Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia
Abstract
:1. Introduction
2. Role of Extracellular Vesicles in CLI Revascularization
2.1. Rationale for Use of EVs and Nanovesicles in Revascularization
2.2. Biogenesis and Classification of EVs
2.3. Cellular Sources of Therapeutic EVs
2.4. Biophysical Experimental Approaches for Elucidating Exosome Release and Drug Loading Mechanisms
2.5. Mechanisms of EV-Mediated Revascularization
2.6. Preclinical Evidence Supporting EV Therapy in CLI
3. Artificial Nanovesicles: Design and Function
3.1. Engineering Strategies for Nanovesicle Production
3.2. Cargo Loading and Modification of Nanovesicles
3.3. Targeting and Delivery Mechanisms
4. Comparative Analysis: EVs Versus Artificial Nanovesicles
4.1. Efficacy and Safety Profiles
4.2. Mechanistic Differences
4.3. Potential Synergies in Combination Therapies
5. Preclinical Models and Studies
5.1. Animal Models of CLI for EV and Nanovesicle Research
5.2. Functional and Molecular Outcomes in Preclinical Studies
5.3. Translation from Bench to Bedside
6. Clinical Trials and Emerging Therapies
6.1. Ongoing and Completed Clinical Trials
6.2. Challenges and Lessons Learned
6.3. Future Directions for Clinical Applications
7. Safety and Regulatory Considerations
7.1. Immunogenicity and Adverse Effects
7.2. Regulatory Landscape for EVs and Nanovesicles in CLI Therapy
8. Mechanistic Insights and Future Directions
8.1. Elucidating Mechanisms of EVs and Nanovesicles in CLI Therapy
8.2. Harnessing Advanced Technologies for Therapeutic Optimization of EVs
8.3. Personalized Approaches in Regenerative Medicine
9. Toward Clinical Translation and Practice
9.1. The Potential of EVs and Nanovesicles for CLI Revascularization
9.2. Challenges and Opportunities for Translation
9.3. Implications for Future Clinical Practice
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uccioli, L.; Meloni, M.; Izzo, V.; Giurato, L.; Merolla, S.; Gandini, R. Critical limb ischemia: Current challenges and future prospects. Vasc. Health Risk Manag. 2018, 14, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, I.; Calogero, E.; Pugliese, N.R.; Di Stefano, R.; Nicastro, I.; Buttitta, F.; Nuti, M.; Violo, C.; Giannini, D.; Morgantini, A.; et al. Critical Limb Ischemia: A Practical Up-To-Date Review. Angiology 2018, 69, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Schanzer, A.; Conte, M.S. Critical Limb Ischemia. Curr. Treat. Options Cardiovasc. Med. 2010, 12, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Current review with evolving management strategies in critical limb ischemia. Indian J. Radiol. Imaging 2019, 29, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Farber, A.; Eberhardt, R.T. The Current State of Critical Limb Ischemia: A Systematic Review. JAMA Surg. 2016, 151, 1070–1077. [Google Scholar] [CrossRef]
- Duff, S.; Mafilios, M.S.; Bhounsule, P.; Hasegawa, J.T. The burden of critical limb ischemia: A review of recent literature. Vasc. Health Risk Manag. 2019, 15, 187–208. [Google Scholar] [CrossRef]
- Kinlay, S. Management of Critical Limb Ischemia. Circ. Cardiovasc. Interv. 2016, 9, e001946. [Google Scholar] [CrossRef] [PubMed]
- Bolton, L. Peripheral arterial disease: Scoping review of patient-centred outcomes. Int. Wound J. 2019, 16, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Eckstein, H.; De Rango, P.; Setacci, C.; Ricco, J.-B.; de Donato, G.; Becker, F.; Robert-Ebadi, H.; Diehm, N.; Schmidli, J.; et al. Chapter II: Diagnostic methods. Eur. J. Vasc. Endovasc. Surg. 2011, 42, S13–S32. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, R.; Kim, M.; Kieny, R. Surgical treatment of peripheral circulation disorders. Helv. Chir. Acta 1954, 21, 499–533. [Google Scholar]
- Rutherford, R.B.; Baker, J.; Ernst, C.; Johnston, K.; Porter, J.M.; Ahn, S.; Jones, D.N. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg. 1997, 26, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.W. The dysvascular foot: A system for diagnosis and treatment. Foot Ankle 1981, 2, 64–122. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Lavery, L.A.; Harkless, L.B. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care 1998, 21, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Schaper, N.C. Diabetic foot ulcer classification system for research purposes: A progress report on criteria for including patients in research studies. Diabetes Metab. Res. Rev. 2004, 20 (Suppl. S1), S90–S95. [Google Scholar] [CrossRef]
- Adam, D.J.; Beard, J.D.; Cleveland, T.; Bell, J.; Bradbury, A.W.; Forbes, J.F.; Fowkes, F.G.R.; Gillepsie, I.; Ruckley, C.V.; Raab, G.; et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005, 366, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Yannoutsos, A.; Gaïsset, R.; Lazareth, I. Challenges in the management of patients with critical limb ischemia. J. Med. Vasc. 2022, 47, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Cambou, J.; Aboyans, V.; Constans, J.; Lacroix, P.; Dentans, C.; Bura, A. Characteristics and Outcome of Patients Hospitalised for Lower Extremity Peripheral Artery Disease in France: The COPART Registry. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Di Primio, M.; Angelopoulos, G.; Lazareth, I.; Lin, F.; Petit, A.; Priollet, P.; Sapoval, M.; Emmerich, J.; Yannoutsos, A. Endovascular Extra-Anatomic Femoro-Popliteal Bypass for Limb Salvage in Chronic Critical Limb Ischemia. Cardiovasc. Interv. Radiol. 2019, 42, 1279–1292. [Google Scholar] [CrossRef]
- Yannoutsos, A.; Lin, F.; Billuart, O.; Buronfosse, A.; Sacco, E.; Beaussier, H.; Mourad, J.-J.; Emmerich, J.; Lazareth, I.; Priollet, P. Low admission blood pressure as a marker of poor 1-year survival in patients with revascularized critical limb ischemia. J. Hypertens. 2021, 39, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Pitcavage, J.M.; Sud, K.; Thakkar, B. Burden of Readmissions Among Patients With Critical Limb Ischemia. J. Am. Coll. Cardiol. 2017, 69, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.K. (Ed.) Extracellular Vesicles [Working Title]; Physiology; IntechOpen: London, UK, 2022; Volume 13. [Google Scholar] [CrossRef]
