Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
- 2-DG: Diluted from a 2 M stock solution in water (Sigma-Aldrich, St. Louis, MO, USA).
- DTT: Diluted from a 1 M stock solution in water (Duchefa Biochemie, Haarlem, The Netherlands).
- TM: Diluted from a 5 mg/mL stock solution in 0.05 N NaOH (Sigma-Aldrich).
- TG: Diluted from a 5 mM stock solution in dimethyl sulfoxide (DMSO) (Sigma-Aldrich).
- BFA: Diluted from a 0.02 M stock solution in DMSO (Sigma-Aldrich).
- Mon: Diluted from a 0.03 M stock solution in DMSO (Sigma-Aldrich).
2.2. Spot Test for the Viability of Chlorella Cells
2.3. Measurement of Lipid Content and Observation of Lipid Droplets by Nile Red Staining
2.4. Lipid Extraction and Quantification
3. Results
3.1. Compounds Reported to Induce ER Stress Affect the Growth of C. sorokiniana
3.2. Lipid Droplet Accumulation Induced by 2-DG, DTT, BFA, TM, and Mon in C. sorokiniana cells
3.3. Microscopy Confirms Lipid Droplet Formation After 48 h of Treatment with Putative ER Stress Inducers
3.4. Time-Course Analysis Reveals Peak Lipid Accumulation at 48 h
3.5. C. sorokiniana Strongly Accumulates TAG When Treated with 2-DG, BFA, TM, or Mon
3.6. Fatty Acid Composition Undergoes Dynamic Changes in Response to Treatment with Compounds Reported to Induce ER Stress
4. Discussion
4.1. Lipid Accumulation in C. sorokiniana Under ER Stress
4.2. Effect of 2-DG on Lipid Droplet Formation in C. sorokiniana UTEX 2714
4.3. Growth Inhibition and Lipid Accumulation Induced by BFA, Mon, DTT, and TM in C. sorokiniana UTEX 2714
4.3.1. Brefeldin A
4.3.2. Monensin
4.3.3. Tunicamycin
4.3.4. Dithiothreitol (DTT)
4.4. Fatty Acid Remodeling and TAG Accumulation Under ER Stress
4.5. Industrial Potential and Optimization of ER Stress–Induced Lipid Accumulation in Chlorella
4.6. Environmental and Economic Considerations for Microalgal Biodiesel Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-DG | 2-deoxy-D-glucose |
BFA | Brefeldin A |
DGAT | Diacylglycerol acyltransferase |
DGTS | Diacylglyceryltrimethylhomoserine |
DTT | Dithiothreitol |
ER | Endoplasmic reticulum |
FA | Fatty acid |
GC-FID | Gas chromatography with flame ionization detection |
Mon | Monensin |
PUFAs | Polyunsaturated fatty acids |
ROS | Reactive oxygen species |
TAG | Triacylglycerol |
tFA | Total fatty acid |
TG | Thapsigargin |
TM | Tunicamycin |
UPR | Unfolded protein response |
References
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Cohen, Z. Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie 2011, 93, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Sun, J.; Fa, Y.; Liu, X.; Lindblad, P. Enhancing microalgal lipid accumulation for biofuel production. Front. Microbiol. 2022, 13, 1024441. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Molina Grima, E.; Belarbi, E.H.; Acien Fernandez, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef]
- Howell, S.H. When is the unfolded protein response not the unfolded protein response? Plant Sci. 2017, 260, 139–143. [Google Scholar] [CrossRef]
- Shinjo, S.; Mizotani, Y.; Tashiro, E.; Imoto, M. Comparative analysis of the expression patterns of UPR-target genes caused by UPR-inducing compounds. Biosci. Biotechnol. Biochem. 2013, 77, 729–735. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, D.; Lan, C.; Wu, B.; Li, X.; Lou, S.; Zheng, Y.; Huang, Y.; Hu, Z.; Jia, B. Glucose-assisted trophic conversion of Chlamydomonas reinhardtii by expression of glucose transporter GLUT1. Algal Res. 2022, 62, 102626. [Google Scholar] [CrossRef]
- Taverner, W.K.; Jacobus, E.J.; Christianson, J.; Champion, B.; Paton, A.W.; Paton, J.C.; Su, W.; Cawood, R.; Seymour, L.W.; Lei-Rossmann, J. Calcium Influx Caused by ER Stress Inducers Enhances Oncolytic Adenovirus Enadenotucirev Replication and Killing through PKCalpha Activation. Mol. Ther. Oncolytics 2019, 15, 117–130. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, Y.; Zhan, J.; He, C.; Wang, Q. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnol. Biofuels 2017, 10, 153. [Google Scholar] [CrossRef]
- Fei, W.; Wang, H.; Fu, X.; Bielby, C.; Yang, H. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 2009, 424, 61–67. [Google Scholar] [CrossRef]
