Disinfection Procedures and Their Effect on the Microorganism Colonization of Dental Impression Materials: A Systematic Review and Meta-Analysis of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chidambaranathan, A.S.; Balasubramanium, M. Comprehensive Review and Comparison of the Disinfection Techniques Currently Available in the Literature. J. Prosthodont. 2019, 28, e849–e856. [Google Scholar] [CrossRef] [PubMed]
- Ganavadiya, R.; Shekar, B.R.C.; Saxena, V.; Tomar, P.; Gupta, R.; Khandelwal, G. Disinfecting Efficacy of Three Chemical Disinfectants on Contaminated Diagnostic Instruments: A Randomized Trial. J. Basic. Clin. Pharm. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, K.J.; Samaranayake, L.P. The Persistence of Microorganisms on Impression Materials Following Disinfection. Int. J. Prosthodont. 1991, 4, 382–387. [Google Scholar] [PubMed]
- Samaranayake, L.P.; Hunjan, M.; Jennings, K.J. Carriage of Oral Flora on Irreversible Hydrocolloid and Elastomeric Impression Materials. J. Prosthet. Dent. 1991, 65, 244–249. [Google Scholar] [CrossRef]
- Al Mortadi, N.; Al-Khatib, A.; Alzoubi, K.H.; Khabour, O.F. Disinfection of dental impressions: Knowledge and practice among dental technicians. Clin. Cosmet. Investig. Dent. 2019, 11, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Cottone, J.A.; Young, J.M.; Dinyarian, P. Disinfection/Sterilization Protocols Recommended by Manufacturers of Impression Materials. Int. J. Prosthodont. 1990, 3, 379–383. [Google Scholar]
- British Dental Association. The Control of Cross-Infection in Dentistry; British Dental Association: London, UK, 1991; Volume 30. [Google Scholar]
- Ghasemi, E.; Badrian, H.; Hosseini, N.; Khalighinejad, N. The effect of three different disinfectant materials on polyether impressions by spray method. WJD 2012, 3, 229–233. [Google Scholar] [CrossRef]
- Blair, F.M.; Wassell, R.W. A Survey of the Methods of Disinfection of Dental Impressions Used in Dental Hospitals in the United Kingdom. Br. Dent. J. 1996, 180, 369–375. [Google Scholar] [CrossRef]
- Amjadi, M.; Shakibamehr, A.H.; Sharifi, K.; Aalaei, S. General Dentists’ Knowledge about Disinfecting Dental Impressions. Teikyo Med. 2021, 44, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Somasundram, J.; Geetha, R. Disinfection Of Impression Material-A Review. Eur. J. Mol. Clin. Med. 2020, 7, 2451–2460. [Google Scholar]
- Stoeva, V.; Bozhkova, T.; Atanasowski, A.; Kondeva, V. Study of Knowledge of Hand Disinfection and Dental Impressions in Everyday Practice among Dental Students during a Pandemic by Coronavirus Disease 2019. Open Access Maced. J. Med. Sci. 2021, 9, 138–142. [Google Scholar] [CrossRef]
- Rweyendela, I.H.; Patel, M.; Owen, C.P. Disinfection of Irreversible Hydrocolloid Impression Material with Chlorinated Compounds: Scientific. S. Afr. Dent. J. 2009, 64, 208–212. [Google Scholar]
- Infection Control Recommendations for the Dental Office and the Dental Laboratory. J. Am. Dent. Assoc. 1996, 127, 672–680. [CrossRef] [PubMed]
- Matyas, J.; Dao, N.; Caputo, A.A.; Lucatorto, F.M. Effects of Disinfectants on Dimensional Accuracy of Impression Materials. J. Prosthet. Dent. 1990, 64, 25–31. [Google Scholar] [CrossRef]
- Tullner, J.B.; Commette, J.A.; Moon, P.C. Linear Dimensional Changes in Dental Impressions after Immersion in Disinfectant Solutions. J. Prosthet. Dent. 1988, 60, 725–728. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Beall, F.E.; Kelly, M.T.; Schuster, G.S. Sodium Hypochlorite Disinfection of Irreversible Hydrocolloid Impression Material. J. Prosthet. Dent. 1992, 67, 628–631. [Google Scholar] [CrossRef]
