy, S.; Rastogi, G.; Sankaranarayanan, K. Photocatalytic Degradation of Phenol Using Ionic Liquid Stabilized TiO2 Nanoparticles. Mater. Res. Express 2019, 6, 115059. [Google Scholar] [CrossRef]
- Su, H.; Gong, Y.; Lou, H.; Pang, Y.; Yang, D.; Gao, D.; Qiu, X. The Open Core-Shell TiO2@ZnIn2S4 Step-Scheme Heterojunction to Enhance Mass Transfer and Light Utilization for Efficient Photocatalytic Performance. J. Clean. Prod. 2023, 419, 138034. [Google Scholar] [CrossRef]
- Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sara, S.A. Photocatalytic Activity of AgI Sensitized ZnO Nanoparticles under Visible Light Irradiation. Powder Technol. 2012, 224, 331–337. [Google Scholar] [CrossRef]
- Bahamonde Soria, R.; Chinchin, B.D.; Arboleda, D.; Zhao, Y.; Bonilla, P.; Van der Bruggen, B.; Luis, P. Effect of the Bio-Inspired Modification of Low-Cost Membranes with TiO2:ZnO as Microbial Fuel Cell Membranes. Chemosphere 2022, 291, 132840. [Google Scholar] [CrossRef]
- Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Swart, H.C.; Purohit, L.P. Photoactive CdO:TiO2 Nanocomposites for Dyes Degradation under Visible Light. Mater. Chem. Phys. 2020, 253, 123191. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ahmed, A.I.; Mannaa, M.A. Preparation and Characterization of SnO2 Doped TiO2 Nanoparticles: Effect of Phase Changes on the Photocatalytic and Catalytic Activity. J. Sci. Adv. Mater. Devices 2019, 4, 400–412. [Google Scholar] [CrossRef]
- Espinosa, J.C.; Catalá, C.; Navalón, S.; Ferrer, B.; Álvaro, M.; García, H. Iron Oxide Nanoparticles Supported on Diamond Nanoparticles as Efficient and Stable Catalyst for the Visible Light Assisted Fenton Reaction. Appl. Catal. B 2018, 226, 242–251. [Google Scholar] [CrossRef]
- Theerakarunwong, C.D.; Phothi, R. Community Refinery Wastewater Photodegradation by Fe-Doped TiO2 Films. Water Air Soil Pollut. 2018, 229, 231. [Google Scholar] [CrossRef]
- Nogueira, V.; Lopes, I.; Rocha-Santos, T.A.P.; Gonçalves, F.; Pereira, R. Treatment of Real Industrial Wastewaters through Nano-TiO2 and Nano-Fe2O3 Photocatalysis: Case Study of Mining and Kraft Pulp Mill Effluents. Environ. Technol. 2018, 39, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lee, B.-K. Structure and Activity of TiO2/FeO Co-Doped Carbon Spheres for Adsorptive-Photocatalytic Performance of Complete Toluene Removal from Aquatic Environment. Appl. Catal. A Gen. 2016, 523, 272–282. [Google Scholar] [CrossRef]
- Subash, B.; Krishnakumar, B.; Pandiyan, V.; Swaminathan, M.; Shanthi, M. Synthesis and Characterization of Novel WO3 Loaded Ag–ZnO and Its Photocatalytic Activity. Mater. Res. Bull. 2013, 48, 63–69. [Google Scholar] [CrossRef]
- Kolo, L.; Firdaus, F.; Taba, P.; Zakir, M.; Soekamto, N.H. Selectivity of the New Catalyst ZnO-MCM-48-CaO in Esterification of Calophyllum inophyllum Oil. Automot. Exp. 2022, 5, 217–229. [Google Scholar] [CrossRef]
- Benavides-Sánchez, E.A.; Castro-Ruíz, C.A.; Brand Narváez, M.A. El Emprendimiento de Base Tecnológica y Su Punto de Encuentro Con La Convergencia Tecnocientífica: Una Revisión a Partir Del Algoritmo Tree of Science. Rev. CEA 2023, 9, e2153. [Google Scholar] [CrossRef]