- Ferré, P.; Foufelle, F. Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab. 2010, 12, 83–92. [Google Scholar] [CrossRef]
- Lee, J.S.; Zheng, Z.; Mendez, R.; Ha, S.W.; Xie, Y.; Zhang, K. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol. Lett. 2012, 211, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Takahara, K.; Oyadomari, S.; Okada, T.; Sato, T.; Harada, A.; Mori, K. Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 2010, 21, 2975–2986. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Shin, S.; Choi, B.Y.; Kim, H.; Jang, S.; Kajikawa, M.; Yamano, T.; Kong, F.; Legeret, B.; Fukuzawa, H.; et al. The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in Chlamydomonas reinhardtii. Plant Cell 2019, 31, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Je, S.; Lee, Y.; Yamaoka, Y. Effect of Common ER Stress-Inducing Drugs on the Growth and Lipid Phenotypes of Chlamydomonas and Arabidopsis. Plant Cell Physiol. 2023, 64, 392–404. [Google Scholar] [CrossRef]
- Je, S.; Choi, B.Y.; Kim, E.; Kim, K.; Lee, Y.; Yamaoka, Y. Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii. Plant Cell Physiol. 2024, 65, 916–927. [Google Scholar] [CrossRef]
- Bashan, Y.; Lopez, B.R.; Huss, V.A.R.; Amavizca, E.; de-Bashan, L.E. Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. J. Appl. Phycol. 2016, 28, 113–121. [Google Scholar] [CrossRef]
- Gorman, D.S.; Levine, R.P. Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 1965, 54, 1665–1669. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Ko, D.; Yamaoka, Y.; Otsuru, M.; Kawai-Yamada, M.; Ishikawa, T.; Oh, H.M.; Nishida, I.; Li-Beisson, Y.; et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS ONE 2013, 8, e81978. [Google Scholar] [CrossRef]
- Behera, B.; Unpaprom, Y.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Paramasivan, B. Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae. Renew. Sustain. Energy Rev. 2021, 148, 111270. [Google Scholar] [CrossRef]
- Bharte, S.; Desai, K. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. Environ. Sci. Pollut. Res. Int. 2019, 26, 3492–3500. [Google Scholar] [CrossRef] [PubMed]
- Pajak, B.; Siwiak, E.; Soltyka, M.; Priebe, A.; Zielinski, R.; Fokt, I.; Ziemniak, M.; Jaskiewicz, A.; Borowski, R.; Domoradzki, T.; et al. 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int. J. Mol. Sci. 2019, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Barredo, J.C.; Merchan, J.R.; Lampidis, T.J. Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKbeta leading to autophagy. Biochem. Pharmacol. 2013, 85, 1463–1477. [Google Scholar] [CrossRef]
- Azaman, S.N.A.; Wong, D.C.J.; Tan, S.W.; Yusoff, F.M.; Nagao, N.; Yeap, S.K. De novo transcriptome analysis of Chlorella sorokiniana: Effect of glucose assimilation, and moderate light intensity. Sci. Rep. 2020, 10, 17331. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.; Benavides, G.A.; Darley-Usmar, V.; Zhang, J. Differential Effects of 2-Deoxyglucose and Glucose Deprivation on 4-Hydroxynonenal Dependent Mitochondrial Dysfunction in Primary Neurons. Front. Aging 2022, 3, 812810. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, L.; Nie, C.; Pei, H. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnol. Biofuels 2018, 11, 68. [Google Scholar] [CrossRef]
- Li, C.T.; Yelsky, J.; Chen, Y.; Zuniga, C.; Eng, R.; Jiang, L.; Shapiro, A.; Huang, K.W.; Zengler, K.; Betenbaugh, M.J. Utilizing genome-scale models to optimize nutrient supply for sustained algal growth and lipid productivity. npj Syst. Biol. Appl. 2019, 5, 33. [Google Scholar] [CrossRef]
- Moon, J.L.; Kim, S.Y.; Shin, S.W.; Park, J.W. Regulation of brefeldin A-induced ER stress and apoptosis by mitochondrial NADP(+)-dependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun. 2012, 417, 760–764. [Google Scholar] [CrossRef]