- Nguyen, J.; Fuhrmann, G. Extracellular Vesicles—A Versatile Biomaterial. Adv. Healthc. Mater. 2022, 11, 2200192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Z. Molecular Imaging of Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes for Hindlimb Ischemia Treatment. Methods Mol. Biol. 2019, 2150, 213–225. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Q.; Niu, X.; Zhang, G.; Ling, X.; Zhang, J.; Wang, Y.; Deng, Z. Extracellular Vesicles Secreted by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. Cell. Physiol. Biochem. 2018, 47, 1181–1192. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, Y.; Liang, C.; Liu, B.; Ding, F.; Wang, Y.; Zhu, B.; Zhao, R.; Yu, X.-Y.; Li, Y. Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/FOXO3a pathway. Theranostics 2020, 10, 6728–6742. [Google Scholar] [CrossRef]
- Xing, Z.; Zhao, C.; Wu, S.; Yang, D.; Zhang, C.; Wei, X.; Wei, X.; Su, H.; Liu, H.; Fan, Y. Hydrogel Loaded with VEGF/TFEB-Engineered Extracellular Vesicles for Rescuing Critical Limb Ischemia by a Dual-Pathway Activation Strategy. Adv. Healthc. Mater. 2022, 11, 2100334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhao, X.; Chen, X.; Wei, Y.; Du, W.; Wang, Y.; Liu, L.; Zhao, W.; Han, Z.; Kong, D.; et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl. Mater. Interfaces 2018, 10, 30081–30091. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Luo, P.; Gao, Y.; Yang, J.; Lao, K.-H.; Wang, G.; Cockerill, G.; Hu, Y.; Xu, Q.; et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci. Rep. 2016, 6, 28627. [Google Scholar] [CrossRef] [PubMed]
- Mendhe, B.; Khan, M.B.; Dunwody, D.; El Baradie, K.B.Y.; Smith, K.; Zhi, W.; Sharma, A.; Lee, T.J.; Hamrick, M.W. Lyophilized Extracellular Vesicles from Adipose-Derived Stem Cells Increase Muscle Reperfusion but Degrade Muscle Structural Proteins in a Mouse Model of Hindlimb Ischemia-Reperfusion Injury. Cells 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Federico, F.; Andrea, R.; Cristina, G.; Massimo, C.; Marta, T.; Claudia, C.; Andrea, R.; Gabriele, T.; Saveria, F.; Vittoria, G.M.; et al. Extracellular Vesicles From Adipose Stem Cells Prevent Muscle Damage and Inflammation in a Mouse Model of Hind Limb Ischemia: Role of Neuregulin-1. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 239–254. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.; Wang, W.; Chen, B.; Chen, J.; Shen, Z.; Hou, J.; Mei, Y.; Liu, S.; Zhang, L.; et al. Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro. Stem Cell Res. Ther. 2021, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yu, L.; Ma, T.; Xu, W.; Qian, H.; Sun, Y.; Shi, H. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics 2022, 12, 6548–6575. [Google Scholar] [CrossRef] [PubMed]
- Pols, M.S.; Klumperman, J. Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 2009, 315, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Wollert, T.; Hurley, J.H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010, 464, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Akers, J.C.; Gonda, D.; Kim, R.; Carter, B.S.; Chen, C.C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro-Oncol. 2013, 113, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell. Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, L.M.; Bordeleau, F.; Reinhart-King, C.A.; Cerione, R.A.; Antonyak, M.A. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat. Commun. 2016, 7, 11958. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, J.; Ren, L.; Liang, B.; Wang, H.; Hou, J.; Yuan, Q. Extracellular vesicles derived from hypoxia-preconditioned bone marrow mesenchymal stem cells ameliorate lower limb ischemia by delivering miR-34c. Mol. Cell. Biochem. 2023, 478, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Gao, W.; Yao, K.; Ge, J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front. Immunol. 2019, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- de la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”-A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front. Genet. 2018, 9, 338577. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Arya, B.D.; Jain, N.; Yadav, P.; Wajid, S.; Singh, S.P.; Choudhury, S. Biophysical Characterization and Drug Delivery Potential of Exosomes from Human Wharton’s Jelly-Derived Mesenchymal Stem Cells. ACS Omega 2019, 4, 13143–13152. [Google Scholar] [CrossRef]
- Kesidou, D.; da Costa Martins, P.A.; De Windt, L.J.; Brittan, M.; Beqqali, A.; Baker, A.H. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front. Physiol. 2020, 11, 579892. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, F.; Chen, R.; Yang, J.; Liu, J.; Huang, L.; Duan, F.; Kou, M.; Lian, B.X.; Zhou, X.; et al. Bradykinin-pretreated Human cardiac-specific c-kit+ Cells Enhance Exosomal miR-3059-5p and Promote Angiogenesis Against Hindlimb Ischemia in mice. Stem Cell Rev. Rep. 2023, 19, 2481–2496. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Kurazumi, H.; Suzuki, R.; Yanagihara, M.; Mizoguchi, T.; Harada, T.; Morikage, N.; Hamano, K. miR-709 exerts an angiogenic effect through a FGF2 upregulation induced by a GSK3B downregulation. Sci. Rep. 2024, 14, 11372. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.K.; Zhao, L.; Zhu, D.; Wang, Y.; Xiao, Y.; Oguljahan, B.; Zhao, X.; Kirlin, W.G.; Yin, L.; Chilian, W.M.; et al. Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H765–H776. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Macholz, F.; Mairbäurl, H.; Bärtsch, P. Remote ischemic preconditioning for prevention of high-altitude diseases: Fact or fiction? J. Appl. Physiol. 2015, 119, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Gao, N.; Guan, Y.; Liu, Z.; Guan, J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS Nano 2023, 17, 25157–25174. [Google Scholar] [CrossRef] [PubMed]