- Landínez Martínez, D.A.; Montoya Arenas, D.A. Políticas de Salud Pública Para La Prevención y El Tratamiento de La Enfermedad Vascular Cerebral: Una Revisión Sistemática Por Medio de La Metodología ToS (Tree of Science). Med. UPB 2019, 38, 129–139. [Google Scholar] [CrossRef]
- Patrus, R.; Silva, V.T.O. e A Organização de Uma Revisão de Literatura Por Meio Da Tree of Science (Árvore Da Ciência): Um Exemplo Sobre a Avaliação Da Pós-Graduação. Avaliação Rev. Avaliação Educ. Super. 2019, 24, 68–88. [Google Scholar] [CrossRef]
- Zuluaga, M.; Robledo, S.; Arbelaez-Echeverri, O.; Osorio-Zuluaga, G.A.; Duque-Méndez, N. Tree of Science-ToS: A Web-Based Tool for Scientific Literature Recommendation. Search Less, Research More! Issues Sci. Technol. Librariansh. 2022, 100, 2696. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- A., A.M.G.; Robledo, S.; Zuluaga, M. Topic Modeling: Perspectives from a Literature Review. IEEE Access 2023, 11, 4066–4078. [Google Scholar] [CrossRef]
- Sun, L.; Wu, L.; Qi, P. Global Characteristics and Trends of Research on Industrial Structure and Carbon Emissions: A Bibliometric Analysis. Environ. Sci. Pollut. Res. 2020, 27, 44892–44905. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, M.; Zhang, L.; Zhang, J.; Jin, L. Application of Nano TiO2 towards Polluted Water Treatment Combined with Electro-Photochemical Method. Water Res 2003, 37, 3815–3820. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, M.; Zhang, J.; Ying, X.; Jin, L. Photocatalytic Degradation of Organic Wastes by Electrochemically Assisted TiO2 Photocatalytic System. J. Environ. Manag. 2004, 70, 43–47. [Google Scholar] [CrossRef]
- Li, J.; Zheng, L.; Li, L.; Xian, Y.; Jin, L. Fabrication of TiO2/Ti Electrode by Laser-Assisted Anodic Oxidation and Its Application on Photoelectrocatalytic Degradation of Methylene Blue. J. Hazard. Mater. 2007, 139, 72–78. [Google Scholar] [CrossRef]
- Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C 2009, 113, 4940–4947. [Google Scholar] [CrossRef]
- Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir 2013, 29, 939–949. [Google Scholar] [CrossRef]
- Tachikawa, T.; Choi, J.R.; Fujitsuka, M.; Majima, T. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. J. Phys. Chem. C 2008, 112, 14090–14101. [Google Scholar] [CrossRef]
- Ghasemi, S.; Rahimnejad, S.; Setayesh, S.R.; Rohani, S.; Gholami, M.R. Transition Metal Ions Effect on the Properties and Photocatalytic Activity of Nanocrystalline TiO2 Prepared in an Ionic Liquid. J. Hazard. Mater. 2009, 172, 1573–1578. [Google Scholar] [CrossRef]
- Shivaraju, H.P.; Sajan, C.P.; Rungnapa, T.; Kumar, V.; Ranganathaiah, C.; Byrappa, K. Photocatalytic Treatment of Organic Pollutants in Textile Effluent Using Hydrothermally Prepared Photocatalytic Composite. Mater. Res. Innov. 2010, 14, 80–86. [Google Scholar] [CrossRef]
- Fang, T.; Yang, C.; Liao, L. Photoelectrocatalytic Degradation of High COD Dipterex Pesticide by Using TiO2/Ni Photo Electrode. J. Environ. Sci. 2012, 24, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Zakaria, W. Effect of Metal-Doping of TiO2 Nanoparticles on Their Photocatalytic Activities toward Removal of Organic Dyes. Egypt. J. Pet. 2014, 23, 419–426. [Google Scholar] [CrossRef]
- Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Effective Removal of Organic Pollutants Using GeO2/TiO2 Nanoparticle Composites under Direct Sunlight. Mater. Chem. Front. 2018, 2, 741–751. [Google Scholar] [CrossRef]
- Jo, W.-K.; Natarajan, T.S. Influence of TiO2 Morphology on the Photocatalytic Efficiency of Direct Z-Scheme g-C3N4/TiO2 Photocatalysts for Isoniazid Degradation. Chem. Eng. J. 2015, 281, 549–565. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ramezani Motlagh, H.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced Photocatalytic Degradation of Tetracycline and Real Pharmaceutical Wastewater Using MWCNT/TiO2 Nano-Composite. J. Environ. Manag. 2017, 186, 55–63. [Google Scholar] [CrossRef]
- Deng, F.; Zhao, L.; Luo, X.; Luo, S.; Dionysiou, D.D. Highly Efficient Visible-Light Photocatalytic Performance of Ag/AgIn5S8 for Degradation of Tetracycline Hydrochloride and Treatment of Real Pharmaceutical Industry Wastewater. Chem. Eng. J. 2018, 333, 423–433. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, G.; Yu, W.; He, W.; Wang, Q.; Zhong, B.; Wang, Q.; Liao, S.; Li, R.; Chen, F.; et al. Molecular Characterization of Human Echinococcosis in Sichuan, Western China. Acta Trop. 2019, 190, 45–51. [Google Scholar] [CrossRef]
- Sheikh, M.U.D.; Naikoo, G.A.; Thomas, M.; Bano, M.; Khan, F. Solar-Assisted Photocatalytic Reduction of Methyl Orange Azo Dye over Porous TiO2 Nanostructures. New J. Chem. 2016, 40, 5483–5494. [Google Scholar] [CrossRef]
- Shokri, A.; Mahanpoor, K.; Soodbar, D. Evaluation of a Modified TiO2 (GO–B–TiO2) Photo Catalyst for Degradation of 4-Nitrophenol in Petrochemical Wastewater by Response Surface Methodology Based on the Central Composite Design. J. Environ. Chem. Eng. 2016, 4, 585–598. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.-K.; Tayade, R.J. Synthesis of Multiwall Carbon Nanotubes/TiO2 Nanotube Composites with Enhanced Photocatalytic Decomposition Efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
- Saikia, L.; Bhuyan, D.; Saikia, M.; Malakar, B.; Dutta, D.K.; Sengupta, P. Photocatalytic Performance of ZnO Nanomaterials for Self Sensitized Degradation of Malachite Green Dye under Solar Light. Appl. Catal. A Gen. 2015, 490, 42–49. [Google Scholar] [CrossRef]
- Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha Curcas L. for Photocatalytic Degradation of Tannery Wastewater. Chem. Eng. J. 2018, 336, 386–396. [Google Scholar] [CrossRef]
- Tu, S.; Ning, Z.; Duan, X.; Zhao, X.; Chang, L. Efficient Electrochemical Hydrogen Peroxide Generation Using TiO2/RGO Catalyst and Its Application in Electro-Fenton Degradation of Methyl Orange. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129657. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Khorsandi, S. Photocatalytic Degradation of 4-Nitrophenol with ZnO Supported Nano-Clinoptilolite Zeolite. J. Ind. Eng. Chem. 2014, 20, 937–946. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Y.; Sun, F.; Liu, Y.; Tang, M.; Chen, J. Rapid Degradation of Congo Red Wastewater by Rhodopseudomonas Palustris Intimately Coupled Carbon Nanotube-Silver Modified Titanium Dioxide Photocatalytic Composite with Sodium Alginate. Chemosphere 2022, 299, 134417. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Decolorization of a Binary Azo Dyes Mixture Using CuO Incorporated Nanozeolite-X as a Heterogeneous Catalyst and Solar Irradiation. Chem. Eng. J. 2013, 228, 631–641. [Google Scholar] [CrossRef]
