Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends
Abstract
:1. Introduction
2. Mechanisms of Leaky Dams in Flood Management
2.1. Water Flow Regulation
2.2. Sediment Trapping
2.2.1. Sediment Capture and Transport
2.2.2. Enhancing Soil Quality
2.3. Groundwater Recharge
2.3.1. Infiltration Enhancement
2.3.2. Water Table Stabilization
2.4. Biodiversity Enhancement
2.4.1. Habitat Creation
2.4.2. Ecological Connectivity
3. Effectiveness of Leaky Dams
3.1. Performance Metrics
3.1.1. Reduction in Peak Flow
3.1.2. Flood Attenuation
3.1.3. Sediment Management
4. Environmental and Functional Impacts of Leaky Dams
4.1. Positive Environmental and Functional Impacts of Leaky Dams
4.2. Negative Environmental and Functional Impacts of Leaky Dams
5. Technical Challenges Encountered in Implementing Leaky Dams
5.1. Hydrological Considerations
5.2. Environmental and Ecological Challenges
5.3. Socio-Economic Factors
6. Emerging Trends
7. Research Gaps
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glago, F.J. Flood disaster hazards; causes, impacts and management: A state-of-the-art review. In Natural Hazards—Impacts, Adjustments and Resilience; Intechopen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/74444 (accessed on 1 December 2024).
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- WMO. Climate Change Indicators Reached Record Levels in 2023; WMO: Geneva, Switzerland, 2024. [Google Scholar]
- Bolan, S. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Patel, V.K.; Kuttippurath, J. Significant increase in water vapour over India and Indian ocean: Implications for tropospheric warming and regional climate forcing. Sci. Total Environ. 2022, 838, 155885. [Google Scholar] [CrossRef]
- Díaz-García, O.; Zavala-Hidalgo, J.; Douillet, P.; Contreras Ruiz-Esparza, A.; Fichez, R.; Grenz, C.; Denis, L. Changes in the flooding area due to storm surge under climate change in an extensive wetland area in the southern gulf of Mexico. Atmósfera 2020, 33, 105–121. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, J. Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: A case study in a coastal mountainous river basin within southeastern China. Nat. Hazards 2022, 112, 301–326. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nakatsugawa, M.; Yamada, T.J.; Hoshino, T. Assessing climate change impacts on extreme rainfall and severe flooding during the summer monsoon season in the Ishikari River basin, Japan. Hydrol. Res. Lett. 2020, 14, 155–161. [Google Scholar] [CrossRef]
- Bahrawi, J.; Ewea, H.; Kamis, A.; Elhag, M. Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia. Nat. Hazards 2020, 104, 795–809. [Google Scholar] [CrossRef]
- Luo, P.; Liu, L.; Wang, S.; Ren, B.; He, B.; Nover, D. Influence assessment of new inner tube porous brick with absorbent concrete on urban floods control. Case Stud. Constr. Mater. 2022, 17, e01236. [Google Scholar] [CrossRef]
- Hemmati, M.; Ellingwood, B.R.; Mahmoud, H.N. The role of urban growth in resilience of communities under flood risk. Earth’s Future 2020, 8, e2019EF001382. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R.D.; Jaber, F.H. How does increasing impervious surfaces affect urban flooding in response to climate variability? Ecol. Indic. 2020, 118, 106774. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Makumbura, R.K.; Samarasinghe, J.; Rathnayake, U. Multidecadal land use patterns and land surface temperature variation in Sri Lanka. Appl. Environ. Soil Sci. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Samarasinghe, J.T.; Gunathilake, M.B.; Makubura, R.K.; Arachchi, S.M.; Rathnayake, U. Impact of climate change and variability on spatiotemporal variation of forest cover; world heritage Sinha raja rainforest, Sri Lanka. For. Soc. 2022, 6, 355–377. [Google Scholar] [CrossRef]
- Sakib, M.S.; Alam, S.; Shampa Murshed, S.B.; Kirtunia, R.; Mondal, M.S.; Chowdhury, A.I.A. Impact of urbanization on pluvial flooding: Insights from a fast growing megacity, Dhaka. Water 2023, 15, 3834. [Google Scholar] [CrossRef]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef]
- Brunner, M. Reservoir regulation affects droughts and floods at local and regional scales. Environ. Res. Lett. 2021, 16, 124016. [Google Scholar] [CrossRef]
- Knox, R.L.; Wohl, E.E.; Morrison, R.R. Levees don’t protect, they disconnect: A critical review of how artificial levees impact floodplain functions. Sci. Total Environ. 2022, 837, 155773. [Google Scholar] [CrossRef]
- Kuller, M.; Schoenholzer, K.; Lienert, J. Creating effective flood warnings: A framework from a critical review. J. Hydrol. 2021, 602, 126708. [Google Scholar] [CrossRef]
- Ostriker, A.; Russo, A. The Effects of Floodplain Regulation on Housing Markets. 2024. Available online: https://ostriker.github.io/papers/Ostriker-Russo_floodplain-regulations.pdf (accessed on 12 February 2025).