- Vicencio, J.M.; Yellon, D.M.; Sivaraman, V.; Das, D.; Boi-Doku, C.; Arjun, S.; Zheng, Y.; Riquelme, J.A.; Kearney, J.; Sharma, V.; et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J. Am. Coll. Cardiol. 2015, 65, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.-N.; Van Pham, P.; Vu, N.B. Exosomes from adipose-derived stem cells promote angiogenesis and reduce necrotic grade in hindlimb ischemia mouse models. Iran. J. Basic Med. Sci. 2023, 26, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Lu, R.; Sun, Y.; Song, T.; Nie, Z.; Yu, C.; Gao, Y. Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway. Heliyon 2022, 8, e11495. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, X.; Chen, J.; Wang, C.; Sun, Y.; Yan, C.; Ren, S.; Xiong, H.; Xiang, K.; Zhang, M.; et al. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J. Nanobiotechnol. 2023, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Johnson, T.K.; Wang, Y.; Thomas, M.; Huynh, K.; Yang, Q.; Bond, V.C.; Chen, Y.E.; Liu, D. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb. Stem Cell Res. Ther. 2020, 11, 162. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, W.; Chen, J.; Chen, B.; Tang, Y.; Hou, J.; Li, J.; Liu, S.; Mei, Y.; Zhang, L.; et al. Small extracellular vesicles of hypoxic endothelial cells regulate the therapeutic potential of adipose-derived mesenchymal stem cells via miR-486-5p/PTEN in a limb ischemia model. J. Nanobiotechnol. 2022, 20, 422. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Lu, L.; Song, H.; Duan, Y.; Chen, J.; Carney, R.; Li, J.J.; Zhou, P.; Nolta, J.; Lam, K.S.; et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022, 12, 6021–6037. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Fu, B.; Long, Y.; Liu, Z.-Y.; Tian, X.-H. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr. Neuropharmacol. 2023, 21, 1964–1979. [Google Scholar] [CrossRef]
- Du, W.; Zhang, K.; Zhang, S.; Wang, R.; Nie, Y.; Tao, H.; Han, Z.; Liang, L.; Wang, D.; Liu, J.; et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 2017, 133, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, J.; Ferreira, A.D.F.; Wang, H.; Zhang, L.; Zhang, Q.; Bellio, M.A.; Chu, X.-M.; Khan, A.; Jayaweera, D.; et al. Rejuvenation of Senescent Endothelial Progenitor Cells by Extracellular Vesicles Derived From Mesenchymal Stromal Cells. JACC Basic Transl. Sci. 2020, 5, 1127–1141. [Google Scholar] [CrossRef]
- Shi, S.; Li, T.; Wen, X.; Wu, S.Y.; Xiong, C.; Zhao, J.; Lincha, V.R.; Chow, D.S.; Liu, Y.; Sood, A.K.; et al. Copper-64 Labeled PEGylated Exosomes for In Vivo Positron Emission Tomography and Enhanced Tumor Retention. Bioconjugate Chem. 2019, 30, 2675–2683. [Google Scholar] [CrossRef]
- Islam, K.; Razizadeh, M.; Liu, Y. Coarse-Grained Molecular Simulation of Extracellular Vesicles Squeezing for Drug Loading. Phys. Chem. Chem. Phys. 2023, 25, 12308–12321. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Guo, S.; Ren, X.; Wu, Z.; Liu, S.; Yao, X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells 2023, 12, 1416. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, H.; Liu, D.; Wen, S.; Shen, L.; Lin, Q. Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact. Mater. 2022, 15, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Yerneni, S.S.; Yalcintas, E.P.; Smith, J.D.; Averick, S.; Campbell, P.G.; Ozdoganlar, O.B. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater. 2022, 149, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, N.; Li, Y.; Hou, S.; Zhang, W.; Meng, Z.; Wang, S.; Jia, Q.; Tan, J.; Wang, R.; et al. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnol. 2022, 20, 247. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef]
- Ansari, A.; Hussain, A.; Wadekar, R.; Malik, A.; Mujtaba, A.; Ansari, M.Y.; Siddique, M.U.M.; Goyal, S.N. Nanovesicles based drug targeting to control tumor growth and metastasis. Adv. Cancer Biol.-Metastasis 2023, 7, 100083. [Google Scholar] [CrossRef]
- Van Pham, P.; Vu, N.B.; Dao, T.T.-T.; Le, H.T.-N.; Phi, L.T.; Huynh, O.T.; Truong, M.T.-H.; Nguyen, O.T.-K.; Phan, N.K. Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017, 69, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sim, W.; Park, H.; Park, B.; Joung, Y.K. Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation. Adv. Funct. Mater. 2023, 33, 2210864. [Google Scholar] [CrossRef]
- Karpuz, M.; İlhan, M.; Gültekin, H.E.; Ozgenc, E.; Şenyiğit, Z.; Atlihan-Gundogdu, E. Nanovesicles for tumor-targeted drug delivery. Appl. Nanovesicular Drug Deliv. 2022, 219–244. [Google Scholar] [CrossRef]
- Gandek, T.B.; van der Koog, L.; Nagelkerke, A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv. Healthc. Mater. 2023, 12, 2300319. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Nie, L.; Zhu, S.; Zhang, X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int. J. Nanomed. 2022, 17, 4861–4877. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.-H.; Liang, J.; Chng, W.H.; Muthuramalingam, R.P.K.; Ng, Z.X.; Lee, C.K.; Neupane, Y.R.; Yau, J.N.N.; Zhang, S.; Lou, C.K.L.; et al. Investigations on Cellular Uptake Mechanisms and Immunogenicity Profile of Novel Bio-Hybrid Nanovesicles. Pharmaceutics 2022, 14, 1738. [Google Scholar] [CrossRef] [PubMed]
- Elena, M.; Eleftheria, G.; Yiannis, S.; Lefteris, Z.C.; Michael, P.; Georgios, A.; Christos, P.C. Clinical trials of nanovesicles for drug delivery applications. Appl. Nanovesicular Drug Deliv. 2022, 467–486. [Google Scholar] [CrossRef]
- Massaro, C.; Sgueglia, G.; Frattolillo, V.; Baglio, S.R.; Altucci, L.; Dell’Aversana, C. Extracellular vesicle-based nucleic acid delivery: Current advances and future perspectives in cancer therapeutic strategies. Pharmaceutics 2020, 12, 980. [Google Scholar] [CrossRef] [PubMed]
- Record, M.; Carayon, K.; Poirot, M.; Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 2014, 1841, 108–120. [Google Scholar] [CrossRef]
- Palanisamy, C.P.; Pei, J.J.; Alugoju, P.; Anthikapalli, N.V.A.; Jayaraman, S.; Veeraraghavan, V.P.; Gopathy, S.; Roy, J.R.; Janaki, C.S.; Thalamati, D.; et al. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023, 13, 4138–4165. [Google Scholar] [CrossRef] [PubMed]
- Papareddy, P.; Tapken, I.; Kroh, K.; Bhongir, R.K.V.; Rahman, M.; Baumgarten, M.; Cim, E.I.; Györffy, L.; Smeds, E.; Neumann, A.; et al. The role of extracellular vesicle fusion with target cells in triggering systemic inflammation. Nat. Commun. 2024, 15, 1150. [Google Scholar] [CrossRef]
- ZKwok, Z.H.; Wang, C.; Jin, Y. Extracellular Vesicle Transportation and Uptake by Recipient Cells: A Critical Process to Regulate Human Diseases. Processes 2021, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Salomon, C.; Das, S.; Erdbrügger, U.; Kalluri, R.; Lim, S.K.; Olefsky, J.M.; Rice, G.E.; Sahoo, S.; Tao, W.A.; Vader, P.; et al. Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocr. Rev. 2022, 43, 441–468. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Xu, C.; Su, Y.; Shen, Y.; Yang, Q.; Zhao, Y.; Zhao, Y.; Liu, Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023, 26, 108282. [Google Scholar] [CrossRef] [PubMed]
