Leveraging Recurrent Neural Networks for Flood Prediction and Assessment
Abstract
:1. Introduction
- Incorporate diverse datasets, including meteorological and hydrological data into an AIML-based pipeline for sub-daily scale flood prediction.
- Address the spatial and temporal variability of flooding across multiple regions.
- Benchmark RNNs’ performance against observational data and the National Water Model (NWM v3.0) reanalysis.
- Assess the sensitivity and generalizability of RNNs across different scales and eco-physical contexts.
- Evaluate the impact of feature selection and engineering on predictive accuracy under various scenarios, from full feature utilization to selective combinations of inputs.
2. Methodology
2.1. Study Area
2.2. Meteorological Forcing Data
2.3. USGS Discharge
2.4. RNN Algorithms
2.4.1. Vanilla RNN
2.4.2. LSTM
2.4.3. GRU
2.5. NWM Model
2.6. Data Preprocessing and Storm Event Identification
2.7. Model Training Procedure
2.8. Performance Metrics
3. Results and Discussion
3.1. Hyperparameters Tuning
3.2. Feature Importance
3.3. Performance Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonkman, S.N. Global perspectives on loss of human life caused by floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- EM-DAT—The International Disaster Database (n.d.). Available online: https://www.emdat.be/ (accessed on 8 May 2024).
- Nevo, S.; Morin, E.; Gerzi Rosenthal, A.; Metzger, A.; Barshai, C.; Weitzner, D.; Voloshin, D.; Kratzert, F.; Elidan, G.; Dror, G.; et al. Flood forecasting with machine learning models in an operational framework. Hydrol. Earth Syst. Sci. 2022, 26, 4013–4032. [Google Scholar] [CrossRef]
- UNDRR. Sendai Framework for Disaster Risk Reduction 2015–2030. (n.d.). Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 11 January 2025).
- Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. In Perspectives in Civil Engineering: Commemorating the 150th Anniversary of the American Society of Civil Engineers; ASCE Publications: Reston, VA, USA, 2003; pp. 345–367. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Hussain, F.; Wu, R.S.; Wang, J.X. Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model. Nat. Hazards 2021, 107, 249–284. [Google Scholar] [CrossRef]
- Kaya, C.M.; Tayfur, G.; Gungor, O. Predicting flood plain inundation for natural channels having no upstream gauged stations. J. Water Clim. Change 2019, 10, 360–372. [Google Scholar] [CrossRef]
- Clark, M.P.; Nijssen, B.; Lundquist, J.D.; Kavetski, D.; Rupp, D.E.; Woods, R.A.; Freer, J.E.; Gutmann, E.D.; Wood, A.W.; Brekke, L.D.; et al. A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res. 2015, 51, 2498–2514. [Google Scholar] [CrossRef]
- Zhang, B.; Ouyang, C.; Cui, P.; Xu, Q.; Wang, D.; Zhang, F.; Li, Z.; Fan, L.; Lovati, M.; Liu, Y.; et al. Deep learning for cross-region streamflow and flood forecasting at a global scale. Innovation 2024, 5, 100617. [Google Scholar] [CrossRef]
- Tabas, S.S.; Samadi, S. Variational Bayesian dropout with a Gaussian prior for recurrent neural networks application in rainfall–runoff modeling. Environ. Res. Lett. 2022, 17, 065012. [Google Scholar] [CrossRef]
- Tabas, S.S.; Humaira, N.; Samadi, S.; Hubig, N.C. FlowDyn: A daily streamflow prediction pipeline for dynamical deep neural network applications. Environ. Model. Softw. 2023, 170, 105854. [Google Scholar] [CrossRef]
- Sadeghi Tabas, S. Explainable Physics-Informed Deep Learning for Rainfall-Runoff Modeling and Uncertainty Assessment Across the Continental United States. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Hsu, K.-L.; Gupta, H.V.; Sorooshian, S. Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Dtissibe, F.Y.; Ari, A.A.A.; Abboubakar, H.; Njoya, A.N.; Mohamadou, A.; Thiare, O. A comparative study of Machine Learning and Deep Learning methods for flood forecasting in the Far-North region, Cameroon. Sci. Afr. 2024, 23, e02053. [Google Scholar] [CrossRef]