- Martins, M.; Vieira, J.; Pereira-Leite, C.; Saraiva, N.; Fernandes, A.S. The Golgi Apparatus as an Anticancer Therapeutic Target. Biology 2023, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.J.; Kang, Y.J.; Kim, I.Y.; Kim, E.H.; Lee, J.A.; Lim, J.H.; Kwon, T.K.; Choi, K.S. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis 2013, 34, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Khine, M.N.; Sakurai, K. Golgi-Targeting Anticancer Natural Products. Cancers 2023, 15, 2086. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, C.; Hao, N.; Fujiwara, T.; Wu, T. Endoplasmic Reticulum Stress and Reactive Oxygen Species in Plants. Antioxidants 2022, 11, 1240. [Google Scholar] [CrossRef]
- Kirchner, L.; Wirshing, A.C.E.; Kurt, L.; Reinard, T.; Glick, J.J.; Cram, E.J.; Jacobsen, H.-J.; Lee-Parsons, C.W.T. Identification, characterization, and expression of diacylgylcerol acyltransferase type-1 from Chlorella vulgaris. Algal Res.-Biomass Biofuels Bioprod. 2016, 13, 167–181. [Google Scholar] [CrossRef]
- Cecchin, M.; Marcolungo, L.; Rossato, M.; Girolomoni, L.; Cosentino, E.; Cuine, S.; Li-Beisson, Y.; Delledonne, M.; Ballottari, M. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J. 2019, 100, 1289–1305. [Google Scholar] [CrossRef]
- Bailey, A.P.; Koster, G.; Guillermier, C.; Hirst, E.M.; MacRae, J.I.; Lechene, C.P.; Postle, A.D.; Gould, A.P. Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell 2015, 163, 340–353. [Google Scholar] [CrossRef]
- Iwata, Y.; Ashida, M.; Hasegawa, C.; Tabara, K.; Mishiba, K.I.; Koizumi, N. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease. Plant J. 2017, 91, 408–415. [Google Scholar] [CrossRef]
- Adachi, Y.; Yamamoto, K.; Okada, T.; Yoshida, H.; Harada, A.; Mori, K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 2008, 33, 75–89. [Google Scholar] [CrossRef]
- Munoz, C.F.; Sudfeld, C.; Naduthodi, M.I.S.; Weusthuis, R.A.; Barbosa, M.J.; Wijffels, R.H.; D’Adamo, S. Genetic engineering of microalgae for enhanced lipid production. Biotechnol. Adv. 2021, 52, 107836. [Google Scholar] [CrossRef]
- Jinkerson, R.E.; Jonikas, M.C. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. 2015, 82, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ngo, H.H.; Yu, X. Phytohormone-like small biomolecules for microalgal biotechnology. Trends Biotechnol. 2022, 40, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Shokravi, Z.; Shokravi, H.; Chyuan, O.H.; Lau, W.J.; Koloor, S.S.R.; Petrů, M.; Ismail, A.F. Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. Sustainability 2020, 12, 9083. [Google Scholar] [CrossRef]
- Quinn, J.C.; Davis, R. The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 2015, 184, 444–452. [Google Scholar] [CrossRef]
- Ievina, B.; Romagnoli, F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environ. Clim. Technol. 2020, 24, 203–220. [Google Scholar] [CrossRef]
- Bradley, T.; Rajaeifar, M.A.; Kenny, A.; Hainsworth, C.; del Pino, V.; del Valle Inclán, Y.; Povoa, I.; Mendonça, P.; Brown, L.; Smallbone, A.; et al. Life cycle assessment of microalgae-derived biodiesel. Int. J. Life Cycle Assess. 2023, 28, 590–609. [Google Scholar] [CrossRef]
- Lu, Y.; Mu, D.; Xue, Z.; Xu, P.; Li, Y.; Xiang, W.; Burnett, J.; Bryant, K.; Zhou, W. Life cycle assessment of industrial production of microalgal oil from heterotrophic fermentation. Algal Res. 2021, 58, 102404. [Google Scholar] [CrossRef]
- Sun, X.-M.; Ren, L.-J.; Zhao, Q.-Y.; Zhang, L.-H.; Huang, H. Application of chemicals for enhancing lipid production in microalgae-a short review. Bioresour. Technol. 2019, 293, 122135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, Y.; Je, S.; Sheen, N.; Shin, C.H.; Yamaoka, Y. Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana. Bioengineering 2025, 12, 452. https://doi.org/10.3390/bioengineering12050452
Roh Y, Je S, Sheen N, Shin CH, Yamaoka Y. Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana. Bioengineering. 2025; 12(5):452. https://doi.org/10.3390/bioengineering12050452
Chicago/Turabian StyleRoh, Yoomi, Sujeong Je, Naeun Sheen, Chang Hun Shin, and Yasuyo Yamaoka. 2025. "Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana" Bioengineering 12, no. 5: 452. https://doi.org/10.3390/bioengineering12050452
APA StyleRoh, Y., Je, S., Sheen, N., Shin, C. H., & Yamaoka, Y. (2025). Putative Endoplasmic Reticulum Stress Inducers Enhance Triacylglycerol Accumulation in Chlorella sorokiniana. Bioengineering, 12(5), 452. https://doi.org/10.3390/bioengineering12050452