- Çelik, P.A.; Erdogan-Gover, K.; Barut, D.; Enuh, B.M.; Amasya, G.; Sengel-Türk, C.T.; Derkus, B.; Çabuk, A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023, 15, 1052. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, C.; Wang, Y.; Wang, K.; Marsh, J.; Zhang, D.; Chen, X.; Nie, L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. Nanoscale Horiz. 2022, 7, 682–714. [Google Scholar] [CrossRef] [PubMed]
- Al-Jipouri, A.; Almurisi, S.H.; Al-Japairai, K.; Bakar, L.M.; Doolaanea, A.A. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers 2023, 15, 318. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.T.T.; Kavishka, J.M.; Zhang, D.X.; Pirisinu, M.; Le, M.T.N. Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells 2020, 9, 2191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, X.; Hao, J.; Xu, G.; Zhang, W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tissue Regeneration. Cell Transplant. 2020, 29, 0963689720908500. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Pandya, A.; Kumar, L.; Raval, N.; Vora, L.K.; Pulakkat, S.; Patravale, V.; Duo, Y.; Tang, B.Z. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today 2023, 49, 101771. [Google Scholar] [CrossRef]
- Aref, Z.; De Vries, M.R.; Quax, P.H.A. Variations in Surgical Procedures for Inducing Hind Limb Ischemia in Mice and the Impact of These Variations on Neovascularization Assessment. Int. J. Mol. Sci. 2019, 20, 3704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Shao, L.; Pan, X.; Liang, C.; Liu, B.; Zhang, Y.; Xie, W.; Yan, B.; Liu, F.; et al. Knockout of beta-2 microglobulin reduces stem cell-induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR-24/Bim pathway. J. Cell. Mol. Med. 2020, 24, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Shishehbor, M.H.; Takahashi, E.A.; Aronow, H.D.; Brewster, L.P.; Bunte, M.C.; Kim, E.S.; Lindner, J.R.; Rich, K.; On behalf of the American Heart Association Council on Peripheral Vascular Disease; et al. Perfusion Assessment in Critical Limb Ischemia: Principles for Understanding and the Development of Evidence and Evaluation of Devices: A Scientific Statement From the American Heart Association. Circulation 2019, 140, E657–E672. [Google Scholar] [CrossRef] [PubMed]
- Perlman, R.L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, Q.; Wei, R.; Zhang, W.; Yin, N.; Chen, Y.; Xu, C.; Li, C.; Carney, R.P.; Li, Y.; et al. Enhanced pericyte-endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury. Nat. Commun. 2023, 14, 7334. [Google Scholar] [CrossRef]
- Bose, R.J.; Ha, K.; McCarthy, J.R. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease. Drug Discov. Today 2021, 26, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Cowled, P.; Fitridge, R. Pathophysiology of Reperfusion Injury. In Mechanisms of Vascular Disease a Reference Book for Vascular Specialists; The University of Adelaide Press: Adelaide, Australia, 2011; pp. 331–350. [Google Scholar] [CrossRef]
- Bose, R.J.; Kim, B.J.; Arai, Y.; Han, I.-B.; Moon, J.J.; Paulmurugan, R.; Park, H.; Lee, S.-H. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 2018, 185, 360–370. [Google Scholar] [CrossRef]
- Elshaer, S.L.; Bahram, S.H.; Rajashekar, P.; Gangaraju, R.; El-Remessy, A.B. Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. Int. J. Mol. Sci. 2022, 23, 249. [Google Scholar] [CrossRef]
- Ciferri, M.C.; Quarto, R.; Tasso, R. Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology 2021, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, C.; Ranghino, A.; Tapparo, M.; Cedrino, M.; Figliolini, F.; Grange, C.; Giannachi, V.; Garneri, P.; Deregibus, M.C.; Collino, F.; et al. Serum-derived extracellular vesicles (EVs) impact on vascular remodeling and prevent muscle damage in acute hind limb ischemia. Sci. Rep. 2017, 7, 8180. [Google Scholar] [CrossRef] [PubMed]
- Łabędź-Masłowska, A.; Vergori, L.; Kędracka-Krok, S.; Karnas, E.; Bobis-Wozowicz, S.; Sekuła-Stryjewska, M.; Sarna, M.; Andriantsitohaina, R.; Zuba-Surma, E.K. Mesenchymal stem cell-derived extracellular vesicles exert pro-angiogenic and pro-lymphangiogenic effects in ischemic tissues by transferring various microRNAs and proteins including ITGa5 and NRP1. J. Nanobiotechnol. 2024, 22, 60. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.; Gabunia, K.; Kelemen, S.E.; Kako, F.; Choi, E.T.; Autieri, M.V. Interleukin-19 increases Angiogenesis in ischemic hind limbs by Direct Effects on both Endothelial Cells and Macrophage Polarization. J. Mol. Cell. Cardiol. 2015, 79, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Liu, Y.; Ji, W.; Zhuang, J.; Chen, X.; Gong, B.; Chu, J.; Liang, W.; Gao, J.; Yin, Y. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease. Theranostics 2023, 13, 1264–1285. [Google Scholar] [CrossRef]
- Cooke, J.P.; Losordo, D.W. Modulating the Vascular Response to Limb Ischemia Angiogenic and Cell Therapies. Circ. Res. 2015, 116, 1561–1578. [Google Scholar] [CrossRef] [PubMed]
- Picone, P.; Palumbo, F.S.; Federico, S.; Pitarresi, G.; Adamo, G.; Bongiovanni, A.; Chaves, A.; Cancemi, P.; Muccilli, V.; Giglio, V.; et al. Nano-structured myelin: New nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain. Mater. Today Bio 2021, 12, 100146. [Google Scholar] [CrossRef]
- Shirbaghaee, Z.; Hassani, M.; Keshel, S.H.; Soleimani, M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res. Ther. 2022, 13, 462. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Zhang, X.; Liu, Q.; Zhu, M.; Huang, X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 2022, 12, 6223–6241. [Google Scholar] [CrossRef] [PubMed]
- Galieva, L.R.; James, V.; Mukhamedshina, Y.O.; Rizvanov, A.A. Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Front. Neurosci. 2019, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Y.; Li, Y.; Peng, N.; Liu, Q.; Qiu, D.; Cho, J.; Borlongan, C.V.; Yu, G. Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplant. 2022, 31, 09636897221102898. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Z.; Ye, T.; Luo, L.; Zhang, J.; Li, Q.; Wang, Y.; Zhao, B. Large extracellular vesicles from induced pluripotent stem cell-marrow stem cells enhance limb angiogenesis via ERK/MAPK. Nanomedicine 2024, 19, 1525–1539. [Google Scholar] [CrossRef]
