Regenerative Strategies in Cleft Palate: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Review Question
- Population—cleft palate patients (non-syndromic cleft lip and/or palate patients (unilateral and bilateral) of all ages that underwent regenerative strategies as part of their treatment);
- Intervention—undergoing treatment approaches with regenerative strategies (all available treatment approaches for cleft palate closure: conventional autologous graft from different origins, alloplastic material, platelet-rich fibrin, platelet-rich plasma, resorbable collagen sponge, bovine-derived hydroxyapatite, allogeneic bone material, demineralized bone matrix, acellular dermal matrix and human bone morphogenetic protein 2);
- Comparison—different available regenerative strategies;
- Outcome—bone regeneration.
2.3. Eligibility Criteria
2.4. Search Strategy
2.5. Study Selection and Data Collection
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Reviews
3.3. Quality of the Included Reviews
3.4. Synthesis of the Best Evidence
3.4.1. Bone Formation Volume Analysis
3.4.2. Bone Formation Percentage Analysis
3.4.3. Bone Height
3.5. Quality of the Evidence
3.5.1. Bone Formation Volume Analysis
3.5.2. Bone Formation Percentage Analysis
3.5.3. Bone Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, A.R.; Orioli, I.M. Birth order and oral clefts: A meta analysis. Teratology 2002, 66, 209–216. [Google Scholar] [CrossRef]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, E.J.; Marazita, M.L. Genetics of cleft lip and cleft palate. Am. J. Med. Genet. Part C Semin. Med. Genet. 2013, 163, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, X.-H.; Zheng, X.-M.; Liu, T.-Z.; Zhang, W.-B.; Zheng, H.; Chen, M.-F. Maternal Gestational Smoking, Diabetes, Alcohol Drinking, Pre-Pregnancy Obesity and the Risk of Cryptorchidism: A Systematic Review and Meta-Analysis of Observational Studies. PLoS ONE 2015, 10, e0119006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, S.; Kohli, V. A comprehensive review of the genetic basis of cleft lip and palate. J. Oral Maxillofac. Pathol. 2012, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Sa, J.; Araujo, L.; Guimaraes, L.; Maranhao, S.; Lopes, G.; Medrado, A.; Coletta, R.; Reis, S. Dental anomalies inside the cleft region in individuals with nonsyndromic cleft lip with or without cleft palate. Med. Oral Patol. Oral y Cir. Bucal 2016, 21, e48–e52. [Google Scholar] [CrossRef]
- Ansen-Wilson, L.J.; Everson, J.L.; Fink, D.M.; Kietzman, H.W.; Sullivan, R.; Lipinski, R.J. Common basis for orofacial clefting and cortical interneuronopathy. Transl. Psychiatry 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-S.; Wallace, C.G.; Hsiao, Y.-C.; Lu, T.-C.; Chen, S.-H.; Chan, F.-C.; Chen, P.K.-T.; Chen, J.-P.; Chang, C.-J.; Noordhoff, M.S. Patient and parent reported outcome measures in cleft lip and palate patients before and after secondary alveolar bone grafting. Medicine 2017, 96, e9541. [Google Scholar] [CrossRef] [PubMed]
- Sancak, K.; Eren, H.; Altug, A.T.; Tezuner, A.M. Effect of Alveolar Bone Grafting on Health Quality in Patients With Cleft Lip and Palate. J. Craniofac. Surg. 2019, 30, e771–e774. [Google Scholar] [CrossRef] [PubMed]
- Graber, T.; Vanarsdall, R.V.K. Orthodontics Current Principles & Techniques, 4th ed.; Elsevier Mosby: St. Louis, MO, USA, 2005. [Google Scholar]
- Kuijpers-Jagtman, A.M. The orthodontist, an essential partner in CLP treatment. PubMed 2006, 4, 57–62. [Google Scholar]
- Bittermann, G.K.P.; van Es, R.J.J.; de Ruiter, A.P.; Bittermann, A.J.N.; Koole, R.; Rosenberg, A.J.W.P. Retrospective analysis of clinical outcomes in bilateral cleft lip and palate patients after secondary alveolar bone grafting and premaxilla osteotomy, using a new dento-maxillary scoring system. J. Cranio-Maxillofac. Surg. 2021, 49, 110–117. [Google Scholar] [CrossRef]