- Speight, L.J.; Cranston, M.D.; White, C.J.; Kelly, L. Operational and emerging capabilities for surface water flood forecasting. Wires Water 2021, 8, e1517. [Google Scholar] [CrossRef]
- Chiu, Y.-Y.; Raina, N.; Chen, H.-E. Evolution of flood defense strategies: Toward nature-based solutions. Environments 2021, 9, 2. [Google Scholar] [CrossRef]
- Dasandara, M.; Ernst, R.; Kulatunga, U.; Rathnasiri, P. Investigation of issues in structural flood management measures in Sri Lanka. J. Constr. Dev. Ctries. 2022, 27, 65–78. [Google Scholar] [CrossRef]
- Hovis, M.; Hollinger, J.C.; Cubbage, F.; Shear, T.; Doll, B.; Kurki-Fox, J.J.; Line, D.; Fox, A.; Baldwin, M.; Klondike, T.; et al. Natural infrastructure practices as potential flood storage and reduction for farms and rural communities in the North Carolina coastal plain. Sustainability 2021, 13, 9309. [Google Scholar] [CrossRef]
- Munawar, H.S. Flood disaster management. In Machine Vision Inspection Systems: Image Processing, Concepts, Methodologies and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 115–146. [Google Scholar] [CrossRef]
- Rauch, H.P.; Von Der Thannen, M.; Raymond, P.; Mira, E.; Evette, A. Ecological challenges for the use of soil and water bioengineering techniques in river and coastal engineering projects. Ecol. Eng. 2022, 176, 106539. [Google Scholar] [CrossRef]
- Sebastian, L. Flood control through structural and non-structural amplification approaches. J. Tek. Sipil 2022, 11, 75–79. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Rahman, A.; Chowdhury, S.H. Challenges for achieving sustainable flood risk management. J. Flood Risk Manag. 2015, 11, s352–s358. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Potočki, K.; Kapović-Solomun, M.; Kalantari, Z. Nature-Based Solutions for Flood Mitigation and Resilience in Urban Areas. In Nature-Based Solutions for Flood Mitigation: Environmental and Socio-Economic Aspects; The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021; Volume 107. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Mourato, S.; Kasanin-Grubin, M.; Ferreira, A.J.; Destouni, G.; Kalantari, Z. Effectiveness of nature-based solutions in mitigating flood hazard in a mediterranean peri-urban catchment. Water 2020, 12, 2893. [Google Scholar] [CrossRef]
- Van Leeuwen, Z.R.; Klaar, M.; Smith, M.W.; Brown, L.E. Quantifying the natural flood management potential of leaky dams in upland catchments, Part II: Leaky dam impacts on flood peak magnitude. J. Hydrol. 2023, 628, 130449. [Google Scholar] [CrossRef]
- Taylor, M.; Clarke, L. Monitoring the Impact of Leaky Barriers Used for Natural Flood Management on Three River Reaches in the Stroud Frome and Twyver Catchments, Gloucestershire, UK. 2021. Available online: https://eprints.glos.ac.uk/10102/7/10102-Clarke-%282021%29-Monitoring-the-impact-of-leaky-barriers-used.pdf (accessed on 12 November 2024).
- Alzabari, F.; Wilson, C.A.; Ouro, P. Hydrodynamics of in-stream leaky barriers for natural flood management. Water Resour. Resour. Resour. Res. 2024, 60, e2024WR038117. [Google Scholar] [CrossRef]
- Barnes, M.; Bathurst, J.C.; Lewis, E.; Quinn, P. Leaky dams augment afforestation to mitigate catchment scale flooding. Hydrol. Process. 2023, 37, e14920. [Google Scholar] [CrossRef]
- Dauwalter, D.C.; Walrath, J.D. Beaver dams, streamflow complexity, and the distribution of a rare minnow, Lepidomeda copei. Ecol. Freshw. Fish 2017, 27, 606–616. [Google Scholar] [CrossRef]
- Majerova, M.; Neilson, B.T.; Schmadel, N.M.; Wheaton, J.M.; Snow, C.J. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream. Hydrol. Earth Syst. Sci. 2015, 19, 3541–3556. [Google Scholar] [CrossRef]
- Nicholson, A.R.; O’donnell, G.M.; Wilkinson, M.E.; Quinn, P.F. The potential of runoff attenuation features as a natural flood management approach. J. Flood Risk Manag. 2019, 13, e12565. [Google Scholar] [CrossRef]
- Van Leeuwen, Z.R.; Klaar, M.J.; Smith, M.W.; Brown, L.E. Quantifying the natural flood management potential of leaky dams in upland catchments, part I: A data-based modelling approach. J. Hydrol. 2024, 628, 130448. [Google Scholar] [CrossRef]
- Villamizar, M.L.; Stoate, C.; Biggs, J.; Szczur, J.; Williams, P.; Brown, C.D. A model for quantifying the effectiveness of leaky barriers as a flood mitigation intervention in an agricultural landscape. River Res. Appl. 2024, 40, 365–378. [Google Scholar] [CrossRef]
- Hankin, B.; Hewitt, I.; Sander, G.; Danieli, F.; Formetta, G.; Kamilova, A.; Kretzschmar, A.; Kiradjiev, K.; Wong, C.; Pegler, S.; et al. A risk-based network analysis of distributed in-stream leaky barriers for flood risk management. Nat. Hazards Earth Syst. Sci. 2020, 20, 2567–2584. [Google Scholar] [CrossRef]
- Wolstenholme, J.M.; Skinner, C.J.; Milan, D.J.; Thomas, R.E.; Parsons, D.R. Localised geomorphic response to channel-spanning leaky wooden dams. EGUsphere 2024, 2024, 1–30. [Google Scholar] [CrossRef]
- Schwindt, S.; Franca, M.J.; Reffo, A.; Schleiss, A.J. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention. Nat. Hazards Earth Syst. Sci. 2018, 18, 647–668. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Roberts, M.O.; Marti, M.; Renshaw, C.E. The impact of run-of-river dams on sediment longitudinal connectivity and downstream channel equilibrium. Geomorphology 2021, 376, 107568. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Marín-Sanleandro, P.; Ortiz-Silla, R. Loss of soil fertility estimated from sediment trapped in check dams. South-eastern spain. Catena 2012, 99, 42–53. [Google Scholar] [CrossRef]
- Tong, L.S.; Fang, N.F.; Xiao, H.B.; Shi, Z.H. Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau. Agric. Ecosyst. Environ. 2020, 302, 107076. [Google Scholar] [CrossRef]
- Smith, L.C.; Muirhead, R.W. A review of the effectiveness of sediment traps for New Zealand agriculture. N. Z. J. Agric. Res. 2024, 65, 547–564. [Google Scholar] [CrossRef]
- Rajesh, M.; Jena, L.; Sarma, H.H.; Jamrey, P.; Waoo, A.A. Soil and Water Conservation for Higher Crop Productivity; Ninetales Publishings: Moscow, Russia, 2024; pp. 212–230. [Google Scholar]
- Badamasi, H.; Yaro, M.N.; Ibrahim, A.; Bashir, I.A. Impacts of Phosphates on Water Quality and Aquatic Life. Chem. Res. J. 2019, 4, 124–133. Available online: https://www.researchgate.net/publication/339209495_impacts_of_phosphates_on_water_quality_and_aquatic_life (accessed on 1 December 2024).