- Babaei, M.; Rezaie, J. Application of stem cell-derived exosomes in ischemic diseases: Opportunity and limitations. J. Transl. Med. 2021, 19, 196. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Nagarajan, S.; Maffulli, N.; Packkyarathinam, R.P.; Jeyaraman, N.; Nallakumarasamy, A.; Khanna, M.; Yadav, S.; Gupta, A. Stem Cell Therapy in Critical Limb Ischemia. Cureus 2023, 15, e41772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, Y.; Huang, Q.; Wu, Z.; Pu, H.; Xu, Z.; Li, B.; Lu, X.; Yang, X.; Qin, J.; et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res. Ther. 2021, 12, 403. [Google Scholar] [CrossRef]
- Lopatina, T.; Favaro, E.; Grange, C.; Cedrino, M.; Ranghino, A.; Occhipinti, S.; Fallo, S.; Buffolo, F.; Gaykalova, D.A.; Zanone, M.M.; et al. PDGF enhances the protective effect of adipose stem cell-derived extracellular vesicles in a model of acute hindlimb ischemia. Sci. Rep. 2018, 8, 17458. [Google Scholar] [CrossRef] [PubMed]
- Qadura, M.; Terenzi, D.C.; Verma, S.; Al-Omran, M.; Hess, D.A. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells 2018, 36, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Dubský, M.; Husáková, J.; Sojáková, D.; Fejfarová, V.; Jude, E.B. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers—Do We Have Enough Evidence? Mol. Diagn. Ther. 2023, 27, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Panunzi, A.; Madotto, F.; Sangalli, E.; Riccio, F.; Sganzaroli, A.B.; Galenda, P.; Bertulessi, A.; Barmina, M.F.; Ludovico, O.; Fortunato, O.; et al. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc. Diabetol. 2022, 21, 196. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fang, F.; Sun, M.; Zhang, Y.; Hu, M.; Zhang, J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022, 12, 4879–4903. [Google Scholar] [CrossRef] [PubMed]
- Shirbaghaee, Z.; Keshel, S.H.; Rasouli, M.; Valizadeh, M.; Nazari, S.S.H.; Hassani, M.; Soleimani, M. Report of a phase 1 clinical trial for safety assessment of human placental mesenchymal stem cells therapy in patients with critical limb ischemia (CLI). Stem Cell Res. Ther. 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.C.; Maragh, S.; Ghiran, I.C.; Jones, J.C.; DeRose, P.C.; Elsheikh, E.; Vreeland, W.N.; Wang, L. Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors. Nanomedicine 2020, 15, 2149–2170. [Google Scholar] [CrossRef]
- Jin, J.-F.; Zhu, L.-L.; Chen, M.; Xu, H.-M.; Wang, H.-F.; Feng, X.-Q.; Zhu, X.-P.; Zhou, Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence 2015, 9, 923–942. [Google Scholar] [CrossRef]
- Fuloria, S.; Subramaniyan, V.; Dahiya, R.; Dahiya, S.; Sudhakar, K.; Kumari, U.; Sathasivam, K.; Meenakshi, D.U.; Wu, Y.S.; Sekar, M.; et al. Mesenchymal stem cell-derived extracellular vesicles: Regenerative potential and challenges. Biology 2021, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Poinsot, V.; Pizzinat, N.; Ong-Meang, V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. Nanomaterials 2024, 14, 639. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Chu, D.; Wang, Z. Cell Membrane-formed Nanovesicles for Disease-Targeted Delivery. J. Control. Release 2016, 224, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Momin, M.Y.; Gaddam, R.R.; Kravitz, M.; Gupta, A.; Vikram, A. The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021, 10, 3097. [Google Scholar] [CrossRef] [PubMed]
- Rankin-Turner, S.; Vader, P.; O’Driscoll, L.; Giebel, B.; Heaney, L.M.; Davies, O.G. A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Adv. Drug Deliv. Rev. 2021, 173, 479–491. [Google Scholar] [CrossRef]
- Farzamfar, S.; Hasanpour, A.; Nazeri, N.; Razavi, H.; Salehi, M.; Shafei, S.; Nooshabadi, V.T.; Vaez, A.; Ehterami, A.; Sahrapeyma, H.; et al. Extracellular micro/nanovesicles rescue kidney from ischemia-reperfusion injury. J. Cell. Physiol. 2019, 234, 12290–12300. [Google Scholar] [CrossRef] [PubMed]
- de Jong, O.G.; Van Balkom, B.W.M.; Schiffelers, R.M.; Bouten, C.V.C.; Verhaar, M.C. Extracellular Vesicles: Potential Roles in Regenerative Medicine. Front. Immunol. 2014, 5, 608. [Google Scholar] [CrossRef]
- Sanz-Ros, J.; Mas-Bargues, C.; Romero-García, N.; Huete-Acevedo, J.; Dromant, M.; Borrás, C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int. J. Mol. Sci. 2023, 24, 2344. [Google Scholar] [CrossRef] [PubMed]
- Teraa, M.; Conte, M.S.; Moll, F.L.; Verhaar, M.C. Critical limb ischemia: Current trends and future directions. J. Am. Heart Assoc. 2016, 5, e002938. [Google Scholar] [CrossRef] [PubMed]
- Klyachko, N.L.; Arzt, C.J.; Li, S.M.; Gololobova, O.A.; Batrakova, E.V. Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations. Pharmaceutics 2020, 12, 1171. [Google Scholar] [CrossRef]
- Huang, L.; Wu, E.; Liao, J.; Wei, Z.; Wang, J.; Chen, Z. Research Advances of Engineered Exosomes as Drug Delivery Carrier. ACS Omega 2023, 8, 43374–43387. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Kim, Y.-J.; Huang, K.-Y.; Um, D.; Jung, Y.; Kong, H. Delivery-mediated exosomal therapeutics in ischemia–reperfusion injury: Advances, mechanisms, and future directions. Nano Converg. 2024, 11, 18. [Google Scholar] [CrossRef]
- Han, C.; Zhou, J.; Liu, B.; Liang, C.; Pan, X.; Zhang, Y.; Zhang, Y.; Wang, Y.; Shao, L.; Zhu, B.; et al. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Ungerleider, J.L.; Johnson, T.D.; Hernandez, M.J.; Elhag, D.I.; Braden, R.L.; Dzieciatkowska, M.; Osborn, K.G.; Hansen, K.C.; Mahmud, E.; Christman, K.L. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model. JACC Basic Transl. Sci. 2016, 1, 32–44. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Roy, P.; Herrera-Calderón, R.E.; Khidri, F.F.; Omotesho, Q.A.; Rumide, T.S.; Fatima, M.; Roy, S.; Wireko, A.A.; Atallah, O.; et al. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov. Oncol. 2024, 15, 181. [Google Scholar] [CrossRef] [PubMed]
- Immunogenicity Testing of Therapeutic Protein Products—Developing and Validating Assays for Anti-Drug Antibody Detection|FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug (accessed on 31 May 2024).