- A Mehrabanpour, N.; Nezamzadeh-Ejhieh, A.; Ghattavi, S. Cefotaxime Degradation by the Coupled Binary CdS-PbS: Characterization and the Photocatalytic Process Kinetics. Environ. Sci. Pollut. Res. 2022, 30, 33725–33736. [Google Scholar] [CrossRef]
- Nawaz, R.; Kait, C.F.; Chia, H.Y.; Isa, M.H.; Huei, L.W.; Sahrin, N.T.; Khan, N. Countering Major Challenges Confronting Photocatalytic Technology for the Remediation of Treated Palm Oil Mill Effluent: A Review. Environ. Technol. Innov. 2021, 23, 101764. [Google Scholar] [CrossRef]
- Mehrabanpour, N.; Nezamzadeh-Ejhieh, A.; Ghattavi, S. The Boosted Photocatalytic Effects of a Zeolite Supported CdS towards an Antibiotic Model Pollutant: A Brief Kinetics Study. Environ. Sci. Pollut. Res. 2023, 30, 5089–5102. [Google Scholar] [CrossRef]
- Gholami, N.; Ghasemi, B.; Anvaripour, B.; Jorfi, S. Enhanced Photocatalytic Degradation of Furfural and a Real Wastewater Using UVC/TiO2 Nanoparticles Immobilized on White Concrete in a Fixed-Bed Reactor. J. Ind. Eng. Chem. 2018, 62, 291–301. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Subash, B.; Swaminathan, M. AgBr–ZnO–An Efficient Nano-Photocatalyst for the Mineralization of Acid Black 1 with UV Light. Sep. Purif. Technol. 2012, 85, 35–44. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Pelaez, M.; Falaras, P.; Kontos, A.G.; de la Cruz, A.A.; O’shea, K.; Dunlop, P.S.M.; Byrne, J.A.; Dionysiou, D.D. A Comparative Study on the Removal of Cylindrospermopsin and Microcystins from Water with NF-TiO2-P25 Composite Films with Visible and UV–Vis Light Photocatalytic Activity. Appl. Catal. B Environ. 2012, 121–122, 30–39. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Salimi, Z. Heterogeneous Photodegradation Catalysis of O-Phenylenediamine Using CuO/X Zeolite. Appl. Catal. A Gen. 2010, 390, 110–118. [Google Scholar] [CrossRef]
- Suresh, P.; Vijaya, J.J.; Kennedy, L.J. Photocatalytic Degradation of Textile-Dyeing Wastewater by Using a Microwave Combustion-Synthesized Zirconium Oxide Supported Activated Carbon. Mater. Sci. Semicond. Process. 2014, 27, 482–493. [Google Scholar] [CrossRef]
- Suresh, P.; Vijaya, J.J.; Balasubramaniam, T.; John Kennedy, L. Synergy Effect in the Photocatalytic Degradation of Textile Dyeing Waste Water by Using Microwave Combustion Synthesized Nickel Oxide Supported Activated Carbon. Desal. Water Treat. 2016, 57, 3766–3781. [Google Scholar] [CrossRef]
- Hemmatpour, P.; Nezamzadeh-Ejhieh, A.; Ershadi, A. A Brief Study on the Eriochrome Black T Photodegra-dation Kinetic by CdS/BiVO4 Coupled Catalyst. Mater. Res. Bull. 2022, 151, 111830. [Google Scholar] [CrossRef]