- Shi, P.; Wu, H.; Qu, S.; Yang, X.; Lin, Z.; Ding, S.; Si, W. Advancing real-time error correction of flood forecasting based on the hydrologic similarity theory and machine learning techniques. Environ. Res. 2024, 246, 118533. [Google Scholar] [CrossRef] [PubMed]
- Jhong, Y.-D.; Chen, C.-S.; Jhong, B.-C.; Tsai, C.-H.; Yang, S.-Y. Optimization of LSTM Parameters for Flash Flood Forecasting Using Genetic Algorithm. Water Resour. Manag. 2024, 38, 1141–1164. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Van, C.P.; Do, A.D. Application of hybrid model-based deep learning and swarm-based optimizers for flood susceptibility prediction in Binh Dinh province, Vietnam. Earth Sci. Inform. 2023, 16, 1173–1193. [Google Scholar] [CrossRef]
- Kimura, N.; Minakawa, H.; Kimura, M.; Fukushige, Y.; Baba, D. Examining practical applications of a neural network model coupled with a physical model and transfer learning for predicting an unprecedented flood at a lowland drainage pumping station. Paddy Water Environ. 2023, 21, 509–521. [Google Scholar] [CrossRef]
- Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; et al. Global prediction of extreme floods in ungauged watersheds. Nature 2024, 627, 559–563. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 2012, 117, 3109. [Google Scholar] [CrossRef]
- Cosgrove, B.A.; Lohmann, D.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Marshall, C.; Sheffield, J.; Duan, Q.; et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos. 2003, 108, 8842. [Google Scholar] [CrossRef]
- Jordan, M.I. Serial Order: A Parallel Distributed Processing Approach. Adv. Psychol. 1997, 121, 471–495. [Google Scholar] [CrossRef]
- Werbos, P.J. Backpropagation Through Time: What It Does and How to Do It. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Wythoff, B.J. Backpropagation neural networks: A tutorial. Chemom. Intell. Lab. Syst. 1993, 18, 115–155. [Google Scholar] [CrossRef]
- Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Elman, J.L. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure. Mach. Learn. 1991, 7, 195–225. [Google Scholar] [CrossRef]
- Williams, R.J.; Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Appear. Neural Comput. 1989, 1, 270–280. [Google Scholar] [CrossRef]
- Shiri, F.; Perumal, T.; Mustapha, N.; Mohamed, R. A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU. arXiv 2023, arXiv:2305.17473. [Google Scholar] [CrossRef]
- Abbaspour, S.; Fotouhi, F.; Sedaghatbaf, A.; Fotouhi, H.; Vahabi, M.; Linden, M. A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition. Sensors 2020, 20, 5707. [Google Scholar] [CrossRef]
- Fang, W.; Chen, Y.; Xue, Q. Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms. J. Big Data 2021, 3, 97–110. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hochreiter, S.; Younger, A.S.; Conwell, P.R. Learning to Learn Using Gradient Descent. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2001; Volume 2130, pp. 87–94. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y. Learning to pour. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 7005–7010. [Google Scholar] [CrossRef]
- Sak, H.H.; Senior, A.; Google, B. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. arXiv 2014, arXiv:1402.1128. [Google Scholar]
- Cosgrove, B.; Gochis, D.; Flowers, T.; Dugger, A.; Ogden, F.; Graziano, T.; Clark, E.; Cabell, R.; Casiday, N.; Cui, Z.; et al. NOAA’s National Water Model: Advancing operational hydrology through continental-scale modeling. J. Am. Water Resour. Assoc. 2024, 60, 247–272. [Google Scholar] [CrossRef]
- Cohen, S.; Praskievicz, S.; Maidment, D.R. Featured collection introduction: National water model. J. Am. Water Resour. Assoc. 2018, 54, 767–769. [Google Scholar] [CrossRef]
- Scheuerer, M.; Viterbo, F.; Hughes, M.; Thorstensen, A.R. Investigation of the Added Value of Using Statistically Postprocessed GEFS Ensemble Forecasts as Alternative Forcings for the WRF-Hydro National Water Model (NWM); AMS: Hongkong, China, 2020; Available online: https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/363669 (accessed on 14 January 2020).