- Mondal, J.; Pillarisetti, S.; Junnuthula, V.; Surwase, S.S.; Hwang, S.R.; Park, I.-K.; Lee, Y.-K. Extracellular vesicles and exosome-like nanovesicles as pioneering oral drug delivery systems. Front. Bioeng. Biotechnol. 2024, 11, 1307878. [Google Scholar] [CrossRef] [PubMed]
- Lottes, A.E.; Cavanaugh, K.J.; Chan, Y.Y.-F.; Devlin, V.J.; Goergen, C.J.; Jean, R.; Linnes, J.C.; Malone, M.; Peat, R.; Reuter, D.G.; et al. Navigating the Regulatory Pathway for Medical Devices—A Conversation with the FDA, Clinicians, Researchers, and Industry Experts. J. Cardiovasc. Transl. Res. 2022, 15, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; du Sert, N.P.; Vollert, J.; Rice, A.S.C. General Principles of Preclinical Study Design. Handb. Exp. Pharmacol. 2020, 257, 55. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Swift, B.; Mamelok, R.; Pine, S.; Sinclair, J.; Attar, M. Design and Conduct Considerations for First-in-Human Trials. Clin. Transl. Sci. 2019, 12, 6–19. [Google Scholar] [CrossRef]
- McFadden, E.; Jackson, J.; Forrest, J. Documentation: Essential Documents and Standard Operating Procedures. Princ. Pract. Clin. Trials 2022, 369–387. [Google Scholar] [CrossRef]
- Yu, J.; Sane, S.; Kim, J.-E.; Yun, S.; Kim, H.-J.; Jo, K.B.; Wright, J.P.; Khoshdoozmasouleh, N.; Lee, K.; Oh, H.T.; et al. Biogenesis and delivery of extracellular vesicles: Harnessing the power of EVs for diagnostics and therapeutics. Front. Mol. Biosci. 2023, 10, 1330400. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, Z.; Wei, X.; Liao, G.; Yang, D.; Liu, H.; Fan, Y. Multibiofunctional TFEB-engineered endothelial progenitor cell-derived extracellular vesicles/hydrogel system for rescuing critical limb ischemia. Chem. Eng. J. 2023, 460, 141730. [Google Scholar] [CrossRef]
- Gangadaran, P.; Rajendran, R.L.; Lee, H.W.; Kalimuthu, S.; Hong, C.M.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; Ahn, B.-C. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J. Control. Release 2017, 264, 112–126. [Google Scholar] [CrossRef]
- Doronzo, G.; Astanina, E.; Corà, D.; Chiabotto, G.; Comunanza, V.; Noghero, A.; Neri, F.; Puliafito, A.; Primo, L.; Spampanato, C.; et al. TFEB controls vascular development by regulating the proliferation of endothelial cells. EMBO J. 2019, 38, e98250. [Google Scholar] [CrossRef] [PubMed]
- Mir, B.; Goettsch, C. Extracellular Vesicles as Delivery Vehicles of Specific Cellular Cargo. Cells 2020, 9, 1601. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ma, L.; Zhang, W.; Yang, W.; Feng, Q.; Wang, H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol. Res. 2022, 55, 35. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Zeng, T. Multi-omics of extracellular vesicles: An integrative representation of functional mediators and perspectives on lung disease study. Front. Bioinform. 2023, 3, 1117271. [Google Scholar] [CrossRef] [PubMed]
- Shaba, E.; Vantaggiato, L.; Governini, L.; Haxhiu, A.; Sebastiani, G.; Fignani, D.; Grieco, G.E.; Bergantini, L.; Bini, L.; Landi, C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022, 10, 12. [Google Scholar] [CrossRef]
- Chitoiu, L.; Dobranici, A.; Gherghiceanu, M.; Dinescu, S.; Costache, M. Multi-Omics Data Integration in Extracellular Vesicle Biology—Utopia or Future Reality? Int. J. Mol. Sci. 2020, 21, 8550. [Google Scholar] [CrossRef]
- Shahbazi, R.; Kalishwaralal, K.; Paul, M.K.; Anto, R.J. Editorial: Role of extracellular vesicles (EVs) in pathogenesis, diagnosis, therapeutic delivery, treatment and theranostic applications in cancer. Front. Bioeng. Biotechnol. 2023, 11, 1288806. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, O.; Javier, C. Extracellular Vesicles: A Novel Immunomodulator in Bladder Cancer Recurrence and BCG Immunotherapy. Ph.D. Thesis, University of Rochester, Rochester, NY, USA, 2022. [Google Scholar]
- Patel, S.A.; King, C.C.; Lim, P.K.; Habiba, U.; Dave, M.; Porecha, R.; Rameshwar, P. Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity? Curr. Pharmacogenomics Pers. Med. 2010, 8, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges and Progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Ranghino, A.; Cantaluppi, V.; Grange, C.; Vitillo, L.; Fop, F.; Biancone, L.; Deregibus, M.; Tetta, C.; Segoloni, G.; Camussi, G. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int. J. Immunopathol. Pharmacol. 2012, 25, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, P.; Liang, Y.; Kim, D.; Misener, S.; Thorne, T.; Kamide, C.E.; Klyachko, E.; Losordo, D.W.; Hajjar, R.J.; Sahoo, S. Angiogenic Mechanisms of Human CD34+ Stem Cell Exosomes in the Repair of Ischemic Hindlimb. Circ. Res. 2017, 120, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhou, J.; Xu, Y.; Liao, L.; Yang, H.; Xiang, Y.; Zhou, Z.; Sun, Q.; Chen, M.; Zhang, J.; et al. Prophylactic exercise-derived circulating exosomal miR-125a-5p promotes endogenous revascularization after hindlimb ischemia by targeting endothelin converting enzyme 1. Front. Cardiovasc. Med. 2022, 9, 881526. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.-W.; Li, Q.; Niu, X.; Hu, B.; Liu, J.; Zhou, S.-M.; Guo, S.-C.; Lang, H.-L.; Zhang, C.-Q.; Wang, Y.; et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res. Ther. 2015, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Giraud, R.; Moyon, A.; Simoncini, S.; Duchez, A.-C.; Nail, V.; Chareyre, C.; Bouhlel, A.; Balasse, L.; Fernandez, S.; Vallier, L.; et al. Tracking Radiolabeled Endothelial Microvesicles Predicts Their Therapeutic Efficacy: A Proof-of-Concept Study in Peripheral Ischemia Mouse Model Using SPECT/CT Imaging. Pharmaceutics 2022, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.C.; Yeo, R.W.; Lim, S.K. Mesenchymal stem cell exosomes. Semin. Cell Dev. Biol. 2015, 40, 82–88. [Google Scholar] [CrossRef]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Witwer, K.W.; Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 2019, 8, 1648167. [Google Scholar] [CrossRef] [PubMed]
- Tkach, M.; Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014, 14, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B 2016, 6, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Losordo, D.W. Exosomes and cardiac repair after myocardial infarction. Circ. Res. 2014, 114, 333–344. [Google Scholar] [CrossRef]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
Classification | Description of Ischemia | Year | Ischemic Rest Pain | Ulcer | Gangrene |
---|---|---|---|---|---|
Fontaine [10] | Grading of ischemic symptoms. | 1954 | Yes, category 4/6 | Class IV | Class IV |
Rutherford [11] | AP < 40 mmHg and TP < 80 mmHg for rest pain. AP < 60 mmHg and TP < 40 mmHg for tissue loss. | 1986 | Yes, category III/IV | Category V | Category VI |
Wagner [12] | Nil | 1976 | Nil | Grade 0: Pre- or post-ulcerative lesion | Grouping of ulcer and gangrene |
UT [13] | ABI < 0.8 as the criterion for ischemia. No grade for ischemic severity. | 1982 | Nil | Yes, Grades 0–3 | Nil |
PEDIS [14] | Grade 1: No PAD symptoms, ABI > 0.9, and TBI > 0.6 mmHg. Grade 2: PAD symptoms, ABI < 0.9, AP > 50 mmHg, TP > 30 mmHg, and TcPO2 30–60 mmHg. Grade 3: AP < 50 mmHg, TP < 30 mmHg, and TcPO2 < 30 mmHg. | 2004 | Nil | Yes, Grades 1–3 | Nil |