- Yousefi, A.; Nezamzadeh-Ejhieh, A.; Mirmohammadi, M. The Coupled CuO-SnO2 Catalyst: Characterization and the Photodegradation Kinetics towards Phenazopyridine. Environ. Technol. Innov. 2021, 22, 101496. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, M.; Zhou, X.; Lin, H.; Peng, F.; Zhang, S. Designing Efficient TiO2-Based Photoelectrocatalysis Systems for Chemical Engineering and Sensing. Chem. Eng. J. 2020, 381, 122605. [Google Scholar] [CrossRef]
- Kaur, T.; Sraw, A.; Wanchoo, R.K.; Toor, A.P. Solar Assisted Degradation of Carbendazim in Water Using Clay Beads Immobilized with TiO2 & Fe Doped TiO2. Sol. Energy 2018, 162, 45–56. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Enhanced Photocatalytic Activity of Bismuth-Doped TiO2 Nanotubes under Direct Sunlight Irradiation for Degradation of Rhodamine B Dye. J. Nano Res. 2013, 15, 1669. [Google Scholar] [CrossRef]
- Zarrin, S.; Heshmatpour, F. Facile Preparation of New Nanohybrids for Enhancing Photocatalytic Activity toward Removal of Organic Dyes under Visible Light Irradiation. J. Phys. Chem. Sol. 2020, 140, 109271. [Google Scholar] [CrossRef]
- Bashir, A.; Rafique, U.; Bashir, R.; Jamil, S.; Bashir, F.; Sultan, M.; Mubeen, M.; Mehmood, Z.; Iqbal, A.; Akhter, Z. Synthesis and Comparative Evaluation of Optical and Electrochemical Properties of Ni+2 and Pr+3 Ions Co-Doped Mesoporous TiO2 Nanoparticles with Undoped Titania. Appl. Nanosci. 2021, 11, 2397–2413. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Neppolian, B. Solar/UV-Induced Photocatalytic Degradation of Three Commercial Textile Dyes. J. Hazard. Mater. 2002, 89, 303–317. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95, 49–68. [Google Scholar] [CrossRef]
Databases | Web of Science | Scopus |
---|---|---|
Consultation Period (in Years) | 2004–2024 | 2003–2023 |
Consultation date | 16 June 2024 | |
Document Type | Article, book, chapter and review. | |
Magazine Type | All types | |
Search Fields | TITLE-ABS-KEY | |
Search Terms | (((remov* OR decomposition OR reducti* OR degrad* OR mineralization) AND (chemical AND oxygen AND demand OR cod) AND photocatal* AND (nanoparticles AND tio2))) | |
Results | 529 | 196 |
Total Results | 645 |
Countries | Production | Citation | Q1 | Q2 | Q3 | Q4 | ||
---|---|---|---|---|---|---|---|---|
Iran | 132 | (20.4%) | 4409 | (22.47%) | 55 | 22 | 6 | 1 |
India | 125 | (19.32%) | 3307 | (16.85%) | 43 | 27 | 4 | 3 |
China | 94 | (14.53%) | 2992 | (15.25%) | 48 | 13 | 8 | 3 |
Egypt | 26 | (4.02%) | 667 | (3.4%) | 8 | 6 | 2 | 0 |
Korea | 24 | (3.71%) | 957 | (4.88%) | 10 | 4 | 0 | 0 |
Malaysia | 21 | (3.25%) | 790 | (4.03%) | 7 | 9 | 1 | 0 |
USA | 18 | (2.78%) | 1081 | (5.51%) | 11 | 1 | 1 | 3 |
Pakistan | 16 | (2.47%) | 215 | (1.1%) | 2 | 5 | 3 | 1 |
Saudi Arabia | 14 | (2.16%) | 538 | (2.74%) | 8 | 1 | 0 | 0 |
South Africa | 14 | (2.16%) | 219 | (1.12%) | 4 | 4 | 1 | 0 |
N° | Researcher | Files in Seed | Scopus Articles | Co-Authors | Topics | Total Citation Documents | Scopus H-Index | Affiliation |
---|---|---|---|---|---|---|---|---|
1 | Nezamzadeh-Ejhieh, Alireza | 17 | 201 | 157 | 31 | 10,187 | 66 | Islamic Azad University, Shahreza Branch, Shahreza, Iran |
2 | Balu, Krishnakumar | 13 | 93 | 105 | 15 | 3189 | 30 | Universidad de Sevilla, Sevilla, Spain |