- Pinheiro, F.H.; Drummond, R.J.; Frota, C.M.; Bartzela, T.N.; Santos, P.B. Comparison of early and conventional autogenous secondary alveolar bone graft in children with cleft lip and palate: A systematic review. Orthod. Craniofac. Res. 2020, 23, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Boyne, P.J.; Sands, N.R. Secondary bone grafting of residual alveolar and palatal clefts. J. Oral Surg. 1972, 30, 87–92. [Google Scholar] [PubMed]
- Åbyholm, F.E.; Bergland, O.; Semb, G. Secondary Bone Grafting of Alveolar Clefts: A Surgical/Orthodontic Treatment Enabling a Non-prosthodontic Rehabilitation in Cleft Lip and Palate Patients. Scand. J. Plast. Reconstr. Surg. 1981, 15, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, A.; Kheiri, L.; Motamedian, S.R.; Nadjmi, N. Regenerative medicine in the treatment of alveolar cleft defect: A systematic review of the literature. J. Cranio-Maxillofac. Surg. 2015, 43, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Erica Alexandra, M.P.; Andre, B.; Priscila, L.C.; Patricia, N.T. Alveolar Bone Graft: Clinical Profile and Risk Factors for Complications in Oral Cleft Patients. Cleft Palate-Craniofacial J. 2017, 54, 530–534. [Google Scholar] [CrossRef]
- Rawashdeh, M.A.; Telfah, H. Secondary Alveolar Bone Grafting: The Dilemma of Donor Site Selection and Morbidity. Br. J. Oral Maxillofac. Surg. 2008, 46, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Shirzadeh, A.; Rahpeyma, A.; Khajehahmadi, S. A Prospective Study of Chin Bone Graft Harvesting for Unilateral Maxillary Alveolar Cleft During Mixed Dentition. J. Oral Maxillofac. Surg. 2018, 76, 180–188. [Google Scholar] [CrossRef]
- Kilinc, A.; Saruhan, N.; Ertas, U.; Korkmaz, I.H.; Kaymaz, I. An Analysis of Mandibular Symphyseal Graft Sufficiency for Alveolar Cleft Bone Grafting. J. Craniofac. Surg. 2017, 28, 147–150. [Google Scholar] [CrossRef]
- Brudnicki, A.; Rachwalski, M.; Wiepszowski, Ł.; Sawicka, E. Secondary alveolar bone grafting in cleft lip and palate: A comparative analysis of donor site morbidity in different age groups. J. Cranio-Maxillofac. Surg. 2019, 47, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Zumarán, C.; Parra, M.; Olate, S.; Fernández, E.; Muñoz, F.; Haidar, Z. The 3 R’s for Platelet-Rich Fibrin: A “Super” Tri-Dimensional Biomaterial for Contemporary Naturally-Guided Oro-Maxillo-Facial Soft and Hard Tissue Repair, Reconstruction and Regeneration. Materials 2018, 11, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, I.; Fernandes, M.H.; Vale, F. Platelet-Rich Fibrin in Bone Regenerative Strategies in Orthodontics: A Systematic Review. Materials 2020, 13, 1866. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Ziyab, A.H.; Bartella, A.; Mitchell, D.; Al-Asfour, A.; Hölzle, F.; Kessler, P.; Lethaus, B. Volumetric comparison of autogenous bone and tissue-engineered bone replacement materials in alveolar cleft repair: A systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2018, 56, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmady, H.H.; Abd Elazeem, A.F.; Ahmed, N.E.; Shawkat, W.M.; Elmasry, M.; Abdelrahman, M.A.; Abderazik, M.A. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with Nano Hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration. J. Cranio-Maxillofac. Surg. 2018, 46, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zou, R.; He, J.; Ouyang, K.; Piao, Z. Comparing osteogenic effects between concentrated growth factors and the acellular dermal matrix. Braz. Oral Res. 2018, 32, e29. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Wu, H.; Li, H.; Cai, L.; Wang, Q.; Liu, X.; Xiao, R.; Yin, N.; Cao, Y. Bone Marrow Mononuclear Cells Combined with Beta-Tricalcium Phosphate Granules for Alveolar Cleft Repair: A 12-Month Clinical Study. Sci. Rep. 2017, 7, 13773. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, K.; Tanaka, S.; Hiroishi, S.; Matsushita, Y.; Murakami, S.; Kogo, M. Comparative evaluation of bone microstructure in alveolar cleft repair by cone beam CT: Influence of different autologous donor sites and additional application of β-tricalcium phosphate. Clin. Oral Investig. 2020, 24, 2789–2797. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sakamoto, T.; Ishii, T.; Kishi, K. Assessment of Bioabsorbable Hydroxyapatite for Secondary Bone Grafting in Unilateral Alveolar Clefts. Cleft Palate-Craniofacial J. 2020, 57, 114–117. [Google Scholar] [CrossRef]
- Zuk, P.A. Tissue Engineering Craniofacial Defects with Adult Stem Cells? Are We Ready Yet? Pediatr. Res. 2008, 63, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Toyota, A.; Shinagawa, R.; Mano, M.; Tokioka, K.; Suda, N. Regeneration in Experimental Alveolar Bone Defect Using Human Umbilical Cord Mesenchymal Stem Cells. Cell Transplant. 2021, 30, 096368972097539. [Google Scholar] [CrossRef]
- Than-Trong, E.; Ortica-Gatti, S.; Mella, S.; Nepal, C.; Alunni, A.; Bally-Cuif, L. Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain. Development 2018, 145, dev161034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuki, L.; Brand, A.H. Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci. 2020, 43, 213–226. [Google Scholar] [CrossRef]
- Ding, W.Y.; Huang, J.; Wang, H. Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet. 2020, 16, e1008653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekisz, J.M.; Fryml, E.; Flores, R.L. A Review of Randomized Controlled Trials in Cleft and Craniofacial Surgery. J. Craniofac. Surg. 2018, 29, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; López-López, J.A.; Becker, B.J.; Davies, S.R.; Dawson, S.; Grimshaw, J.M.; McGuinness, L.A.; Moore, T.H.M.; Rehfuess, E.A.; Thomas, J.; et al. Synthesising quantitative evidence in systematic reviews of complex health interventions. BMJ Glob. Health 2019, 4, e000858. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, B.J.; Grimshaw, J.M.; Wells, G.A.; Boers, M.; Andersson, N.; Hamel, C.; Porter, A.C.; Tugwell, P.; Moher, D.; Bouter, L.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med. Res. Methodol. 2007, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- van Hout, W.M.M.T.; Mink van der Molen, A.B.; Breugem, C.C.; Koole, R.; Van Cann, E.M. Reconstruction of the alveolar cleft: Can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. Clin. Oral Investig. 2011, 15, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Jia, K.; Yu, G.; Zhao, N. Outcomes of bone morphogenetic protein-2 and iliac cancellous bone transplantation on alveolar cleft bone grafting: A meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Scalzone, A.; Flores-Mir, C.; Carozza, D.; D’Apuzzo, F.; Grassia, V.; Perillo, L. Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: Systematic review and meta-analysis. Prog. Orthod. 2019, 20, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Li, C.; Zhang, Q.; Wu, G.; Deacon, S.A.; Chen, J.; Hu, H.; Zou, S.; Ye, Q. Secondary bone grafting for alveolar cleft in children with cleft lip or cleft lip and palate. Cochrane Database Syst. Rev. 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Pan, W.; Feng, C.; Su, Z.; Duan, Z.; Zheng, Q.; Hua, C.; Li, C. Grafting materials for alveolar cleft reconstruction: A systematic review and best-evidence synthesis. Int. J. Oral Maxillofac. Surg. 2018, 47, 345–356. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, W.L.; da Silva, T.M.; Galarça, A.D.; Piva, E.; da Silva, A.F. Efficacy of rhBMP-2 in Cleft Lip and Palate Defects: Systematic Review and Meta-analysis. Calcif. Tissue Int. 2019, 104, 115–129. [Google Scholar] [CrossRef]