- Ogden, R.; Reid, M.; Thoms, M. Soil fertility in a large dryland floodplain: Patterns, processes and the implications of water resource development. Catena 2007, 70, 114–126. [Google Scholar] [CrossRef]
- Pintaldi, E.; D’Amico, M.E.; Stanchi, S.; Catoni, M.; Freppaz, M.; Bonifacio, E. Humus forms affect soil susceptibility to water erosion in the western italian alps. Appl. Soil Ecol. 2018, 123, 478–483. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Xia, S.; Zhang, G.; Li, S.; Yu, D.; Yu, X. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones. Sci. Total Environ. 2022, 822, 153512. [Google Scholar] [CrossRef]
- Xiao, T.; Li, P.; Fei, W.; Wang, J. Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review. Sci. Total Environ. 2024, 906, 167524. [Google Scholar] [CrossRef]
- Kebede, M.M.; Kumar, M.; Mekonnen, M.M.; Clement, T.P. Enhancing groundwater recharge through nature-based solutions: Benefits and barriers. Hydrology 2024, 11, 195. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Sprenger, M.; Wei, S.; Zheng, W.; Liu, B.; Shen, Y.; Zhang, Y. Seasonal recharge mechanism of the upper shallow groundwater in a long-term wastewater leakage and irrigation region of an alluvial aquifer. J. Hydrol. 2013, 629, 130424. [Google Scholar] [CrossRef]
- Abdalla, O.A.E.; Al-Rawahi, A.S. Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: Example of Alkhod, Oman. Environ. Earth Sci. 2012, 69, 1951–1962. [Google Scholar] [CrossRef]
- Panthulu, T.V.; Krishnaiah, C.; Shirke, J.M. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Eng. Geol. 2001, 59, 281–295. [Google Scholar] [CrossRef]
- Kumar, S.; Chandra, D.; Hazra, B.; Vishal, V.; Pathegama Gamage, R. Nanopore characteristics of barakar formation shales and their impact on the gas storage potential of Korba and Raniganj basins in India. Energy Fuels 2024, 38, 3833–3847. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Karunanayake, C.; Cheddie, D.; Azamathulla, H.M.; Rathnayake, U. Exploring granular filter media in sustainable drainage systems (suds) for stormwater pollutantadsorption: A pilot study. Process Saf. Environ. Prot. 2024, 210, 437–444. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Karunanayake, C.; Kunwar, K.; Chadee, A.A.; Azamathulla, H.M.; Rathnayake, U. Evaluation of permeable pavement systems (pps) as best management practices for stormwater runoff control: A review. Water Conserv. Sci. Eng. 2024, 9, 32. [Google Scholar] [CrossRef]
- Hwang, H.-T.; Jeen, S.-W.; Lee, S.-S.; Ha, S.-W.; Berg, S.J.; Miller, K.L.; Sudicky, E.A.; Lee, K.-K. Improving monitoring network design to detect leaks at hazardous facilities: Lessons from a CO2 storage site. Sci. Total Environ. 2024, 950, 175256. [Google Scholar] [CrossRef]
- Gordon, E.; Meentemeyer, R.K. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 2006, 82, 412–429. [Google Scholar] [CrossRef]
- NIWA. Riparian Vegetation and Hydro. 2023. Available online: https://niwa.co.nz/freshwater/kaitiaki-tools/what-impacts-interest-you/loss-riparian-vegetation/causes-loss-riparian-vegetation/riparian-vegetation-and-hydro (accessed on 1 December 2024).