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Minns, A.W.; Hall, M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41, 399–417. [Google Scholar] [CrossRef]
- Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service 2019, IWQoS, Banff, AB, Canada, 4–6 June 2018. [Google Scholar] [CrossRef]
- Collobert, R.; Bengio, S.; Mariéthoz, J. Torch: A Modular Machine Learning Software Library; IDIAP: Martigny, Switzerland, 2002. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026. [Google Scholar]
No. | Variable | Unit | Description |
---|---|---|---|
1 | Prcp | (mm) | Precipitation |
2 | PET | (mm) | Potential Evapotranspiration |
3 | Humidity | (kg/kg) | Specific Humidity |
4 | T | (K) | Air Temperature |
5 | Wind-U | (m/s) | West to east wind |
6 | Wind-V | (m/s) | South to north wind |
7 | RLDS | (W/m2) | surface downward longwave radiation |
8 | RSDS | (W/m2) | surface downward shortwave radiation |
Catchment # | USGS # | Drainage Area (Squared Kilometers) | Flood Event Threshold (cms) | Number of Training Events | Number of Validation Events | Number of Test Events |
---|---|---|---|---|---|---|
1 | 02164000 | 125.87 | 28.31 | 39 | 13 | 13 |
2 | 02177000 | 536.12 | 56.63 | 44 | 15 | 15 |
3 | 02186000 | 274.53 | 28.31 | 50 | 16 | 16 |
4 | 02196000 | 1411.54 | 56.63 | 50 | 16 | 16 |
Total | - | - | - | 183 | 60 | 60 |
Hyperparameter | Search Space | Optimum | Description |
---|---|---|---|
Num. of recurrent layers | (1, 2, 3) | 1 | Represents number of stacked recurrent layers. |
Optimizer | (Adam, Adagrad, RMSprop) | Adam | Providing directions to update the weights of the network. |
Learning rate | (10−5, 10−4, 10−3, 10−2) | 0.001 | Controlling the learning speed of the model |
Batch size | (8, 16, 32, 64, 128, 256) | 128 | Number of samples processed by the RNN per iteration. |
Hidden unit size | (2, 4, 8, 16, 32, 64, 128) | 32 | Modulating the output size of hidden layers in the RNN network. |
Sequential Length | (3–12) | 12 | Time lag of past observations used to predict the next timestep. |
Dropout rate | (0.1, 0.2, 0.3, 0.4, 0.5) | 0.3 | The probability of randomly dropping out a neuron during training, used as a regularization technique to prevent overfitting. |
Left Out Variable | VRNN | LSTM | GRU | |||
---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | |
- | −0.12 | −0.03 | 0.65 | 0.70 | 0.70 | 0.73 |
Baseflow | −0.15 | −0.04 | 0.51 | 0.57 | 0.57 | 0.61 |
Precipitation | −0.21 | −0.20 | 0.39 | 0.43 | 0.41 | 0.43 |
Temperature | −0.16 | −0.08 | 0.55 | 0.59 | 0.58 | 0.62 |
Wind | −0.16 | −0.11 | 0.57 | 0.60 | 0.59 | 0.62 |
PET | −0.14 | −0.06 | 0.63 | 0.65 | 0.65 | 0.66 |
Humidity | −0.16 | −0.07 | 0.61 | 0.67 | 0.65 | 0.64 |