- Uribe, F.; Alister, J.P.; Zaror, C.; Olate, S.; Fariña, R. Alveolar Cleft Reconstruction Using Morphogenetic Protein (rhBMP-2): A Systematic Review and Meta-Analysis. Cleft Palate-Craniofacial J. 2020, 57, 589–598. [Google Scholar] [CrossRef]
- Mehta, S.; Blagg, R.; Willcockson, J.; Gociman, B.; Yamashiro, D.; Siddiqi, F. Cost-Effectiveness Analysis of Demineralized Bone Matrix and rhBMP-2 versus Autologous Iliac Crest Bone Grafting in Alveolar Cleft Patients. Plast. Reconstr. Surg. 2018, 142, 737–743. [Google Scholar] [CrossRef]
- Trujillo, R.L.; Kadioglu, O.; Currier, G.F.; Smith, K.S.; Yetkiner, E. Volumetric Cleft Changes in Treatment With Bone Morphogenic Protein/β-Tricalcium Phosphate Versus Grafts From the Iliac Crest or Symphysis. J. Oral Maxillofac. Surg. 2018, 76, 1991–1997. [Google Scholar] [CrossRef]
- Brudnicki, A.; Sawicka, E.; Brudnicka, R.; Fudalej, P.S. Effects of Different Timing of Alveolar Bone Graft on Craniofacial Morphology in Unilateral Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2020, 57, 105–113. [Google Scholar] [CrossRef]
- Siegenthaler, M.; Bettelini, L.; Brudnicki, A.; Rachwalski, M.; Fudalej, P.S. Early versus late alveolar bone grafting in unilateral cleft lip and palate: Dental arch relationships in pre-adolescent patients. J. Cranio-Maxillofac. Surg. 2018, 46, 2052–2057. [Google Scholar] [CrossRef] [PubMed]
- Fahradyan, A.; Tsuha, M.; Wolfswinkel, E.M.; Mitchell, K.-A.S.; Hammoudeh, J.A.; Magee, W. Optimal Timing of Secondary Alveolar Bone Grafting: A Literature Review. J. Oral Maxillofac. Surg. 2019, 77, 843–849. [Google Scholar] [CrossRef]
- Oberoi, S.; Chigurupati, R.; Gill, P.; Hoffman, W.Y.; Vargervik, K. Volumetric Assessment of Secondary Alveolar Bone Grafting Using Cone Beam Computed Tomography. Cleft Palate-Craniofacial J. 2009, 46, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Guo, R.; Li, W. Comparison of 2- and 3-dimensional radiologic evaluation of secondary alveolar bone grafting of clefts: A systematic review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, M.; Wojtaszek-Słomińska, A.; Racka-Pilszak, B. A novel method for alveolar bone grafting assessment in cleft lip and palate patients: Cone-beam computed tomography evaluation. Clin. Oral Investig. 2021, 25, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Kamperos, G.; Theologie-Lygidakis, N.; Tsiklakis, K.; Iatrou, I. A novel success scale for evaluating alveolar cleft repair using cone-beam computed tomography. J. Cranio-Maxillofac. Surg. 2020, 48, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, W.C.; Farman, A.G.; Sukovic, P. Clinical applications of cone-beam computed tomography in dental practice. J. Can. Dent. Assoc. 2006, 72, 75–80. [Google Scholar]
- European Commission. Radiation protection No 172. Cone Beam CT for Dental and Maxillofacial Radiology. Evidence Based Guidelines; European Commission: Luxembourg, 2012. [Google Scholar]
Databases | Search Keys |
---|---|
PubMed | “Cleft Palate” [Mesh] OR “cleft Palate” OR “oral cleft *” OR “orofacial cleft *”. Filters: systematic reviews |
WOS (all databases) | TS = (“cleft Palate” OR “oral cleft *” OR “orofacial cleft *”) AND TS = (“systematic review”) |
Cochrane Library | #1 MeSH descriptor: [Cleft Palate] explode all trees #2 “oral cleft *” #3 “orofacial cleft *” |
Scopus | “cleft Palate” OR “oral cleft *” OR “orofacial cleft *” AND “systematic review” |
EMBASE | (‘cleft palate’/exp OR ‘cleft palate’ OR ‘oral cleft *’ OR ‘orofacial cleft*’) AND ‘systematic review’ |