- Richter, B.D.; Thomas, G.A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 2007, 12, 12. Available online: https://www.jstor.org/stable/26267852 (accessed on 12 November 2024). [CrossRef]
- Huo, J.; Ma, F.; Ji, X. Porosity and permeability variations of a dam curtain during dissolution. Water Sci. Eng. 2019, 12, 155–161. [Google Scholar] [CrossRef]
- Berhane, G.; Kebede, S.; Gebreyohannes, T.; Martens, K.; Van Camp, M.; Walraevens, K. An integrated approach for detection and delineation of leakage path from micro-dam reservoir (mdr): A case study from Arato mdr, northern Ethiopia. Bull. Eng. Geol. Environ. 2015, 75, 193–210. [Google Scholar] [CrossRef]
- Floyd, T.A.; Macinnis, C.; Taylor, B.R. Effects of artificial woody structures on atlantic salmon habitat and populations in a nova scotia stream. River Res. Appl. 2009, 25, 272–282. [Google Scholar] [CrossRef]
- Chee, S.Y.; Yee, J.C.; Cheah, C.B.; Evans, A.J.; Firth, L.B.; Hawkins, S.J.; Strain, E.M.A. Habitat complexity affects the structure but not the diversity of sessile communities on tropical coastal infrastructure. Front. Ecol. Evol. 2021, 9, 673227. [Google Scholar] [CrossRef]
- Harvey, B.C.; Nakamoto, R.J.; White, J.L. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Trans. Am. Fish. Soc. 2006, 135, 998–1005. [Google Scholar] [CrossRef]
- Miranda, L.E.; Bettoli, P.W. Largemouth bass natural history. In Largemouth Bass Aquaculture; CABI: Wallingford, UK, 2019; pp. 1–27. [Google Scholar] [CrossRef]
- Higham, T.E.; Day, S.M.; Wainwright, P.C. Sucking while swimming: Evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J. Exp. Biol. 2005, 208, 2653–2660. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Choi, Y.-K.; Kim, H.-S.; Yun, S.-T. Hydrologic characteristics of a large rockfill dam: Implications for water leakage. Eng. Geol. 2005, 80, 43–59. [Google Scholar] [CrossRef]
- NOAA Fisheries. How Dams Affect Water and Habitat on the West Coast. 2019. Available online: https://www.fisheries.noaa.gov/west-coast/endangered-species-conservation/how-dams-affect-water-and-habitat-west-coast (accessed on 1 December 2024).
- New, T.; Xie, Z. Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s three gorges dam. Biodivers. Conserv. 2008, 17, 3149–3163. [Google Scholar] [CrossRef]
- Müller, S.; Wilson, C.A.M.E.; Ouro, P.; Cable, J. Experimental investigation of physical leaky barrier design implications on juvenile rainbow trout (Oncorhynchus mykiss) movement. Water Resour. Res. 2021, 57, e2021WR030111. [Google Scholar] [CrossRef]
- Müller, S.; Wilson, C.A.M.E.; Ouro, P.; Cable, J. Leaky barriers: Leaky enough for fish to pass? R. Soc. Open Sci. 2021, 8, 201843. [Google Scholar] [CrossRef]
- Pelton, F. Guidelines for Instrumentation and Measurements for Monitoring Dam Performance; American Society of Civil Engineers: Reston, VA, USA, 2000. [Google Scholar]
- Salazar, F.; Toledo, M.Á.; González, J.M.; Oñate, E. Early detection of anomalies in dam performance: A methodology based on boosted regression trees. Struct. Control. Health Monit. 2017, 24, e2012. [Google Scholar] [CrossRef]
- Quiñonero-Rubio, J.M.; Nadeu, E.; Boix-Fayos, C.; De Vente, J. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. Land Degrad. Dev. 2014, 27, 1018–1031. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Doria, C.R.C.; Dutka-Gianelli, J.; De Sousa, S.T.; Chu, J.; Garlock, T.M. Understanding impacts of dams on the small-scale fisheries of the madeira river through the lens of the fisheries performance indicators. Mar. Policy 2021, 125, 104261. [Google Scholar] [CrossRef]
- Tiggeloven, T.; De Moel, H.; Winsemius, H.C.; Eilander, D.; Erkens, G.; Gebremedhin, E.; Diaz Loaiza, A.; Kuzma, S.; Luo, T.; Iceland, C.; et al. Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Nat. Hazards Earth Syst. Sci. 2020, 20, 1025–1044. [Google Scholar] [CrossRef]
- Revell, N.; Lashford, C.; Blackett, M.; Rubinato, M. Modelling the hydrological effects of woodland planting on infiltration and peak discharge using hec-hms. Water 2021, 13, 3039. [Google Scholar] [CrossRef]
- Thomas, H.; Nisbet, T.R. Slowing the flow in pickering: Quantifying the effect of catchment woodland planting on flooding using the soil conservation service curve number method. Int. J. Saf. Secur. Eng. 2016, 6, 466–474. [Google Scholar] [CrossRef]
- Furnues, D. Modelling Woody Debris Dam Form to Function to Location for Flood Purposes. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2020. Available online: https://orca.cardiff.ac.uk/id/eprint/166970/2/df%20thesis%20-%20modelling%20woody%20debris%20dam%20form%20to%20function%20to%20location%20for%20flood%20purposes.pdf (accessed on 1 December 2024).
- Dixon, D.G. Linear Sediment Control Best Management Practice Assessment Across Three Distinct Eco-Regions of South Carolina. Master’s Thesis, Clemson University, Clemson, SC, USA, 2019. Available online: https://tigerprints.clemson.edu/all_theses (accessed on 11 January 2025).