- Adabo, G.L.; Zanarotti, E.; Fonseca, R.G.; dos Santos Cruz, C.A. Effect of Disinfectant Agents on Dimensional Stability of Elastomeric Impression Materials. J. Prosthet. Dent. 1999, 81, 621–624. [Google Scholar] [CrossRef]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffman, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. MetaArXiv Preprint 2020. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Hardan, L.; Devoto, W.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Fernández-Barrera, M.Á.; CornejoRíos, E.; Monteiro, P.; Zarow, M.; Jakubowicz, N.; et al. Immediate Dentin Sealing for Adhesive Cementation of Indirect Restorations: A Systematic Review and Meta-Analysis. Gels 2022, 8, 175. [Google Scholar] [CrossRef]
- Ahmed, H.M.A.; Jawad, R.R.; Nahidh, M. Effect of the Different Disinfectants on the Microbial Contamination of Alginate Impression Materials. Indian J. Forensic Med. Toxicol. 2020, 14, 793. [Google Scholar]
- Al-Enazi, T.A.; Naik, A. Disinfection of Alginate and Addition Silicon Rubber-Based Impression Materials. Int. J. Stomatol. Occlusion Med. 2016, 8, 44–48. [Google Scholar] [CrossRef]
- Al-Jabrah, O.; Al-Shumailan, Y.; Al-Rashdan, M. Antimicrobial Effect of 4 Disinfectants on Alginate, Polyether, and Polyvinyl Siloxane Impression Materials. Int. J. Prosthodont. 2007, 20, 299–307. [Google Scholar] [PubMed]
- Alwahab, Z. Comparison of Antimicrobial Activities and Compressive Strength of Alginate Impression Materials Following Disinfection Procedure. J. Contemp. Dent. Pract. 2012, 13, 431–435. [Google Scholar] [CrossRef]
- Azevedo, M.J.; Correia, I.; Portela, A.; Sampaio-Maia, B. A Simple and Effective Method for Addition Silicone Impression Disinfection. J. Adv. Prosthodont. 2019, 11, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal, B.T.; Yilmaz, H.; Aydin, C.; Al, F.D.; Sultan, N. Efficacy of Various Disinfecting Agents on the Reduction of Bacteria from the Surface of Silicone and Polyether Impression Materials. Eur. J. Prosthodont. 2007, 15, 177–182. [Google Scholar]
- Benakatti, V.B.; Patil, A.P.; Sajjanar, J.; Shetye, S.S.; Amasi, U.N.; Patil, R. Evaluation of Antibacterial Effect and Dimensional Stability of Self-Disinfecting Irreversible Hydrocolloid: An in Vitro Study. J. Contemp. Dent. Pract. 2017, 18, 887–892. [Google Scholar] [CrossRef]
- Beyerle, M.P.; Hensley, D.M.; Bradley, D.V., Jr.; Schwartz, R.S.; Hilton, T.J. Immersion Disinfection of Irreversible Hydrocolloid Impressions with Sodium Hypochlorite. Part I: Microbiology. Int. J. Prosthodont. 1994, 7, 234–238. [Google Scholar]
- Brauner, A.W. In Vitro and Clinical Examination of the Effect of.an Antimicrobial Impression Material on the Oral microflora. Dent. Mater. 1990, 6, 201–203. [Google Scholar] [CrossRef]
- Bustos, J.; Herrera, R.; González, U.; Martínez, A.; Catalán, A.; González, U. Effect of Inmersion Desinfection with 0.5% Sodium Hypochlorite and 2% Glutaraldehyde on Alginate and Silicone: Microbiology and SEM Study. Int. J. Odontostomat. 2010, 4, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, G.K.; Chitumalla, R.; Manual, L.; Rajalbandi, S.K.; Chauhan, M.S.; Talukdar, P. Disinfectant Efficacy of 0.525% Sodium Hypochlorite and Epimax on Alginate Impression Material. J. Contemp. Dent. Pract. 2018, 19, 113–116. [Google Scholar] [CrossRef]
- Cserna, A.; Crist, R.L.; Birk Adams, A.; Dunning, D.G. Irreversible Hydrocolloids: A Comparison of Antimicrobial Efficacy. J. Prosthet. Dent. 1994, 71, 387–389. [Google Scholar] [CrossRef]
- De Azevedo Cubas, G.B.; Valentini, F.; Camacho, G.B.; Leite, F.R.M.; Cenci, M.S.; Pereira-Cenci, T. Antibacterial Efficacy and Effect of Chlorhexidine Mixed with Irreversible Hydrocolloid for Dental Impressions: A Randomized Controlled Trial. Int. J. Prosthodont. 2014, 27, 363–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demajo, J.K.; Cassar, V.; Farrugia, C.; Millan-Sango, D.; Sammut, C.; Valdramidis, V.; Camilleri, J. Effectiveness of Disinfectants on Antimicrobial and Physical Properties of Dental Impression Materials. Int. J. Prosthodont. 2016, 29, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Doddamani, S.; Patil, R.A.; Gangadhar, S.A. Efficacy of Various Spray Disinfectants on Irreversible Hydrocolloid Impression Materials: An in Vitro Study. Indian J. Dent. Res. 2011, 22, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Estafanous, E.W.; Palenik, C.J.; Platt, J.A. Disinfection of Bacterially Contaminated Hydrophilic PVS Impression Materials. J. Prosthodont. 2012, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.A.; Palenik, C.J.; Setcos, J.C.; Miller, C.H. Antimicrobial Activities of Dental Impression Materials. Dent. Mater. 1998, 14, 399–404. [Google Scholar] [CrossRef]