Serial No. | Title | Key Findings | References |
---|---|---|---|
1 | Extracellular vesicles from mesenchymal stem cells activate VEGF receptors and accelerate recovery of hindlimb ischemia | MSC-EVs activate VEGF receptors, enhancing angiogenesis in ischemic limbs. MSC-EVs contain VEGF and miR-210-3p, which are crucial for angiogenesis. MSC-EVs increase blood reperfusion and new blood vessel formation in limbs. MSC-EVs stimulate downstream pathways, such as SRC, AKT, and ERK. | [144] |
2 | Exosomes from adipose-derived stem cells promote angiogenesis and reduce necrotic grade in hindlimb ischemia mouse models | ADSC-Exos reduce limb necrosis and stimulate angiogenesis in mice. ADSC-Exos enhance vascular regeneration and limb function recovery. ADSC-Exos improve SpO2 levels and muscle structure in treated mice. Exosomes accelerate blood circulation and reduce limb necrosis grade in mice. | [50] |
3 | Serum-derived extracellular vesicles (EVs) impact vascular remodeling and prevent muscle damage in acute hindlimb ischemia | sEVs improve vascular remodeling and prevent muscle damage in ischemia. e-sEVs enhance hindlimb perfusion and capillary density post surgery. | [99] |
4 | Lyophilized extracellular vesicles from adipose-derived stem cells increase muscle reperfusion but degrade muscle structural proteins in a mouse model of hindlimb ischemia–reperfusion injury | Lyophilized EVs enhance reperfusion but degrade muscle structural proteins. EVs increase the expression of the anti-inflammatory factor annexin A1 in skeletal muscle. EV treatment increases the levels of the inflammatory cytokines TNF-α and IL-6. The serum TNF-α level positively correlates with the reperfusion level after EV treatment. Alternative approaches, such as the targeting of mitochondrial permeability, may be more effective. | [31] |
5 | Extracellular vesicles from adipose stem cells prevent muscle damage and inflammation in a mouse model of hindlimb ischemia | ASC-EVs enhance muscle regeneration and protect muscle cells from damage. ASC-EVs promote myoblast proliferation and differentiation under ischemic conditions. NRG1 in ASC-EVs contributes to muscle protection and angiogenesis. ASC-EVs carry proangiogenic mRNAs and proteins for vascular growth. ASC-EVs exhibit anti-apoptotic effects in muscle cells. | [30] |
6 | Extracellular vesicles secreted by human urine-derived stem cells promote ischemia repair in a mouse model of hindlimb ischemia | USC-EVs significantly improve ischemic limb perfusion and function. USC-EVs promote angiogenesis and muscle regeneration. USC-EVs facilitate cell proliferation in vitro. | [24] |
7 | Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment | Chitosan hydrogel enhances exosome stability and retention, thereby exhibiting therapeutic effects. Exosomes in hydrogel show endothelium-protective and proangiogenic abilities in vitro. Hydrogel-incorporated exosomes improve therapeutic effects in hindlimb ischemia. Exosomes labeled with Gluc–lactadherin fusion proteins enhance retention post transplantation. Chitosan hydrogel acts as a barrier, protecting exosomes from immune clearance. | [27] |
8 | Multibiofunctional TFEB-engineered endothelial progenitor cell-derived extracellular vesicles/hydrogel system for rescuing critical limb ischemia | The TFEB–EVsFPD system rescues CLI by improving angiogenesis and muscle injury. FPD can be synthesized using PEI–F127–PEI and ODEX via a Schiff base reaction. The EVsFPD system responds to the severity of CLI through thermal and pH signals. | [143] |
9 | Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model | iVPC-Exos promote angiogenesis in vitro, ex vivo, and in vivo. Exosomes contain proangiogenic proteins and microRNAs that induce vascular growth. | [46] |
10 | Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia | G-ADSC-Exos enhance angiogenesis and protect endothelial cells. G-ADSC-Exos improve limb ischemia treatment efficiency in diabetic mice. | [112] |
11 | PDGF enhances the protective effect of adipose stem cell-derived extracellular vesicles in a model of acute hindlimb ischemia | PDGF-EVs enriched in anti-inflammatory factors protect muscle from acute ischemia. PDGF enhances ASC-EVs with TGF-b1 and IL-10 immunomodulatory proteins. PDGF-EVs reduce PBMC adhesion and promote Treg cell formation. | [113] |
12 | Enhanced pericyte–endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury | n-BANKs induce pericyte–endothelial interactions for complete revascularization in CLI. Enhanced NO production recruits pericytes, stabilizing vascular structures for revascularization. | [93] |
13 | Extracellular vesicles of ETV2-transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia | EVs induce endothelial cell proliferation and enhance neovascularization in hindlimb ischemia. ETV2-transfected fibroblast-derived EVs show potential for blood vessel regeneration. EVs derived from ETV2-transduced fibroblasts improve neovascularization in murine models. Fibroblasts transduced with ETV-2 gene regulator stimulate endothelial cell proliferation. | [67] |
14 | Small extracellular vesicles of hypoxic endothelial cells regulate the therapeutic potential of adipose-derived mesenchymal stem cells via miR-486-5p/PTEN in a limb ischemia model | Hypoxic sEVs enhance ADSC resistance to ROS and improve angiogenic ability. Hypoxic sEVs downregulate PTEN via miR-486-5p, activating the AKT/MTOR/HIF-1α pathway. hsEV-primed ADSCs exhibit superior engraftment, angiogenesis, and tissue repair. | [54] |
15 | Hydrogel loaded with VEGF/TFEB-engineered extracellular vesicles for rescuing critical limb ischemia by a dual-pathway activation strategy | Engineered EV/hydrogel improves neovascularization and muscle recovery after CLI. Engineered EVs with hydrogel activate VEGF/VEGFR and autophagy–lysosomal pathways. Hydrogel enhances engineered EV stability and controls release at different temperatures. | [28] |
16 | Engineered extracellular vesicles with a high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair | SILY-EVs enhance adhesion to collagen, improve retention, and promote tissue regeneration. SILY-EVs suppress inflammation and augment muscle regeneration in vivo. SILY-EVs exhibit the potential to enhance EV-mediated treatment efficacy in various diseases. | [55] |
17 | Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb | miR-675 is downregulated in aging muscles and ischemic legs. miR-675 prevents aging by targeting the TGF–b1p21 pathway. Silk fibroin enhances the therapeutic effects of the miR-675 exosome. Exosomes encapsulated in silk fibroin promote blood perfusion. | [133] |
18 | Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia | EPC-derived MVs enhance neovascularization and recovery in a hindlimb ischemia model. MVs contain miR-126 and miR-296, promoting angiogenesis in mice. RNase-inactivated MVs reduce the proangiogenic effect of EPC-derived MVs. MVs improve limb perfusion and capillary density in the ischemic hindlimb. EPC-derived MVs can be used to treat peripheral arterial disease. | [156] |