- Malveira, V.T.C.; Araújo, J.C.D.; Güntner, A. Hydrological impact of a high-density reservoir network in semiarid northeastern brazil. J. Hydrol. Eng. 2012, 17, 109–117. [Google Scholar] [CrossRef]
- Fennell, J.; Soulsby, C.; Wilkinson Mark, E.; Daalmans, R.; Geris, J. Time variable effectiveness and cost-benefits of different nature-based solution types and design for drought and flood management. Nat. Based Solut. 2023, 3, 100050. [Google Scholar] [CrossRef]
- Nyssen, J.; Govaerts, B.; Araya, T.; Cornelis, W.M.; Bauer, H.; Haile, M.; Sayre, K.; Deckers, J. The use of the marasha ard plough for conservation agriculture in northern Ethiopia. Agron. Sustain. Dev. 2010, 31, 287–297. [Google Scholar] [CrossRef]
- Puttock, A.; Graham, H.A.; Ashe, J.; Luscombe, D.J.; Brazier, R.E. Beaver dams attenuate flow: A multi-site study. Hydrol. Process. 2020, 35, e14017. [Google Scholar] [CrossRef]
- Grygoruk, M.; Nowak, M. Spatial and temporal variability of channel retention in a lowland temperate forest stream settled by European beaver (castor fiber). Forests 2014, 5, 2276–2288. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Ronnquist, A.; Bedard-Haughn, A. Hydrological functioning of a beaver dam sequence and regional dam persistence during an extreme rainstorm. Hydrol. Process. 2020, 34, 3726–3737. [Google Scholar] [CrossRef]
- Thomas, H.; Nisbet, T.R. An assessment of the impact of floodplain woodland on flood flows. Water Environ. J. 2007, 21, 114–126. [Google Scholar] [CrossRef]
- Gunnell, K.; Mulligan, M.; Francis, R.A.; Hole, D.G. Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Sci. Total Environ. 2019, 670, 411–424. [Google Scholar] [CrossRef]
- Muhawenimana, V.; Follett, E.; Maddock, I.; Wilson, C.A.M.E. Field-based monitoring of instream leaky barrier backwater and storage during storm events. J. Hydrol. 2023, 622, 129744. [Google Scholar] [CrossRef]
- Ronnquist, A.L.; Westbrook, C.J. Beaver dams: How structure, flow state, and landscape setting regulate water storage and release. Sci. Total Environ. 2021, 785, 147333. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Nislow, K.H.; Renshaw, C.E. Flow regulation by dams: Ongoing and emerging trends. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Huang, R.; Zeng, Y.; Zha, W.; Yang, F. Investigation of flow characteristics in open channel with leaky barriers. J. Hydrol. 2022, 613, 128328. [Google Scholar] [CrossRef]
- Acheampong, J.N.; Gyamfi, C.; Arthur, E. Impacts of retention basins on downstream flood peak attenuation in the Odaw river basin, Ghana. J. Hydrol. Reg. Stud. 2023, 47, 101364. [Google Scholar] [CrossRef]
- Puttock, A.; Graham, H.A.; Cunliffe, A.M.; Elliott, M.; Brazier, R.E. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Sci. Total Environ. 2017, 576, 430–443. [Google Scholar] [CrossRef]
- Lo, H.W.; Van Leeuwen, Z.; Klaar, M.; Woulds, C.; Smith, M. Geomorphic effects of natural flood management woody dams in upland streams. River Res. Appl. 2022, 38, 1787–1802. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the etropole municipality, bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Brils, J. Sediment monitoring and the European water framework directive. Ann. Ist. Super. Sanità 2008, 44, 218–223. Available online: https://www.researchgate.net/publication/23411528_sediment_monitoring_and_the_european_water_framework_directive (accessed on 1 December 2024). [PubMed]
- Wang, Z.; Hu, C. Strategies for managing reservoir sedimentation. Int. J. Sediment Res. 2009, 24, 369–384. [Google Scholar] [CrossRef]
- Bekić, D. Towards practical guidance for sustainable sediment management using the Sava River as a showcase. In Proceedings of the 8th International SedNet Conference, Lisabon, Portugal, 6–9 November 2013. [Google Scholar]
- ISRBC, International Sava River Basin Commission. Towards Practical Guidance for Sustainable Sediment Management Using the Sava River Basin as a Showcase Establishment of The Sediment Monitoring System for the Sava River Basin. 2015. Available online: https://www.savacommission.org/userdocsimages/05_documents_publications/technical_and_project_reports/establishment_of_sediment_monitoring_in_srb__final.pdf (accessed on 11 January 2025).
- Vázquez-Tarrío, D.; Ruiz-Villanueva, V.; Garrote, J.; Benito, G.; Calle, M.; Lucía, A.; Díez-Herrero, A. Effects of sediment transport on flood hazards: Lessons learned and remaining challenges. Geomorphology 2023, 446, 108976. [Google Scholar] [CrossRef]
- Pollock, M.M.; Beechie, T.J.; Jordan, C.E. Geomorphic changes upstream of beaver dams in bridge creek, an incised stream channel in the interior Columbia river basin, eastern Oregon. Earth Surf. Process. Landf. 2007, 32, 1174–1185. [Google Scholar] [CrossRef]
- Weit, A.; Mourier, B.; Fretaud, T.; Winiarski, T. Combined usage of geophysical methods in continental water bodies, their benefits and challenging issues: A special focus on sediment deposits in dam reservoirs. J. Appl. Geophys. 2023, 213, 105036. [Google Scholar] [CrossRef]
- Mueller, D.L.; Wagner, C.E.; Rehmel, M.S.; Oberg, K.A.; Rainville, F. Measuring discharge with acoustic doppler current profilers from a moving boat. In Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- PUCSL. Public Utilities Commission of Sri Lanka Study on Sustainable Water Resource Management for Drinking Purposes Final Report. Available online: https://www.pucsl.gov.lk/wp-content/uploads/2021/02/Wijesinghe-Report-Sustainable-Water-Resource-Management.pdf (accessed on 12 November 2024).