- Gerhardt, D.E.; Williams, H.N. Factors Affecting the Stability of Sodium Hypochlorite Solutions Used to Disinfect Dental Impressions. Quintessence Int. 1991, 22, 587–591. [Google Scholar]
- Ginjupalli, K.; Alla, R.K.; Tellapragada, C.; Gupta, L.; Perampalli, N.U. Antimicrobial Activity and Properties of Irreversible Hydrocolloid Impression Materials Incorporated with Silver Nanoparticles. J. Prosthet. Dent. 2016, 115, 722–728. [Google Scholar] [CrossRef]
- Goel, K.; Gupta, R.; Solanki, J.; Nayak, M. A Comparative Study between Microwave Irradiation and Sodium Hypochlorite Chemical Disinfection: A Prosthodontic View. J. Clin. Diagn. Res. 2014, 8. [Google Scholar] [CrossRef]
- Hiramine, H.; Watanabe, K.; Inaba, K.; Sasaki, H.; Hamda, N. Evaluation of Antimicrobial Effects on Dental Impression and Biofilm Removal by Sodium Dichloroisocyanurate. Biocontrol. Sci. 2021, 26, 17–25. [Google Scholar] [CrossRef]
- Ishida, H.; Nahara, Y.; Tamamoto, M.; Hamada, T. The Fungicidal Effect of Ultraviolet Light on Materials Impression. J. Prosthet. Dent. 1991, 65, 532–535. [Google Scholar] [CrossRef]
- Ismail, H.A.; Asfour, H.; Shikho, S.A. A Self-Disinfecting Irreversible Hydrocolloid Impression Material Mixed with Povidone Iodine Powder. Eur. J. Dent. 2016, 10, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, S.; Savage, N.W.; Brockhurst, P.J.; Bird, P.S. Disinfection of Dental Stone Casts: Antimicrobial Effects and Physical Property Alterations. Dent. Mater. 1995, 11, 19–23. [Google Scholar] [CrossRef]
- Jeyapalan, V.; Krishnan, C.S.; Ramasubramanian, H.; Sampathkumar, J.; Azhagarasan, N.S.; Krishnan, M. Comparative Evaluation of the Antimicrobial Efficacy of Three Immersion Chemical Disinfectants on Clinically Derived Poly (Vinyl Siloxane) Impressions. J. Prosthodont. 2018, 27, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Alani, M.M.; Velayudhan Nair, K.N.; Haridas, S.; Reba, P.B.; Thomas, S.A. Radiofrequency Glow Discharge as a Mode of Disinfection for Elastomeric Impression Materials. J. Contemp. Dent. Pract. 2017, 18, 131–136. [Google Scholar] [CrossRef]
- McNeill, M.; Coulter BDS, W.; Hussey BOS, D. Disinfection of Irreversible Hydrocolloid Impressions: A Comparative Study. Int. J. Prosthodont. 1992, 5, 563–567. [Google Scholar]
- Moura, C.D.v; Moura, W.L.d.; França, F.M.G.; Martins, G.A.S.; Feltrim, P.P.; Zanetti, R.V. Disinfection of Irreversible Hydrocolloid Impressions with Sodium Hypochlorite Steam: Assessment of Antimicrobial Efficacy. Rev. Odonto. Ciênc. 2010, 25, 182–187. [Google Scholar]
- Nascimento, P.L.A.d.; Ribeiro, R.B.; Gadê-Neto, C.R.; Dias, A.H.d.M. Incorporation of Disinfectants for Obtaining Dental Stone: Microbiological and Dimensional Evaluation. Rev. Odontol. UNESP 2015, 44, 24–30. [Google Scholar] [CrossRef]
- Samra, R.K.; Bhide, S.V. Efficacy of Different Disinfectant Systems on Alginate and Addition Silicone Impression Materials of Indian and International Origin: A Comparative Evaluation. J. Indian Prosthodont. Soc. 2010, 10, 182–189. [Google Scholar] [CrossRef]
- Savabi, O.; Nejatidanesh, F.; Bagheri, K.P.; Karimi, L.; Savabi, G. Prevention of Cross-Contamination Risk by Disinfection of Irreversible Hydrocolloid Impression Materials with Ozonated Water. Int. J. Prev. Med. 2018, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.; Hensley, D.H.; Bradley, D. Immersion Disinfection of Irreversible Hydrocolloid Impressions in PH-Adjusted Sodium Hypochlorite. Part 1: Microbiology. Int. J. Prosthodont. 1996, 7, 217–222. [Google Scholar]