19 | Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb | CD34-Exos promote tissue repair by delivering angiomiR-126 to endothelial cells. CD34-Exos induce the proliferation of endothelial cells in post-ischemic hindlimb tissue. CD34-Exos have greater angiogenic and therapeutic efficacy than MNC-Exos. | [157] |
20 | Extracellular matrix hydrogel promotes tissue remodeling, arteriogenesis, and perfusion in a rat hindlimb ischemia model | ECM hydrogels increase tissue perfusion through arteriogenesis in rodent models. Skeletal muscle ECM hydrogel closely matches healthy tissue morphology. ECM hydrogel shifts inflammatory response and increases development, as evident in transcriptomic analysis. | [134] |
21 | Rejuvenation of senescent endothelial progenitor cells by EVs derived from mesenchymal stromal cells | EVs from young MSCs rejuvenate EPCs, mimicking MSC transplantation effects. Aged MSCs can be modified to produce EVs with enhanced rejuvenation. EVs offer a promising acellular therapeutic approach for cardiovascular diseases. | [58] |
22 | Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway | ADSC-Exos induce M2 macrophage polarization via JAK/STAT6, enhancing angiogenesis. ADSC-Exos promote macrophage viability, migration, adhesion, and angiogenesis in diabetic mice. ADSC-Exos activate the JAK/STAT6 pathway, enhancing blood perfusion in diabetic limbs. | [51] |
23 | Co-delivery of bioengineered exosomes and oxygen for treating critical limb ischemia in diabetic mice | Exosomes and oxygen nanoparticles synergistically stimulate angiogenesis and muscle regeneration. Exosomes and oxygen nanoparticles improve cell survival, migration, and morphogenesis under hyperglycemic and ischemic conditions. Exosomes and oxygen nanoparticles promote angiogenesis and muscle regeneration in limbs. | [48] |
24 | Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhances diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2 | ADSC-Exos enhance C2C12 cell proliferation and migration. ADSC-Exos promote angiogenesis in HUVECs. MiR-125b-5p from ADSC-Exos targets ACER2 for muscle repair. ADSC-Exos protect ischemic skeletal muscle and accelerate vascular regeneration. | [52] |
25 | Bradykinin-pretreated human cardiac-specific c-kit+ cells enhance exosomal miR-3059-5p and promote angiogenesis against hindlimb ischemia in mice | BK-c-kit+ exosomes enrich miR-3059-5p to promote angiogenesis in mice. miR-3059-5p suppresses TNFSF15, enhancing angiogenesis through the Akt/Erk1/2/Smad2/3 pathway. Exosomes from BK-c-kit cells promote tube formation in HUVECs. miR-3059-5p downregulates TNFSF15, facilitating angiogenesis in mice with hindlimb ischemia. BK-Exos upregulate miR-3059-5p, enhancing angiogenic function in c-kit cells. | [44] |
26 | Prophylactic exercise-derived circulating exosomal miR-125a-5p promotes endogenous revascularization after hindlimb ischemia by targeting endothelin-converting enzyme 1 | Prophylactic exercise enhances revascularization after hindlimb ischemia through miR-125a-5p. Exercise promotes arteriogenesis and angiogenesis mediated by circulating exosomes. | [158] |
27 | Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb | Exosomes from ASCs induce M1 to M2 macrophage transition. M2 macrophages and ASC exosomes promote angiogenesis in ischemic hindlimbs. | [53] |
28 | Knockout of beta-2 microglobulin reduces stem cell-induced immune rejection and enhances ischemic hindlimb repair via exosome/miR-24/Bim pathway | B2M knockout enhances stem cell therapy for immune rejection. Exosome-based therapies show potential for treating tissue injury. | [90] |
29 | Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice | iMSCs-Exos attenuate limb ischemia by promoting angiogenesis in mice. iMSCs-Exos enhance microvessel density and blood perfusion in ischemic limbs. iMSCs-Exos activate angiogenesis-related gene expression and protein secretion in HUVECs. | [159] |
30 | miR-709 exerts an angiogenic effect through an FGF2 upregulation induced by a GSK3B downregulation | miR-709 upregulates FGF2 by downregulating GSK3B in endothelial cells. miR-709 is a promising angiogenic microRNA in hindlimb ischemia. Aortic ring assay revealed 14 miRNAs with angiogenic potential. EVs containing miR-709 can increase FGF2 mRNA expression in thigh tissues. | [45] |
31 | Extracellular vesicles derived from hypoxia-preconditioned bone marrow mesenchymal stem cells ameliorate lower limb ischemia by delivering miR-34c | Hyp-EVs improve blood flow and capillary density in lower limb ischemia. miR-34c promotes M2 macrophage polarization and anti-inflammatory cytokine production. PTEN silencing facilitates M2 macrophage polarization in lower limb ischemia. | [39] |
32 | Tracking radiolabeled endothelial microvesicles predicts their therapeutic efficacy: a proof-of-concept study in peripheral ischemia mouse models using SPECT/CT imaging | LEVs are homed to ischemic limbs and correlate with reperfusion intensity, improving motility. Radiolabeled LEVs were tracked in vivo and quantified to assess whole-body distribution. LEVs show early and specific homing to ischemic hindlimbs. | [160] |
33 | Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro | Platelet EVs enhance the proangiogenic potential of adipose-derived stem cells. Microparticles act as “cargo”, facilitating the migration of implanted cells. | [31] |
34 | Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/FOXO3a pathway | UMSC-Exo treatment improves muscle function by releasing circHIPK3. UMSC-Exos inhibit pyroptosis and inflammasome activation in ischemic muscle. circHIPK3 downregulates miR-421, thereby increasing FOXO3a expression. Exosomes prevent pyroptosis and enhance muscle recovery in ischemic injury. | [25] |
35 | XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles | XBP1 deficiency in SMCs reduces angiogenesis in ischemic tissues. SMC-derived EVs control EC migration through miR-150 transfer. PDGF-induced SMCs secrete miR-150-containing EVs via XBP1 splicing. | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi Mythili, V.M.; Rajendran, R.L.; Arun, R.; Thasma Loganathbabu, V.K.; Reyaz, D.; Nagarajan, A.K.; Ahn, B.-C.; Gangadaran, P. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Bioengineering 2025, 12, 92. https://doi.org/10.3390/bioengineering12010092
Ravi Mythili VM, Rajendran RL, Arun R, Thasma Loganathbabu VK, Reyaz D, Nagarajan AK, Ahn B-C, Gangadaran P. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Bioengineering. 2025; 12(1):92. https://doi.org/10.3390/bioengineering12010092
Chicago/Turabian StyleRavi Mythili, Vijay Murali, Ramya Lakshmi Rajendran, Raksa Arun, Vasanth Kanth Thasma Loganathbabu, Danyal Reyaz, ArulJothi Kandasamy Nagarajan, Byeong-Cheol Ahn, and Prakash Gangadaran. 2025. "Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia" Bioengineering 12, no. 1: 92. https://doi.org/10.3390/bioengineering12010092
APA StyleRavi Mythili, V. M., Rajendran, R. L., Arun, R., Thasma Loganathbabu, V. K., Reyaz, D., Nagarajan, A. K., Ahn, B.-C., & Gangadaran, P. (2025). Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Bioengineering, 12(1), 92. https://doi.org/10.3390/bioengineering12010092