- Wolstenholme, J.M.; Skinner, C.J.; Milan, D.J.; Thomas, R.E.; Parsons, D.R. Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with caesar-lisflood 1.9j. EGUsphere 2024, 2024, 1–23. [Google Scholar] [CrossRef]
- Kondolf, M.; Yi, J. Dam renovation to prolong reservoir life and mitigate dam impacts. Water 2022, 14, 1464. [Google Scholar] [CrossRef]
- Sanches, C.; De Grande, F.R.; Costa, T.M.; Barreto, R.E. Sharing is living: The role of habitat heterogeneity in the coexistence of closely related species. Ecol. Evol. 2023, 13, e9930. [Google Scholar] [CrossRef]
- Hill, M.J.; Wood, P.J. The macroinvertebrate biodiversity and conservation value of garden and field ponds along a rural-urban gradient. Fundam. Appl. Limnol. Arch. Hydrobiol. 2014, 185, 107–119. [Google Scholar] [CrossRef]
- Sabo, J.L.; Sponseller, R.; Dixon, M.; Gade, K.; Harms, T.; Heffernan, J.; Jani, A.; Katz, G.; Soykan, C.; Watts, J.; et al. Riparian zones increase regional species richness by harboring different, not more, species. Ecology 2005, 86, 56–62. [Google Scholar] [CrossRef]
- Pattison, Z.; Vallejo-Marín, M.; Willby, N. Riverbanks as Battlegrounds: Why Does the Abundance of Native and Invasive Plants Vary? Ecosystems 2019, 22, 578–586. [Google Scholar] [CrossRef]
- Pizzuto, J.I.M. Effects of dam removal on river form and process. Bioscience 2002, 52, 683. [Google Scholar] [CrossRef]
- Galen, L.G.; Jordan, G.J.; Baker, S.C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 2019, 1, e55. [Google Scholar] [CrossRef]
- Villeneuve, S.; Cook, P.G.; Shanafield, M.; Wood, C.; White, N. Groundwater recharge via infiltration through an ephemeral riverbed, central australia. J. Arid. Environ. 2015, 117, 47–58. [Google Scholar] [CrossRef]
- Meles, M.B.; Bradford, S.; Casillas-Trasvina, A.; Chen, L.; Osterman, G.; Hatch, T.; Ajami, H.; Crompton, O.; Levers, L.; Kisekka, I. Uncovering the gaps in managed aquifer recharge for sustainable groundwater management: A focus on hillslopes and mountains. J. Hydrol. 2024, 639, 131615. [Google Scholar] [CrossRef]
- Du, E.; Rhett Jackson, C.; Klaus, J.; Mcdonnell, J.J.; Griffiths, N.A.; Williamson, M.F.; Greco, J.L.; Bitew, M. Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill. J. Hydrol. 2016, 534, 648–658. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Zhang, Y.-K.; Chen, X.; Ma, E.; Schilling, K. Groundwater responses to recharge and flood in riparian zones of layered aquifers: An analytical model. J. Hydrol. 2022, 614, 128547. [Google Scholar] [CrossRef]
- Zhu, G.; Sang, L.; Zhang, Z.; Sun, Z.; Ma, H.; Liu, Y.; Zhao, K.; Wang, L.; Guo, H. Impact of landscape dams on river water cycle in urban and peri-urban areas in the Shiyang river basin: Evidence obtained from hydrogen and oxygen isotopes. J. Hydrol. 2021, 602, 126779. [Google Scholar] [CrossRef]
- Lockwood Tamsin, H. University of Bristol. 2022. Available online: http://research-information.bristol.ac.uk/ (accessed on 1 December 2024).
- OECD. Diffuse Pollution, Degraded Waters; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- Papagiannaki, D.; Belay, M.H.; Gonçalves, N.P.F.; Robotti, E.; Bianco-Prevot, A.; Binetti, R.; Calza, P. From monitoring to treatment, how to improve water quality: The pharmaceuticals case. Chem. Eng. J. Adv. 2022, 10, 100245. [Google Scholar] [CrossRef]
- Hassan, P.K.; Mastouri, R.; Khaledian, M.R. Impact of precipitation and flow rate changes on the water quality of a coastal river. Shock. Vib. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Quaranta, E.; Bejarano, M.D.; Comoglio, C.; Fuentes-Pérez, J.F.; Pérez-Díaz, J.I.; Sanz-Ronda, F.J.; Schletterer, M.; Szabo-Meszaros, M.; Tuhtan, J.A. Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and european priorities. Sci. Total Environ. 2023, 875, 162489. [Google Scholar] [CrossRef] [PubMed]
- Atreya, G.; Emery, E.; Rogacki, N.; Buck, M.; Soltanian, R.; Mcavoy, D.; Ray, P. Estimating the influence of water control infrastructure on natural low flow in complex reservoir systems: A case study of the ohio river. J. Hydrol. Reg. Stud. 2024, 54, 101897. [Google Scholar] [CrossRef]
- Huđek, H.; Carolli, M.; Žganec, K.; Pusch, T.M. Alterations of river flow caused by three types of hydropower plants in slovenia and Croatia. J. Hydrol. Reg. Stud. 2024, 53, 101840. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, N.L.; Postel, S.L.; Richter, B.; Warner, R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef]
- Schmutz, S.; Moog, O. Dams: Ecological impacts and management. Riverine Ecosyst. Manag. 2018, 8, 111–127. [Google Scholar] [CrossRef]
- Sofi, M.S.; Bhat, S.U.; Rashid, I.; Kuniyal, J.C. The natural flow regime: A master variable for maintaining river ecosystem health. Ecohydrology 2020, 13, e2247. [Google Scholar] [CrossRef]
- Korpak, J.; Łapuszek, M.; Lenar-Matyas, A.; Mączałowski, A. Effect of riffle sequences on discharge and sediment transport in a mountain stream. J. Ecol. Eng. 2019, 20, 157–166. [Google Scholar] [CrossRef]