- Singla, Y.; Pachar, R.B.; Poriya, S.; Mishra, A.; Sharma, R.; Garg, A. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study. J. Contemp. Dent. Pract. 2018, 19, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Ebara, S.; Sugawara, A.; Nishiyama, M.; Hayashi, K. Basic Properties of an Alginate Impression Material Supplemented with Chlorhexidine I. Disinfectant Effects on Oral Microbes. J. Nihon. Univ. Sch. Dent. 1994, 36, 135–138. [Google Scholar] [CrossRef]
- Trivedi, R.; Sangur, R.; Bathala, L.R.; Srivastava, S.; Madhav, S.; Chaubey, P. Evaluation of Efficacy of Aloe Vera as a Disinfectant by Immersion and Spray Methods on Irreversible Hydrocolloid Impression Material and Its Effect on the Dimensional Stability of Resultant Gypsum Cast—An in Vitro Study. J. Med. Life Sci. 2019, 12, 395–402. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, H.; Zhou, G. Effect of Ultraviolet Radiation Combined with Immersion Disinfection of Silicone Impressions Infected with Hepatitis B Virus and HIV. Biomed. Res. 2017, 28, 6377–6380. [Google Scholar]
- Kollu, S.; Hedge, V.; Chakravarthy, K. Efficacy of Chlorhexidine in Reduction of Microbial Contamination in Commercially Available Alginate Materials—In-Vitro Study. Glob. J. Med. Res. 2013, 13, 1–7. [Google Scholar]
- Nakagawa, T.; Hosaka, Y.; Ishihara, K.; Hiraishi, T.; Sato, S.; Ogawa, T.; Kamoi, K. The Efficacy of Povidone-Iodine Products against Periodontopathic Bacteria. Dermatology 2006, 212, 109–111. [Google Scholar] [CrossRef]
- Hamzah, R.A.M.; Saloom, H.F. Efficacy of Various Disinfectants on Bacterial and Fungal Contamination of Clamping Tweezers. Int. J. Med. Sci. Public Health 2018, 7, 41–45. [Google Scholar]
- Huang, P.Y.; Masri, R.; Romberg, E.; Driscoll, C.F. The Effect of Various Disinfectants on Dental Shade Guides. J. Prosthet. Dent. 2014, 112, 613–617. [Google Scholar] [CrossRef]
- Severa, J.; Klaban, V. Desident CaviCide a New Disinfectant. Cas. Lek. 2009, 148, 269–270. [Google Scholar]
- Gryshkov, O.; Mutsenko, V.; Tarusin, D.; Khayyat, D.; Naujok, O.; Riabchenko, E.; Nemirovska, Y.; Danilov, A.; Petrenko, A.Y.; Glasmacher, B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int. J. Mol. Sci. 2021, 22, 3096. [Google Scholar] [CrossRef] [PubMed]
- Chee, W.W.L.; Donovan, T.E. Polyvinyl Siloxane Impression Materials: A Review of Properties and Techniques. J. Prosthet. Dent. 1992, 68, 728–732. [Google Scholar] [CrossRef]
- Donovan, T.E.; Chee, W.W.L. A Review of Contemporary Impression Materials and Techniques. Dent. Clin. N. Am. 2004, 48, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Mandikos, M.N. Polyvinyl Siloxane Impression Materials: An Update on Clinical Use. Aust. Dent. J. 1998, 43, 428–434. [Google Scholar] [CrossRef]
- Estrela, C.; Estrela, C.R.A.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.A.; Pécora, J.D. Mechanism of Action of Sodium Hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Taylor, R.L.; Wright, P.S.; Maryan, C. Disinfection Procedures: Their Effect on the Dimensional Accuracy and Surface Quality of Irreversible Hydrocolloid Impression Materials and Gypsum Casts. Dent. Mater. 2002, 18, 103–110. [Google Scholar] [CrossRef]
- Atabek, D.; Alaçam, A.; Tüzüner, E.; Polat, S.; Sipahi, A.B. In-Vivo Evaluation of Impression Material Disinfection with Different Disinfectant Agents. J. Hacettepe Fac. Dent. 2009, 33, 52–59. [Google Scholar]
- Stonehill, A.A.; Krop, S.; Borick, P.M. Buffered Glutaraldehyde—A New Chemical Sterilizing Solution. Am. J. Hosp. Pharm. 1963, 20, 458–465. [Google Scholar] [CrossRef]
Search Strategy | |
---|---|