Author/Year | Design | Registration | No. of Trials and Design | ROB Tool | Quality of Evidence | Age of Participants | Intervention | Comparison Unit | Primary Outcome | Results |
---|---|---|---|---|---|---|---|---|---|---|
Da Rosa et al., 2019 [46] | SR/MA | Pros | RCT (4) RS (5) PS (1) | Cochrane guidelines | LROB (10) | 7–16.4 years | rhBMP-2 | Iliac crest bone graft | -Bone formation volume analysis -Bone filling percentage analysis | (5 RCT) Total (95% CI): BMP (54); ICBG (54); Weight 100% Std. Mean Difference 0.07 [−0.41, 0.56]; Heterogeneity: Tau2 = 0.14; Chi2 = 10.81, df = 8 (p = 0.21); I2 = 26%; Test overall effect: Z = 0.30 (p = 0.77). (5 RCT) Total (95% CI): BMP (95); ICBG (80); Weight 100% Std.Mean Difference 0.24 [−0.32, 0.80]; Heterogeneity: Tau2 = 0.38; Chi2 = 18.86, df = 7 (p = 0.009); I2 = 63%; Test overall effect: Z = 0.83 (p = 0.41). |
Uribe et al., 2019 [47] | SR/MA | Pros | RCT (4) N-RCT (1) | Cochrane RBAT | Low-quality evidence (GRADE): HROB (5) | 9.5–16.15 years | rhBMP-2 scaffold | Particulate iliac crest cancellous bone | -Bone filling | (3 RCT) Total (95% CI): BMP (16); Iliac crest (17) Weight 100% Std.Mean Difference −208.76 [−253.59, −163.93]; Heterogeneity: Chi2 = 0.38, df = 2 (p = 0.83); I2 = 0%; Test overall effect: Z = 9.13 (p < 0.00001). |
Wu et al., 2017 [45] | SR/MA | Pros | RCT (14) N-RCT (26) | Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence | Best Evidence Synthesis Moderate Methodological Quality (7) Low Methodological Quality (18) | NR | 1. Bone substitute materials (Bioglass, β-TCP, HA, Osteoblasts, BMP-2) 2. Supplementary materials (PRP, DDM, DBM, ADM, Bio-guide, Membrane, Periosteum, DBB) + ICBG 3. Autogenous bone grafts (cranium, rib, tibia and mandible grafts) | Iliac crest bone graft | -Bone filling rate -Clinical success rate | BMP-2 (4RCT) Total (95% CI): BMP (54); ICBG (46); Weight 100% Std.Mean Difference −2.16 [−10.10, 5.78]; Heterogeneity: Tau2 = 34.44; Chi2 = 7.84, df = 3 (p = 0.05); I2 = 62%; Test overall effect: Z = 0.53 (p = 0.59). ADM + ICB (4RCT) Total (95% CI): ADM + ICB (121); ICBG (171); Weight 100% Std.Mean Difference 1.34 [1.15, 1.55] Total events: ADM + ICB (98); ICBG (104); Heterogeneity: Chi2 = 4.46, df = 3 (p = 0.22); I2 = 33%; Test overall effect: Z = 3.80 (p = 0.0001). Cranium Grafts Total (95% CI): Cranium grafts (117); ICBG (193); Weight 100% Std.Mean Difference 0.86 [0.76, 0.97] Total events: Cranium grafts (92); ICBG (173); Heterogeneity: Chi2 = 4.18, df = 3 (p = 0.24); I2 = 28%; Test overall effect: Z = 2.53 (p = 0.01). Rib Grafts Total (95% CI): Rib grafts (38); ICBG (135); Weight 100% Std.Mean Difference 0.55 [0.37, 0.83] Total events: Rib grafts (15); ICBG (97) Heterogeneity: Chi2 = 3.52, df = 1 (p = 0.06); I2 = 72%; Test overall effect: Z = 2.87 (p = 0.004). |
Khojasteh et al., 2015 [16] | SR | NR | CS (1) CR (3) CT (14) | Quality assessment (NR Tool) | Quality of Evidence-NR | NR | Cell group Osteoblasts (maxilla) MSC (Bone narrow) Growth factor rhBMP-2 Platelet rich plasma (PRP) Platelet rich fibrin (PRF) | Iliac Bone Graft Autogenous bone graft | -Bone formation | Descriptive evaluation Cell group Application of stem cells in alveolar cleft patients resulted in less than 50% of new bone formation, except in one case report, which was remarkable for 79.1% bone formation. MSCs seeded on DBM with calcium sulfate achieved 34.5% of new BF. Growth factor Application of BMP-2 with collagen led to 71.7% new BF. In one study, 90.9% of fistula closure was reported in cleft patients after the use of PRGF. PRP showed 71.27% BF compared to 47.47% in the control group, with 26.5% of secondary bone loss compared to 35.5% in the control group. |