- Hellmers, S.; Fröhle, P. Computation of backwater effects in surface waters of lowland catchments including control structures—An efficient and re-usable method implemented in the hydrological open-source model Kalypso-NA (4.0). Geosci. Model Dev. 2022, 15, 1061–1077. [Google Scholar] [CrossRef]
- Leakey, S.; Hewett, C.J.M.; Glenis, V.; Quinn, P.F. Modelling the impact of leaky barriers with a 1d godunov-type scheme for the shallow water equations. Water 2020, 12, 371. [Google Scholar] [CrossRef]
- Liro, M.; Ruiz-Villanueva, V.; Mikuś, P.; Wyżga, B.; Castellet, E.B. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total Environ. 2020, 744, 140555. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yuan, Q.; Xing, X.; Hu, B.; Gan, J.; Zheng, Y.; Liu, Y. Effect of river damming on nutrient transport and transformation and its countermeasures. Front. Mar. Sci. 2022, 9, 078216. [Google Scholar] [CrossRef]
- Nyreen, C.H.; Koivusalo, H.; Danielsen, J. A model-based analysis for trapping suspended sediment in stormwater inlets of urban drainage network. J. Environ. Manag. 2024, 366, 121756. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Williams, S.; Smakhtin, V. Present and future losses of storage in large reservoirs due to sedimentation: A country-wise global assessment. Sustainability 2022, 15, 219. [Google Scholar] [CrossRef]
- Froehlich, D.C.; Narayan, P.; Kumar, M. Estimating reservoir capacity loss from sedimentation. In Proceedings of the Third National Dam Safety Conference (India), Roorkee, India, 18–19 February 2017; Available online: https://www.researchgate.net/publication/319928210_estimating_reservoir_capacity_loss_from_sedimentation (accessed on 11 January 2025).
- Bothner, M.H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef of Molokai, Hawaii. Mar. Pollut. Bull. 2006, 52, 1034–1047. [Google Scholar] [CrossRef] [PubMed]
- Cesare, G.; De Schleiss, A.; Hermann, F. Impact of turbidity currents on reservoir sedimentation. J. Hydraul. Eng. 2001, 127, 6–16. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Sun, L.; Khailah, E.Y.; Wang, J.; Lu, W. A critical review of statistical model of dam monitoring data. J. Build. Eng. 2023, 80, 108106. [Google Scholar] [CrossRef]
- Wolter, C.; Schomaker, C. Fish passes design discharge requirements for successful operation. River Res. Appl. 2019, 35, 1697–1701. [Google Scholar] [CrossRef]
- Keefer, M.L.; Jepson, M.A.; Clabough, T.S.; Caudill, C.C. Technical fishway passage structures provide high passage efficiency and effective passage for adult pacific salmonids at eight large dams. PLoS ONE 2021, 16, e0256805. [Google Scholar] [CrossRef]
- Larsen, A.; Larsen, J.R.; Lane, S.N. Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth Sci. Rev. 2021, 218, 103623. [Google Scholar] [CrossRef]
- Kiedrzyńska, E.; Kiedrzyński, M.; Zalewski, M. Sustainable floodplain management for flood prevention and water quality improvement. Nat. Hazards 2014, 76, 955–977. [Google Scholar] [CrossRef]
- Aldardasawi, A.F.M.; Eren, B. Floods and their impact on the environment. Acad. Perspect. Procedia 2021, 4, 42–49. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bialik, R.J.; Rowiński, P.M. Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. J. Hydrol. Hydromech. 2015, 63, 353–363. [Google Scholar] [CrossRef]
- Ray, S.; Vashishth, R. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerg. Contam. 2014, 10, 100358. [Google Scholar] [CrossRef]
- Luna Juncal, M.J.; Masino, P.; Bertone, E.; Stewart, R.A. Towards nutrient neutrality: A review of agricultural runoff mitigation strategies and the development of a decision-making framework. Sci. Total Environ. 2023, 874, 162408. [Google Scholar] [CrossRef]
- Van Denderen, R.P.; Kater, E.; Jans, L.H.; Schielen, R.M.J. Disentangling changes in the river bed profile: The morphological impact of river interventions in a managed river. Geomorphology 2022, 408, 108244. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Cao, Y. Dam siting: A review. Water 2021, 13, 2080. [Google Scholar] [CrossRef]
- Ahadi, M.; Bergstrom, D.J.; Mazurek, K.A. Computational fluid-dynamics modeling of the flow and sediment transport in stormwater retention ponds: A review. J. Environ. Eng. 2020, 146, 03120008. [Google Scholar] [CrossRef]
- Ashbrook, J.D. Assessing the Effectiveness of Leaky Dams at Crimsworth Dean, Hebden Bridge. Bachelor’s Thesis, Edge Hill University, Ormskirk, UK, 2020. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dams safety: Inspections, safety reviews, and legislations. J. Earth Sci. Geotech. Eng. 2020, 11, 109–143. [Google Scholar] [CrossRef]
- Chahrour, N.; Nasr, M.; Tacnet, J.-M.; Bérenguer, C. Deterioration modeling and maintenance assessment using physics-informed stochastic petri nets: Application to torrent protection structures. Reliab. Eng. Syst. Saf. 2021, 210, 107524. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety and οvertopping. J. Earth Sci. Geotech. Eng. 2020, 10, 41–78. Available online: https://www.diva-portal.org/smash/record.jsf?Pid=diva2:1443995 (accessed on 12 January 2025).