# 1 | Dental models OR Dental impressions OR Irreversible hydrocolloid OR Alginate impressions OR Silicone impression OR Primary impression OR Polyvinyl siloxane |
# 2 | Disinfection OR Sodium hypochlorite OR Disinfection techniques OR Sterilization OR Chemical disinfection OR Disinfection protocol OR Immersion disinfection OR Cross contamination OR Ultraviolet disinfection OR Microbial activity OR Disinfectant solutions OR Autoclave OR Disinfectant agents |
# 3 | #1 and #2 |
Study | Impression Material | Disinfection Agent | Type of Microorganism | Main Outcome | Main Results |
---|---|---|---|---|---|
Ahmed 2020 [22] | Alginate | Chlorhexidine Desident CaviCide Alcohol | Bacteria Fungi | Colony-forming units | Disinfectants killed the bacteria completely. |
Al-Enazi 2016 [23] | Polyvinyl siloxane Alginate | Sodium hypochlorite Glutaraldehyde | Streptococcus diphtheroid Neisseria | Colony-forming units | Use of 1% sodium hypochlorite yielded better results than did 2% glutaraldehyde. |
Al-Jabrah 2007 [24] | Alginate Polyether Polyvinyl siloxane | Dimenol Perform-ID® MD520® Haz-tabs® | Does not specify | Colony-forming units | All four disinfectant solutions tested produced effective disinfection of the impression materials investigated. |
Alwahab 2012 [25] | Alginate | Chlorhexidine digluconate | Pseudomonas aeruginosa Staphylococcus aureus Candida albicans | Inhibition halos | The least antibacterial activity of chlorhexidine digluconate was observed against Pseudomonas aeruginosa. |
Azevedo 2019 [26] | Polyvinyl siloxane | Hydrogen peroxide MD520® Sodium hypochlorite | Does not specify | Colony-forming units | All disinfectants tested showed high antimicrobial efficiency. |
Bal 2007 [27] | Polyvinyl siloxane Polyether | Sodium hypochlorite Gludex spray Mikrozid spray | Staphylococcus aureus Enterococcus faecalis | Colony-forming units | The disinfectant spray was less effective than sodium hypochlorite or Gludex. |
Benakatti 2017 [28] | Alginate | Chlorhexidine Gluconate solution | Staphylococcus aureus | Inhibition halos | This disinfection method was effective in the elimination of S. aureus. |
Beyerle 1994 [29] | Alginate | Sodium Hypochlorite | Bacillis subtilis Mycobacleriuiii bovis | Colony-forming units | One-minute exposure resulted in very inconsistent killing in all instances. |
Brauner 1990 [30] | Alginate | Blueprint asept® | Streptococcus mutans Streptococcus sanguis Streptococcus aureus Streptococcus pyogenes Staphylococcus aureus Actinomyces odontolyticus Escherichia coli Klebsiella pneumoniae Proteus mirabilis Enterobacter aerogenes Pseudomonas aeruginosa | Inhibition halos | Due to its bactericidal effect, Blueprint asept® can be recommended. |
Bustos 2010 [31] | Alginate Condensation silicone Alginate | Sodium Hypochlorite Glutaraldehyde | Gram (+) and (-) coccus and Gram (-) bacillus Candida | Colony-forming units | Alginate and silicone impressions can successfully be disinfected if they are immersed in either 0.5% NaOCl solution or 2% glutaraldehyde for 5 min. |
Choudhury 2018 [32] | Alginate | Sodium Hypochlorite Epimax® | Staphylococcus aureus Candida albicans Pseudomonas aeruginosa | Colony-forming units | Both Epimax and 0.525% sodium hypochlorite can disinfect the alginate impression material against Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus. |
Cserna 1994 [33] | Alginate | Chlorhexidine Quaternary ammonium salt | Lactobacillus Streptococcus mutans | Inhibition halos | Antimicrobial alginates are more effective than nonantimicrobial alginates in reducing the surface growth of the oral bacteria Lactobacillus and Streptococcus mutans. |
Cubas 2014 [34] | Alginate | Chlorhexidine | Streptococci Candida | Colony-forming units | Chlorhexidine as a water substitute during impression taking offers decreased microbial contamination with no negative alterations of the resulting casts, thus providing an easy method for controlling cross-infection. |