van Hout et al., 2011 [41] | SR | NR | RCT (2) CRR (1) | - | - | Children + Adolescents | BMP-2 | Autologous bone graft | Bone Formation | Descriptive evaluation Dickinson et al. reported 95% of bone formation in the rhBMP-2 group compared to the 63% control group. Alonso et al. and Herford et al. reported less bone formation in the rhBMP-2 group compared to the control group (5.8% and 7%). |
Xiao et al., 2020 [42] | SR/MA | NR | Case-control(9) | Newcastle-Ottawa scale | NOS 7 (5) NOS 6 (4) | NR | BMP-2 | ICBG | -Bone graft filling rate -Volume of the bone graft area -Height of bone graft area -Bone graft density -Failure rate of bone graft -Infection after bone graft -Rate of oronasal fistula -Operative time length of hospital stay | Bone graft filling rate Total (95% CI): BMP-2 (54); ICBG (46); Weight 100% Std.Mean Difference −0.05 [−0.79, 0.69] Heterogeneity: Tau2 = 0.30; Chi2 = 6.79; df = 3 (p = 0.08); I2 = 56%; Test overall effect: Z = 0.13 (p = 0.90). Bone graft volume Total (95% CI): BMP-2 (24); ICBG (16); Weight 100% Std.Mean Difference −0.42 [−1.44, 0.60]; Heterogeneity: Tau2 = 0.41; Chi2 = 4.02; df = 2 (p = 0.13); I2 = 50%; Test overall effect: Z = 0.8 (p = 0.42). Bone graft height Total (95% CI): BMP-2 (14); ICBG (14); Weight 100% Std.Mean Difference −21.38 [−23.00, −19.76]; Heterogeneity: Chi2 = 4.88, df = 1 (p = 0.03); I2 = 80%; Test overall effect: Z = 25.81 (p < 0.00001). Bone graft density Total (95% CI): BMP-2 (37); ICBG (38); Weight 100% Std.Mean Difference −0.43 [−0.79, 1.64]; Heterogeneity: Tau2 = 0.56; Chi2 = 3.31; df = 1 (p = 0.07); I2 = 70%; Test overall effect: Z = 0.69 (p = 0.49). Failure Rate Total (95% CI): BMP-2 (316); ICBG (320); Weight 100% Std.Mean Difference 0.02 [−0.03, 0.06]; Total events: BMP-2 (316); ICBG (320); Heterogeneity: Tau2 = 0.00; Chi2 = 1.91; df = 4 (p = 0.75); I2 = 0%; Test overall effect: Z = 0.67 (p = 0.50). Infection after bone graft Total (95% CI): BMP-2 (294); ICBG (262); Weight 100% Std.Mean Difference 0.20 [0.05, 0.73]; Total events: BMP-2 (3); ICBG (11); Heterogeneity: Chi2 = 0.41; df = 1 (p = 0.52); I2 = 0%; Test overall effect: Z = 2.44 (p = 0.01). Rate of oronasal fistula Total (95% CI): BMP-2 (45); ICBG (31); Weight 100% Std.Mean Difference 0.41 [0.06, 2.63]; Total events: BMP-2 (1); ICBG (3); Heterogeneity: Chi2 = 1.15; df = 1 (p = 0.28); I2 = 13%; Test overall effect: Z = 0.94 (p = 0.35) Operative time Total (95% CI): BMP-2 (48); ICBG (34); Weight 100% Std.Mean Difference −3.64 [−7.35, 0.06]; Heterogeneity: Tau2 = 6.68; Chi2 = 15.06; df = 1 (p = 0.0001); I2 = 93%; Test overall effect: Z = 1.93 (p = 0.05) length of hospital stay Total (95% CI): BMP-2 (21); ICBG (27); Weight 100% Std.Mean Difference −1.97 [−2.41, −1.53]; Heterogeneity: Chi2 = 45.18, df = 1 (p < 0.00001); I2 = 98%; Test overall effect: Z = 8.74 (p < 0.00001). |
Scalzone et al., 2019 [43] | SR | Pros | RCT (4) | Cochrane | GRADE-low High risk (2) Unclear risk (2) | >5 years old | rhBMP-2 | ICBG | -Bone graft volume (6 months and 1 year) -Bone graft height (6 months and 1 year) -Length of hospital stay | Bone graft Volume after 6 months Difference means −14.410; Standard error 4.072; Variance 16.585; Lower limit −22.392; Upper limit −6.428; Z-value −3.538; p-value 0.000 MD −14.410; 95% CI −22.392 to −6.428; p = 0.000). Bone graft Volume after 1 year Difference means 6.227; Standard error 11.324; Variance 128.234; Lower limit −15.967; Upper limit −28.422; Z-value −0.550; p-value 0.582 (MD 6.227; 95% CI −15.967 to 28.422; p = 0.582). Bone graft Volume after 1 year considering patient’s age Standard Difference in means −0.493; Standard error 0.386; Variance 0.149; Lower limit −1.249; Upper limit −0.263; Z-value −1.278; p-value 0.201; (MD 30.000; 95% CI 11.593 to 48.407; p = 0.001).; Dickinson’s data (MD −0.493; 95% CI −1.249 to 