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Sci. Rev. 2021, 217, 103603. [Google Scholar] [CrossRef]
- Wang, B.; Yan, D.; Wen, A.; Chen, J. Influencing factors of sediment deposition and their spatial variability in riparian zone of the three gorges reservoir, China. J. Mt. Sci. 2016, 13, 1387–1396. [Google Scholar] [CrossRef]
- Aksoy, H.; Mahe, G.; Meddi, M. Modeling and practice of erosion and sediment transport under change. Water 2019, 11, 1665. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, Z.; Sun, X.; Wang, P.; Xu, Z.; Jia, B. Backwater effects in rivers and lakes: Case study of Dongping lake in China. Water 2023, 15, 3850. [Google Scholar] [CrossRef]
- Iqbal, U.; Riaz, M.Z.B. Blockage at cross-drainage hydraulic structures—Advances, challenges and opportunities. Heliyon 2024, 10, e35786. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.E.; Addy, S.; Quinn, P.F.; Stutter, M. Natural flood management: Small-scale progress and larger-scale challenges. Scott. Geogr. J. 2019, 135, 23–32. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, W.; Lu, Y.; Sun, S.; Yin, Q. Construction and application of urban water system connectivity evaluation index system based on psr-ahp-fuzzy evaluation method coupling. Ecol. Indic. 2023, 153, 110421. [Google Scholar] [CrossRef]
- Maloney, K.O.; Carlisle, D.M.; Buchanan, C.; Rapp, J.L.; Austin, S.H.; Cashman, M.J.; Young, J.A. Linking Altered Flow Regimes to Biological Condition: An Example Using Benthic Macroinvertebrates in Small Streams of the Chesapeake Bay Watershed. Environ. Manag. 2021, 67, 1171–1185. [Google Scholar] [CrossRef]
- Opperman, J.J.; Luster, R.; Mckenney, B.A.; Roberts, M.; Meadows, A.W. Ecologically functional floodplains: Connectivity, flow regime, and scale1. Jawra J. Am. Water Resour. Assoc. 2010, 46, 211–226. [Google Scholar] [CrossRef]
- Thaler, T.; Hudson, P.; Viavattene, C.; Green, C.M. Natural flood management: Opportunities to implement nature-based solutions on privately owned land. Wires Water 2023, 10, e1637. [Google Scholar] [CrossRef]
- Posthumus, H.; Hewett, C.J.M.; Morris, J.; Quinn, P.F. Agricultural land use and flood risk management: Engaging with stakeholders in North Yorkshire. Agric. Water Manag. 2008, 95, 787–798. [Google Scholar] [CrossRef]
- Puttock, A.; Newman, M.; Graham, H.; Elliott, M.; Chant, J.; Auster, R.; Brazier, R. Positive coexistence of water voles and beaver: Water vole expansion in a beaver engineered wetland. In Mammal Communications; Mammal Society: London, UK, 2023. [Google Scholar] [CrossRef]
- Wells, J.; Labadz, J.C.; Smith, A.; Islam, M.M. Barriers to the uptake and implementation of natural flood management: A social-ecological analysis. J. Flood Risk Manag. 2019, 13, e12561. [Google Scholar] [CrossRef]
- Kong, S.; Yoo, C.; Park, J.; Park, J.; Lee, S. AIoT Monitoring Technology for Optimal Fill Dam Installation and Operation. Appl. Sci. 2024, 14, 1024. [Google Scholar] [CrossRef]
- Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer vision and iot-based sensors in flood monitoring and mapping: A systematic review. Sensors 2019, 19, 5012. [Google Scholar] [CrossRef]
- Mushtaq, M.; Corradi, M.; Sikdar, S. Climate adaptation of roads to flooding hazards—A review. Constr. Mater. 2024, 4, 748–776. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; Saberikamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Jeon, B.-Y.; Ahn, Y. The latest innovative avenues for the utilization of artificial intelligence and big data analytics in water resource management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Srishantha, U.; Rathnayke, U. Sustainable urban drainage systems (suds)—What it is and where do we stand today? Eng. Appl. Sci. Res. 2017, 44, 235–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansamali, U.; Makumbura, R.K.; Rathnayake, U.; Azamathulla, H.M.; Muttil, N. Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends. Hydrology 2025, 12, 91. https://doi.org/10.3390/hydrology12040091
Hansamali U, Makumbura RK, Rathnayake U, Azamathulla HM, Muttil N. Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends. Hydrology. 2025; 12(4):91. https://doi.org/10.3390/hydrology12040091
Chicago/Turabian StyleHansamali, Umanda, Randika K. Makumbura, Upaka Rathnayake, Hazi Md. Azamathulla, and Nitin Muttil. 2025. "Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends" Hydrology 12, no. 4: 91. https://doi.org/10.3390/hydrology12040091
APA StyleHansamali, U., Makumbura, R. K., Rathnayake, U., Azamathulla, H. M., & Muttil, N. (2025). Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends. Hydrology, 12(4), 91. https://doi.org/10.3390/hydrology12040091