Demajo 2016 [35] | Alginate Polyvinyl siloxane | MD 520® Minuten® | Does not specify | Colony-forming units | Glutaraldehyde is more effective than alcohol-based chemical disinfectants. |
Doddamani 2011 [36] | Alginate | Povidone Iodine Sodium Hypochlorite Glutaraldehyde Distilled Water | Staphylococcus aureus Bacillus subtilis Streptococcus viridans | Colony-forming units | Disinfectants work equally well on an irreversible hydrocolloid impression material. |
Estafanous 2012 [37] | Polyvinyl siloxane Polyether | EcoTru [EnviroSystems] ProSpray [Certol] Sodium hypochlorite | Pseudomonas aeruginosa Salmonella choleraesius Staphylococcus aureus | Colony-forming units | Disinfectants investigated in this study will effectively disinfect Polyvinyl siloxane and polyether elastomeric impression materials. |
Flanagan 1998 [38] | Alginate | Single quaternary ammonium compound Chlorhexidine Dual quaternary ammonium compound | Gram-positive cocci Gram-negative bacilli yeast | Colony-forming units | The alginate with chlorhexidine killed all the gram-negative bacilli and the majority (95–99%) of the gram-positive cocci and yeast. |
Gerhardt 1991 [39] | Alginate | Sodium hypochlorite | Staphylococcus aureus Pseudomonas aeruginosa Bacillus subtitis | Inhibition halos | The results indicated that chlorine disinfecting solutions of sufficient concentration can be retained for periods up to 1 week and still maintain their effectiveness. |
Ginjupalli 2016 [40] | Alginate | Silver nanoparticles | E. coli S. aureus C. albicans | Inhibition halos | The particles imparted significant antimicrobial activity to the alginate impression materials tested. |
Goel, 2014 [41] | Alginate | Sodium hypochlorite Microwave irradiation | Staphylococcus aureus Pseudomonas aeruginosa | Colony-forming units | The results suggested that the microwave irradiated Kala stone casts proved to be a better disinfection method when compared with 0.07% sodium hypochlorite chemically disinfected incorporated cast. |
Hiramine 2021 [42] | Alginate | Sodium dichloroisocyanurate NaClO | Streptococcus mutans Escherichia coli Staphylococcus aureus Candida albicans Dental plaque bacteria | Colony-forming units | The number of oral bacteria adhering to the surfaces of impressions markedly decreased following a 10 min immersion in the 1000 ppm sodium dichloroisocyanurate solution. |
Ishida 1991 [43] | Alginate Condensation silicone | UV light | Candida albicans C. glabrota C. tropicalis C. parupsilosis C. krusei C. guilliermondi | Colony-forming units | UV light is effective in disinfecting impression materials that are contaminated with candida organisms. |
Ismail 2016 [44] | Alginate | Povidone iodine powder | Streptococcus mutans and Staphylococcus aureus | Inhibition halos | Modified alginate impression material with 15 weight % povidone-iodine powered gives the material self-disinfected properties |
Ivanovski 1995 [45] | Alginate | Sterile Water Chlorhexidine Glutaraldehyde Povidone-iodine Sodium hypochlorite with sodium chloride | Escherichia coli Staphylococcus aureus Enterobacter cloacae Pseudomonas aeruginosa Klebsiella pneumoniae Actinobacter calcoaceticus Bacillus subtilis Mycobacterium phlei Candida albicans. | Colony-forming units | When glutaraldehyde was used, all the microorganisms tested were killed after 1 h. Chlorhexidine was ineffective against most microorganisms. |
Jennings 1991 [3] | Polysulfide rubber Alginate Polyvinyl siloxane | Chlorhexidine gluconate | C albicans P. aeruginosa | Colony-forming units | Chlorhexidine gluconate (0.2%) was found to be less effective than either glutaraldehyde (2%) or sodium hypochlorite (0.0125%). |
Jeyapalan 2018 [46] | Polyvinyl siloxane | Electrolyzed oxidizing water Glutaraldehyde Sodium hypochlorite | Streptococci Staphylococci Pseudomonas Candida Proteus Klebsiella E. coli | Colony-forming units | All three chemical disinfectants employed in this study showed acceptable mean log reduction values and kill rate % for antimicrobial efficacy. |