Solar Radiation | −0.14 | −0.05 | 0.62 | 0.68 | 0.67 | 0.65 |
USGS # | Total Events | Model | Mean | Median | Min | Max | STDEV |
---|---|---|---|---|---|---|---|
02164000 | 13 | VRNN | 0.44 | 0.62 | −0.59 | 0.88 | 0.44 |
LSTM | 0.62 | 0.61 | 0.25 | 0.90 | 0.20 | ||
GRU | 0.70 | 0.75 | 0.33 | 0.97 | 0.21 | ||
NWM | 0.46 | 0.55 | −0.05 | 0.90 | 0.24 | ||
02177000 | 15 | VRNN | −0.56 | −0.39 | −3.12 | 0.66 | 0.83 |
LSTM | 0.74 | 0.78 | 0.33 | 0.91 | 0.18 | ||
GRU | 0.72 | 0.72 | 0.33 | 0.96 | 0.14 | ||
NWM | 0.49 | 0.73 | −0.74 | 0.94 | 0.50 | ||
02186000 | 16 | VRNN | −0.23 | −0.10 | −1.25 | 0.03 | 0.33 |
LSTM | 0.63 | 0.69 | −0.33 | 0.92 | 0.31 | ||
GRU | 0.66 | 0.61 | 0.44 | 0.91 | 0.16 | ||
NWM | 0.08 | 0.39 | −1.66 | 0.84 | 0.77 | ||
02196000 | 16 | VRNN | −0.01 | 0.37 | −2.98 | 0.78 | 0.89 |
LSTM | 0.59 | 0.59 | 0.38 | 0.85 | 0.17 | ||
GRU | 0.64 | 0.67 | 0.31 | 0.86 | 0.17 | ||
NWM | 0.35 | 0.50 | −1.07 | 0.90 | 0.54 | ||
Total | 60 | VRNN | −0.12 | −0.03 | −3.12 | 0.88 | 0.75 |
LSTM | 0.65 | 0.70 | −0.33 | 0.92 | 0.24 | ||
GRU | 0.70 | 0.73 | 0.31 | 0.97 | 0.17 | ||
NWM | 0.34 | 0.51 | −1.66 | 0.94 | 0.59 |
USGS # | Total Events | Model | Mean | Median | Min | Max | STDEV |
---|---|---|---|---|---|---|---|
02164000 | 13 | VRNN | 0.34 | 0.32 | 0.08 | 0.58 | 0.14 |
LSTM | 0.18 | 0.17 | 0.00 | 0.57 | 0.15 | ||
GRU | 0.15 | 0.08 | 0.00 | 0.41 | 0.15 | ||
NWM | 0.24 | 0.24 | 0.05 | 0.45 | 0.13 | ||
02177000 | 15 | VRNN | 0.46 | 0.52 | 0.00 | 0.87 | 0.31 |
LSTM | 0.18 | 0.16 | 0.00 | 0.59 | 0.16 | ||
GRU | 0.22 | 0.26 | 0.00 | 0.58 | 0.15 | ||
NWM | 0.19 | 0.11 | 0.00 | 0.60 | 0.18 | ||
02186000 | 16 | VRNN | 0.38 | 0.40 | 0.00 | 0.78 | 0.23 |
LSTM | 0.15 | 0.09 | 0.00 | 0.74 | 0.19 | ||
GRU | 0.13 | 0.12 | 0.00 | 0.37 | 0.12 | ||
NWM | 0.26 | 0.20 | 0.00 | 0.72 | 0.23 | ||
02196000 | 16 | VRNN | 0.38 | 0.32 | 0.07 | 0.85 | 0.19 |
LSTM | 0.10 | 0.00 | 0.00 | 0.37 | 0.13 | ||
GRU | 0.12 | 0.08 | 0.00 | 0.45 | 0.13 | ||
NWM | 0.30 | 0.19 | 0.00 | 0.88 | 0.25 | ||
Total | 60 | VRNN | 0.39 | 0.37 | 0.00 | 0.87 | 0.24 |
LSTM | 0.15 | 0.13 | 0.00 | 0.74 | 0.16 | ||
GRU | 0.15 | 0.15 | 0.00 | 0.58 | 0.14 | ||
NWM | 0.25 | 0.20 | 0.00 | 0.88 | 0.22 |
USGS # | Total Events | Model | Mean | Median | Min | Max | STDEV |
---|---|---|---|---|---|---|---|
02164000 | 13 | VRNN | 0.67 | 0.50 | 0.00 | 3.00 | 0.85 |
LSTM | 0.67 | 0.50 | 0.00 | 2.00 | 0.75 | ||
GRU | 0.67 | 1.00 | 0.00 | 1.00 | 0.47 | ||
NWM | 1.00 | 1.00 | 0.00 | 3.00 | 1.00 | ||
02177000 | 15 | VRNN | 3.39 | 5.00 | 0.00 | 5.00 | 2.03 |
LSTM | 1.11 | 1.00 | 0.00 | 2.00 | 0.87 | ||
GRU | 1.06 | 1.00 | 0.00 | 2.00 | 0.91 | ||
NWM | 0.67 | 0.50 | 0.00 | 3.00 | 0.82 | ||