0.263; p = 0.201). Bone graft height 6 months Difference means −18.737; Standard error 12.665; Variance 160.413; Lower limit −43.560; Upper limit 6.087; Z-value −1.479; p-value 0.139 (MD −18.737; 95% CI −43.560 to 6.087; p = 0.139). Bone graft height 1 year Difference means −4.401; Standard error 13.386; Variance 179.172; Lower limit −30.636; Upper limit 21.834; Z-value −0.329; p-value 0.742 (MD −4.401; 95% CI −30.636 to 21.834; p = 0.742). Bone graft height after 1 year considering patient’s age Standard Difference in means −6.523; Standard error 6.209; Variance 38.557; Lower limit −18.694; Upper limit 6.647; Z-value −1.051; p-value 0.293; (MD −6.523; 95% CI −18.694 to 5.647; p = 0.293). Length of hospital stay Standard Difference in means −1.146; Standard error 0.511; Variance 0.261; Lower limit −2.147; Upper limit −0.145; Z-value −2.244; p-value 0.025; (MD −1.146; 95% CI −2.147 to −0.145; p = 0.025). |
Guo et al., 2011 [44] | SR | NR | RCT (2) | Cochrane | High risk (2) | Children and adolescents | rhBMP-2 iliac bone grafting + fibrin glue applied to the bone graft | ICBG | Complications, graft volume and grade of resorption, bone density and quality, alveolar ridge healing, nasal alar base augmentation, length of hospital stay, cost of surgery | Descriptive analyses Traditional iliac bone graft versus artificial bone graft materials (+rhBMP-2). BMP-2 group (n = 9) had a score 0.9 point higher when compared to the iliac grafting group (n = 12) (mean difference (MD) −0.90; 95% confidence interval (CI) −1.16 to −0.64). After follow-up, the mean value of nasal alar base augmentation was 2.2 in the BMP-2 group (n = 9) compared with 2.0 in the iliac grafting group (n = 12), with no significance between the two groups (MD −0.20; 95% CI −0.41 to 0.01). Traditional iliac bone graft versus traditional iliac bone graft plus fibrin glue The average amount of graft resorption varied from 62.25% in the control group to 29.72% in the intervention group. The mean coronal bone volume was reported as 42.62 cm3 greater in the intervention group (64.32 cm3) when compared with the control group (21.70 cm3) (MD −42.62; 95% CI −64.25 to −20.99), and mean coronal bone density was 150.89 HU less in the control group (245.68 HU) than intervention group (396.57 HU) (MD −150.89; 95% CI −298.33 to −3.45). Regarding complications, dehiscence in the intervention group (infection in wound (RR 0.31; 95% CI 0.01 to 7.02); dehiscence (RR 2.79; 95% CI 0.33 to 23.52)). |
Kamal et al., 2018 [24] | SR/MA | Pros | RCT (12) PS (10) RS(13) | MOOSE STROBE | Low risk (6) Moderate risk (9) High risk (11) | NR | Autogenous bone graft (iliac crest, tibia, mandibular symphysis, calvarium) | Growth factors Improved scaffolds and cell treatment Biocomposites and haemostatic agents | Reduction in postoperative volume of the cleft | Reduction in postoperative volume using autogenous bone graft Overall (Random effects): hedge’g SMD −1.91; Lower −2.25; Upper −1.57; p-value 0.000.; Heterogeneity: q-value =105.7; df = 24, p-value < 0.001; I2 = 77,3% (overall SMD = −1.91, 95% CI: −2.25 to −1.57, p < 0.001, I2 = 77.3%). Reduction in postoperative volume using tissue-engineered bone substitutes Overall (Random effects): hedge’g SMD −1.95; Lower −2.64; Upper −1.27; p-value 0.000.; Heterogeneity: q-value =28.8; df = 9, p-value 0.001; I2 = 68.7% (overall SMD = −1.95, 95% CI: −2.64 to −1.27, p < 0.001, I2 = 68.7%). Subgroups analysis of studies using autogenous bone graft Iliac crest- nr studies: 22; nr subjects: 371; hedges’g SMD (95% CI): −1.78 (−2.11 to −1.45); SE 0.169; Within group p value <0.001 Mandibular symphysial- nr studies: 1; nr subjects: 32; hedges’g SMD (95% CI): −3.12 (−3.95 to −2.28); SE 0.426; Within group p value < 0.001 Cranial- nr studies: 1; nr subjects: 10; hedges’g SMD (95% CI): −3.22 (−4.75 to −1.7); SE 0.777; Within group p value < 0.001 Tibial- nr studies: 1; nr subjects: 9; hedges’g SMD (95% CI): −2.46 (−3.74 to −1.18); SE 0.654; Within group p value < 0.001 p value between groups- 0.009 Subgroups analysis of studies using tissue-engineered bone substitutes Growth factors- nr studies: 6; nr subjects: 49; hedges’g SMD (95% CI): −2.34 (−3.39 to −1.28); SE 0.540; Within group p value < 0.001. Improved scaffolds and cell treatment- nr studies: 2; nr subjects: 11; hedges’g SMD (95% CI): −1.82 (−3.27 to −0.37); SE 0.742; Within group p value 0.014. Biocomposites and haemostatic agentes- nr studies: 2; nr subjects: 11; hedges’g SMD (95% CI): −1.20 (−2.35 to −0.05); SE 0.587; Within group p value 0.041; p value between groups 0.362. |
Author/Year | PICO | Protocol | Inclusion Criteria | Comprehensive Search | Duplicate in Selection | Duplicate in Data Extraction | List of Excluded Studies | Description of Included Studies | Assessing Risk of Bias | Funding of Included Studies | Results of Statistical Combination | ROB Effect on the Statistical Combination | ROB in the Discussion | Discussion for the Heterogeneity | Publication Bias | Author’s Funding and COF Reporting | Overall Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Da Rosa et al., 2019 [46] | Yes | Yes | Yes | Partial Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | No | Yes | No | No | Yes | Moderate |
Uribe et al., 2019 [47] | Yes | yes | Yes | Partial Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | Yes | No | Yes | Moderate |
Wu et al., 2017 [45] | Yes | yes | Yes | Partial Yes | Yes | Yes | Yes | Yes | No | No | Yes | No | No | No | No | Yes | Low |
Khojasteh et al., 2015 [16] | Yes | Partial Yes | No | No | No | No | No | Partial Yes | Partial Yes | No | No meta-analysis | No meta-analysis | No | No | No meta-analysis | No | Low |
van Hout et al., 2011 [41] | No | No | Yes | Partial Yes | Yes | Yes | Partial Yes | No | Yes | Yes | No meta-analysis | No meta-analysis | No | Yes | No meta-analysis | Yes | Low |
Xiao et al., 2020 [42] | Yes | Yes | No | Partial Yes | Yes | Yes | Partial Yes | Partial Yes | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Moderate |
Scalzone et al., 2019 [43] | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | High |
Guo et al., 2011 [44] | Yes | Yes | No | Partial Yes | Yes | Yes | Yes | Yes | Partial Yes | Yes | No meta-analysis | No meta-analysis | Yes | Yes | No meta-analysis | Yes | Low |
Kamal et al., 2018 [24] | Yes | Yes | Yes | Yes | Yes | Yes | Partial Yes | Partial Yes | Yes | No | Yes | No | Yes | No | No | Yes | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francisco, I.; Paula, A.B.; Oliveiros, B.; Fernandes, M.H.; Carrilho, E.; Marto, C.M.; Vale, F. Regenerative Strategies in Cleft Palate: An Umbrella Review. Bioengineering 2021, 8, 76. https://doi.org/10.3390/bioengineering8060076
Francisco I, Paula AB, Oliveiros B, Fernandes MH, Carrilho E, Marto CM, Vale F. Regenerative Strategies in Cleft Palate: An Umbrella Review. Bioengineering. 2021; 8(6):76. https://doi.org/10.3390/bioengineering8060076
Chicago/Turabian StyleFrancisco, Inês, Anabela Baptista Paula, Bárbara Oliveiros, Maria Helena Fernandes, Eunice Carrilho, Carlos Miguel Marto, and Francisco Vale. 2021. "Regenerative Strategies in Cleft Palate: An Umbrella Review" Bioengineering 8, no. 6: 76. https://doi.org/10.3390/bioengineering8060076
APA StyleFrancisco, I., Paula, A. B., Oliveiros, B., Fernandes, M. H., Carrilho, E., Marto, C. M., & Vale, F. (2021). Regenerative Strategies in Cleft Palate: An Umbrella Review. Bioengineering, 8(6), 76. https://doi.org/10.3390/bioengineering8060076