Mathew 2017 [47] | Polyvinyl siloxane | Radio frequency glow discharge | Gram-negative bacilli Gram-positive cocci Escherichia coli Staphylococcus aureus | Inhibition halos | Ratio glow discharge is a very rapid and handy device, which can disinfect saliva contaminated elastomeric impression material surfaces. |
McNeill 1992 [48] | Alginate | Glutaraldehyde Hypochlorite solution chlorine Hygojet system | Streptococcus sanguis poliovirus | Colony-forming units | Washing the impression for 15 s followed by immersion in 2% glutaraldehyde for 20.0 min or a hypochlorite solution for 7.5 min effectively disinfected the impression. |
Moura 2010 [49] | Alginate | Sodium hypochlorite | Does not specify | Colony-forming units | 5.25% sodium hypochlorite can be used with antimicrobial efficacy, using the humidifier box and nebulizer box methods, and 2.5% sodium hypochlorite was not effective in the nebulizer box method. |
Nascimento 2015 [50] | Alginate | Sodium hypochlorite Chlorhexidine | S. mutans S. sanguis E. faecalis | Colony-forming units | 4% chlorhexidine was the most suitable disinfectant. |
Rweyendela 2009 [13] | Alginate | Chlorinated compounds: Aseptrol Presept | Candida albicans Staphylococcus aureus Pseudomonas aeruginosa Streptococcus mutans Bacillus subtilis spores | Colony-forming units | The compounds effectively disinfected the alginate in the presence of organic material, but Aseptrol did so after an immersion time of only 1.5 min. |
Samra 2010 [51] | Alginate Polyvinyl siloxane | Glutaraldehyde Sodium hypochlorite Ultraviolet chamber | Streptococcus viridans Diphtheroids Streptococcus pneumoniae Candida albicans Pseudomonas aeruginosa Staphylococcus albus | Colony-forming units | All the disinfection systems were effective in reducing the microbial load with the ultraviolet chamber as the most effective. |
Savabi 2018 [52] | Alginate | Ozonated water | Pseudomonas aeruginosa Staphylococcus aureus Candida albicans | Colony-forming units | Immersion of alginate impression material in ozonated water for 10 min will not lead to complete disinfection but decreases the microorganisms to a level that can prevent infection transmission. |
Schwartz 1996 [53] | Alginate | Sodium hypochlorite | Staphylococcus aureus Salmonella choleraesuis Pseudomonas aeruginosa Mycobacterium bovis Bacillus subtilis | Colony-forming units | It was found that a 10 min immersion in solutions reduced to pH 7 to 11 consistently produced a 4-log (99.99%) or greater reduction in viable organisms. |
Singla 2018 [54] | Polyether | Disinfectant spray Deconex | Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Candida albicans | Colony-forming units | The disinfectant used was effective. |
Tanaka 1994 [55] | Alginate | Chlorhexidine | Streptococcus mitis Actinomyces naeslundii Staphylococcus aureus Veillonella parvula Porphyromonas gingivalis Candida albicans | Colony-forming units | The use of an impression material supplemented with 1% chlorhexidine, such as Coe Hydrophilic Gel, may protect clinical staff and dental technicians from at least some bacterial infections associated with impression procedures. |
Trivedi 2019 [56] | Alginate | Aloe Vera | Staphylococcus aureus Pseudomonas aeruginosa Candida albicans | Colony-forming units | The effectiveness of aloe vera as a disinfectant was demonstrated. |
Zhang 2017 [57] | Elastomer impression material | Glutaraldehyde Ultraviolet radiation | Human Immunodeficiency Virus Hepatitis B virus | Colony-forming units | Combined use of ultraviolet radiation and 2% glutaraldehyde immersion can eliminate both Human Immunodeficiency Virus and Hepatitis B virus. |
Study | Specimen Randomization | Single Operator | Operator Blinded | Control Group | Complete Outcome Data | Sample Size Calculation | Risk of Bias |
---|---|---|---|---|---|---|---|
Ahmed 2020 [22] | NO | NO | NO | YES | NO | NO | High |