02186000 | 16 | VRNN | 3.68 | 5.00 | 0.00 | 5.00 | 1.66 |
LSTM | 1.14 | 1.00 | 0.00 | 3.00 | 0.97 | ||
GRU | 1.23 | 1.00 | 0.00 | 3.00 | 1.00 | ||
NWM | 1.18 | 1.00 | 0.00 | 4.00 | 1.11 | ||
02196000 | 16 | VRNN | 2.55 | 3.00 | 0.00 | 5.00 | 1.32 |
LSTM | 0.60 | 0.00 | 0.00 | 2.00 | 0.86 | ||
GRU | 0.80 | 0.50 | 0.00 | 2.00 | 0.87 | ||
NWM | 2.95 | 3.00 | 1.00 | 7.00 | 1.56 | ||
Total | 60 | VRNN | 2.79 | 3.00 | 0.00 | 5.00 | 1.89 |
LSTM | 0.90 | 1.00 | 0.00 | 3.00 | 0.92 | ||
GRU | 0.97 | 1.00 | 0.00 | 3.00 | 0.90 | ||
NWM | 1.51 | 1.00 | 0.00 | 7.00 | 1.49 |
VRNN | LSTM | GRU | NWM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USGS # | Event # | NSE | RPE | PTE | NSE | RPE | PTE | NSE | RPE | PTE | NSE | RPE | PTE |
2164000 | 1 | 0.63 | −0.41 | 0.00 | 0.93 | −0.12 | −1.00 | 0.97 | 0.04 | 0.00 | 0.70 | −0.27 | 0.00 |
2 | 0.81 | −0.26 | 0.00 | 0.88 | 0.17 | 1.00 | 0.92 | 0.24 | 1.00 | 0.37 | −0.13 | 2.00 | |
3 | 0.61 | −0.38 | 0.00 | 0.69 | −0.21 | 1.00 | 0.65 | −0.04 | 1.00 | 0.69 | −0.31 | 1.00 | |
2177000 | 1 | −0.58 | −0.14 | −5.00 | 0.91 | −0.05 | −2.00 | 0.96 | 0.00 | −2.00 | 0.40 | −0.20 | −1.00 |
2 | −1.52 | −0.87 | −5.00 | 0.68 | −0.21 | −2.00 | 0.72 | −0.27 | −2.00 | −0.11 | −0.58 | 1.00 | |
3 | −3.12 | −0.55 | −5.00 | 0.77 | 0.06 | −2.00 | 0.79 | 0.17 | 0.00 | −0.74 | −0.04 | −1.00 | |
2186000 | 1 | 0.02 | −0.22 | −5.00 | 0.92 | −0.01 | −2.00 | 0.91 | −0.03 | −2.00 | 0.84 | 0.20 | 0.00 |
2 | −0.26 | −0.36 | −5.00 | 0.92 | −0.10 | −1.00 | 0.90 | 0.05 | −2.00 | 0.37 | 0.53 | −1.00 | |
3 | −0.18 | −0.74 | −3.00 | 0.91 | 0.01 | 1.00 | 0.90 | 0.05 | 1.00 | −0.14 | −0.61 | 1.00 | |
2196000 | 1 | 0.66 | −0.28 | −3.00 | 0.84 | −0.16 | 2.00 | 0.79 | −0.22 | −1.00 | 0.78 | 0.04 | −1.00 |
2 | 0.02 | −0.67 | −5.00 | 0.67 | −0.27 | 0.00 | 0.82 | −0.19 | −1.00 | 0.42 | 0.74 | −3.00 | |
3 | 0.74 | −0.32 | −2.00 | 0.63 | −0.18 | −2.00 | 0.86 | −0.11 | 2.00 | 0.65 | −0.28 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, E.; Samadi, V.; Khan, A.A. Leveraging Recurrent Neural Networks for Flood Prediction and Assessment. Hydrology 2025, 12, 90. https://doi.org/10.3390/hydrology12040090
Heidari E, Samadi V, Khan AA. Leveraging Recurrent Neural Networks for Flood Prediction and Assessment. Hydrology. 2025; 12(4):90. https://doi.org/10.3390/hydrology12040090
Chicago/Turabian StyleHeidari, Elnaz, Vidya Samadi, and Abdul A. Khan. 2025. "Leveraging Recurrent Neural Networks for Flood Prediction and Assessment" Hydrology 12, no. 4: 90. https://doi.org/10.3390/hydrology12040090
APA StyleHeidari, E., Samadi, V., & Khan, A. A. (2025). Leveraging Recurrent Neural Networks for Flood Prediction and Assessment. Hydrology, 12(4), 90. https://doi.org/10.3390/hydrology12040090