3 | Subash, Balu | 13 | 46 | 47 | 5 | 1670 | 20 | St. Joseph’s College of Engineering, Chennai, India |
4 | Shanthi, Manohar | 12 | 61 | 52 | 9 | 1975 | 23 | Annamalai University, Chidambaram, India |
5 | Swaminathan, Meenakshisundaram | 12 | 252 | 195 | 34 | 9933 | 52 | Kalasalingam Academy of Research and Education, Krishnankoil, India |
6 | Zhang, Xiaofei | 11 | 19 | 66 | 11 | 914 | 14 | Shandong University, Jinan, China |
7 | Arami, Mokhtar | 7 | 152 | 102 | 8 | 9102 | 56 | Amirkabir University of Technology, Tehran, Iran |
8 | Li, Jingyi | 7 | 31 | 55 | 5 | 1244 | 15 | Inner Mongolia University China, Hohhot, China |
9 | Li, Yancai | 7 | 34 | 47 | 9 | 1027 | 19 | Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou, China |
10 | Suganthi, Ayyadurai R.Baby | 7 | 70 | 62 | 29 | 2157 | 29 | Thaiyaharajar College, Madurai, India |
Journal | Wos | Scopus | Total | % | H-Index/Coverage | SJR_Q | Impact Factor/Year |
---|---|---|---|---|---|---|---|
Desalination and water treatment | 25 | 7 | 26 | 0.05 | 83 (2009–2023) | Q3 | 1.20 (2023) |
Journal of hazardous materials | 18 | 8 | 19 | 0.04 | 352 (1975–2024) | Q1 | 12.20 (2023) |
Environmental science and pollution research | 18 | 3 | 17 | 0.03 | 179 (1994–2023) | Q1 | 5.80 (2022) |
Journal of environmental chemical engineering | 13 | 4 | 15 | 0.03 | 127 (2013–2023) | Q1 | 7.40 (2023) |
Chemical engineering journal | 13 | 3 | 14 | 0.03 | 309 (1992–2023) | Q1 | 13.30 (2023) |
Chemosphere | 9 | 5 | 13 | 0.02 | 311 (1972–2023) | Q1 | 8.10 (2023) |
Journal of materials science-materials in electronics | 10 | - | 10 | 0.02 | 97 (1990–2023) | Q2 | 2.80 (2023) |
Journal of water process engineering | 9 | 3 | 10 | 0.02 | 89 (2014–2023) | Q1 | 6.30 (2023) |
Journal of environmental management | 8 | 3 | 10 | 0.02 | 243 (1977–2023) | Q1 | 8.00 (2023) |
Journal of photochemistry and photobiology a-chemistry | 9 | - | 8 | 0.02 | 176 (1987–2024) | Q2 | 4.10 (2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Vargas, J.M.; Echeverry-Cardona, L.M.; Torres-Ceron, D.A.; Amaya-Roncancio, S.; Restrepo-Parra, E.; Castillo-Delgado, K.J. Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review. ChemEngineering 2024, 8, 95. https://doi.org/10.3390/chemengineering8050095
Moreno-Vargas JM, Echeverry-Cardona LM, Torres-Ceron DA, Amaya-Roncancio S, Restrepo-Parra E, Castillo-Delgado KJ. Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review. ChemEngineering. 2024; 8(5):95. https://doi.org/10.3390/chemengineering8050095
Chicago/Turabian StyleMoreno-Vargas, Jhoan Mauricio, Laura Maria Echeverry-Cardona, Darwin Augusto Torres-Ceron, Sebastian Amaya-Roncancio, Elisabeth Restrepo-Parra, and Kevin Jair Castillo-Delgado. 2024. "Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review" ChemEngineering 8, no. 5: 95. https://doi.org/10.3390/chemengineering8050095
APA StyleMoreno-Vargas, J. M., Echeverry-Cardona, L. M., Torres-Ceron, D. A., Amaya-Roncancio, S., Restrepo-Parra, E., & Castillo-Delgado, K. J. (2024). Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review. ChemEngineering, 8(5), 95. https://doi.org/10.3390/chemengineering8050095