Al-Enazi 2016 [23] | YES | NO | NO | YES | YES | NO | Medium |
Al-Jabrah 2007 [24] | YES | NO | NO | YES | YES | NO | Medium |
Alwahab 2012 [25] | NO | NO | NO | YES | YES | NO | High |
Azevedo 2019 [26] | YES | NO | NO | YES | NO | NO | High |
Bal 2007 [27] | NO | NO | NO | YES | NO | NO | High |
Benakatti 2017 [28] | NO | YES | NO | YES | YES | NO | Medium |
Beyerle 1994 [29] | NO | NO | NO | YES | NO | NO | High |
Brauner 1990 [30] | YES | NO | NO | YES | NO | NO | High |
Bustos 2010 [31] | YES | NO | NO | YES | YES | NO | Medium |
Choudhury 2018 [32] | NO | NO | NO | YES | NO | NO | High |
Cserna 1994 [33] | NO | NO | NO | YES | YES | NO | High |
Cubas 2014 [34] | YES | NO | YES | YES | YES | YES | Low |
Demajo 2016 [35] | NO | NO | NO | YES | YES | NO | High |
Doddamani 2011 [36] | NO | NO | NO | YES | NO | NO | High |
Estafanous 2012 [37] | NO | NO | NO | YES | NO | NO | High |
Flanagan 1998 [38] | NO | NO | NO | YES | YES | NO | High |
Gerhardt 1991 [39] | NO | NO | NO | YES | NO | NO | High |
Ginjupalli 2016 [40] | NO | YES | NO | YES | YES | NO | Medium |
Goel 2014 [41] | NO | NO | NO | YES | YES | NO | High |
Hiramine 2021 [42] | NO | NO | NO | YES | YES | NO | High |
Ishida 1991 [43] | NO | NO | NO | YES | YES | NO | High |
Ismail 2016 [44] | NO | NO | NO | YES | NO | NO | High |
Ivanovski 1995 [45] | NO | NO | NO | YES | YES | NO | High |
Jennings 1991 [3] | YES | NO | NO | YES | YES | NO | Medium |
Jeyapalan 2018 [46] | YES | NO | NO | YES | YES | NO | Medium |
Mathew 2017 [47] | NO | NO | NO | YES | NO | YES | High |
McNeill 1992 [48] | NO | NO | NO | YES | NO | NO | High |
Moura 2010 [49] | YES | NO | NO | YES | YES | NO | Medium |
Nascimento 2015 [50] | NO | NO | NO | YES | YES | NO | High |
Rweyendela 2009 [13] | NO | NO | NO | YES | YES | NO | High |
Samra 2010 [51] | NO | NO | NO | YES | NO | NO | High |
Savabi 2018 [52] | NO | NO | NO | YES | YES | NO | High |
Schwartz 1996 [53] | NO | NO | NO | YES | YES | NO | High |
Singla 2018 [54] | NO | NO | NO | YES | NO | NO | High |
Tanaka 1994 [55] | NO | NO | NO | YES | NO | NO | High |
Trivedi 2019 [56] | NO | NO | NO | YES | YES | YES | Medium |
Zhang 2017 [57] | YES | NO | NO | YES | NO | NO | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Cornejo-Ríos, E.; Tosco, V.; Monterubbianesi, R.; Mancino, S.; Eid, A.; Mancino, D.; et al. Disinfection Procedures and Their Effect on the Microorganism Colonization of Dental Impression Materials: A Systematic Review and Meta-Analysis of In Vitro Studies. Bioengineering 2022, 9, 123. https://doi.org/10.3390/bioengineering9030123
Hardan L, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Cornejo-Ríos E, Tosco V, Monterubbianesi R, Mancino S, Eid A, Mancino D, et al. Disinfection Procedures and Their Effect on the Microorganism Colonization of Dental Impression Materials: A Systematic Review and Meta-Analysis of In Vitro Studies. Bioengineering. 2022; 9(3):123. https://doi.org/10.3390/bioengineering9030123
Chicago/Turabian StyleHardan, Louis, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Monika Lukomska-Szymanska, Elizabeth Cornejo-Ríos, Vincenzo Tosco, Riccardo Monterubbianesi, Sara Mancino, Ammar Eid, Davide Mancino, and et al. 2022. "Disinfection Procedures and Their Effect on the Microorganism Colonization of Dental Impression Materials: A Systematic Review and Meta-Analysis of In Vitro Studies" Bioengineering 9, no. 3: 123. https://doi.org/10.3390/bioengineering9030123
APA StyleHardan, L., Bourgi, R., Cuevas-Suárez, C. E., Lukomska-Szymanska, M., Cornejo-Ríos, E., Tosco, V., Monterubbianesi, R., Mancino, S., Eid, A., Mancino, D., Kharouf, N., & Haikel, Y. (2022). Disinfection Procedures and Their Effect on the Microorganism Colonization of Dental Impression Materials: A Systematic Review and Meta-Analysis of In Vitro Studies. Bioengineering, 9(3), 123. https://doi.org/10.3390/bioengineering9030123