Sugar Replacement in Chocolate-Flavored Milk: Differences in Consumer Segments’ Liking of Sweetener Systems Relate to Temporal Perception
Abstract
:1. Introduction
- To investigate how partial or complete sucrose replacement using either a natural or synthetic sweetener system affects the CFM affects sensory profile as well as consumer liking.
- To explore if individual differences in liking reveal consumers segments with different dynamic sensory perceptions of the sucrose-replaced CFMs.
2. Materials and Methods
2.1. Treatments of Sweetener Systems
2.2. Iso-Sweetness Validation and Sensory Profile of Treatments
2.3. Consumer Liking and Temporal Check-All-That-Apply of Treatments
2.4. Data Analysis
3. Results
3.1. Iso-Sweetness and Sensory Profile of the Replacement Levels and Sweetener Systems
3.2. Consumer Liking of the Sucrose Replacement Levels and Sweetener Systems
3.3. Consumer Temporal Profile of the Sweetened Treatment Systems
3.4. Consumer Segmentation Based on Liking Ratings
3.5. Differences by the Clusters in Temporal Profile of the Treatments
3.6. Factors and Acquainted Sweeteners Affected by Consumers
4. Discussion
4.1. Sensory Profile of the Treatments by Relative-to-Reference Scaling
4.2. Consumer Liking of the Treatments
4.3. Associations between Liking and Temporal Profiles of the Treatments
4.4. Individual Differences in Bitter Perception of the Synthetic Sweetener System
4.5. Cluster Characteristics
4.6. Comparison of Results from Relative-to-Reference Scaling and TCATA
4.7. Comment on the Use of Erythritol Sweetener
4.8. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, S.C.; Low, J.Y.Q.; Keast, R.S.J. Sugar reduction without compromising sensory perception. An impossible dream? Crit. Rev. Food Sci. Nutr. 2019, 59, 2287–2307. [Google Scholar] [CrossRef]
- Li, X.E.; Lopetcharat, K.; Drake, M.A. Parents’ and children’s acceptance of skim chocolate milks sweetened by monk fruit and stevia leaf extracts. J. Food Sci. 2015, 80, S1083–S1092. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Tepper, B.J. Perception and acceptance of selected high-intensity sweeteners and blends in model soft drinks by propylthiouracil (PROP) non-tasters and super-tasters. Food Qual. Prefer. 2007, 18, 531–540. [Google Scholar] [CrossRef]
- Andersen, G.H.; Alexi, N.; Sfyra, K.; Byrne, D.V.; Kidmose, U. Temporal check-all-that-apply on the sensory profiling of sucrose-replaced sweetener blends of natural and synthetic origin. J. Sens. Stud. 2023, 38, e12838. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Fulgoni, V.L.; Cowan, A.E.; Gaine, P.C. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars. Nutrients 2018, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Striegel-Moore, R.H.; Thompson, D.; Affenito, S.G.; Franko, D.L.; Obarzanek, E.; Barton, B.A.; Schreiber, G.B.; Daniels, S.R.; Schmidt, M.; Crawford, P.B. Correlates of beverage intake in adolescent girls: The National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatr. 2006, 148, 183–187. [Google Scholar] [CrossRef]
- Coyle, D.H.; Ndanuko, R.; Singh, S.; Huang, P.; Wu, J.H. Variations in Sugar Content of Flavored Milks and Yogurts: A Cross-Sectional Study across 3 Countries. Curr. Dev. Nutr. 2019, 3, nzz060. [Google Scholar] [CrossRef]
- Mahato, D.K.; Keast, R.; Liem, D.G.; Russell, C.G.; Cicerale, S.; Gamlath, S. Sugar Reduction in Dairy Food: An Overview with Flavoured Milk as an Example. Foods 2020, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Miele, N.A.; Cabisidan, E.K.; Plaza, A.G.; Masi, P.; Cavella, S.; Di Monaco, R. Carbohydrate sweetener reduction in beverages through the use of high potency sweeteners: Trends and new perspectives from a sensory point of view. Trends Food Sci. Technol. 2017, 64, 87–93. [Google Scholar] [CrossRef]
- Oliveira, D.; Antunez, L.; Gimenez, A.; Castura, J.C.; Deliza, R.; Ares, G. Sugar reduction in probiotic chocolate-flavored milk: Impact on dynamic sensory profile and liking. Food Res. Int. 2015, 75, 148–156. [Google Scholar] [CrossRef]
- Oltman, A.E.; Lopetcharat, K.; Bastian, E.; Drake, M.A. Identifying Key Attributes for Protein Beverages. J. Food Sci. 2015, 80, S1383–S1390. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Tech. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Brodock, J.L.; Hayes, J.E.; Masterson, T.D.; Hopfer, H. Differences in preferred fat level, sweetener type, and amount of added sugar in chocolate milk in a choice task relate to physical activity and orthorexia. Appetite 2021, 163, 105214. [Google Scholar] [CrossRef] [PubMed]
- Li, X.E.; Lopetcharat, K.; Drake, M. Extrinsic attributes that influence parents’ purchase of chocolate milk for their children. J. Food Sci. 2014, 79, S1407–S1415. [Google Scholar] [CrossRef]
- Shindou, T.; Sasaki, Y.; Eguchi, T.; Euguchi, T.; Hagiwara, K.; Ichikawa, T. Identification of erythritol by HPLC and GC-MS and quantitative measurement in pulps of various fruits. J. Agric. Food Chem. 1989, 37, 1474–1476. [Google Scholar] [CrossRef]
- Mora, M.R.; Dando, R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1554–1583. [Google Scholar] [CrossRef]
- Reyes, M.M.; Castura, J.C.; Hayes, J.E. Characterizing Dynamic Sensory Properties of Nutritive and Nonnutritive Sweeteners with Temporal Check-All-That-Apply. J. Sens. Stud. 2017, 32, e12270. [Google Scholar] [CrossRef]
- 2Tan, V.W.K.; Wee, M.S.M.; Tomic, O.; Forde, C.G. Temporal sweetness and side tastes profiles of 16 sweeteners using temporal check-all-that-apply (TCATA). Food Res. Int. 2019, 121, 39–47. [Google Scholar] [CrossRef]
- Choi, J.H.; Chung, S.J. Sweetness potency and sweetness synergism of sweeteners in milk and coffee systems. Food Res. Int. 2015, 74, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Gotow, N.; Esumi, S.; Kubota, H.; Kobayakawa, T. Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions. Beverages 2018, 4, 28. [Google Scholar] [CrossRef]
- Junge, J.Y.; Mielby, L.A.; Zeng, Y.; Sun, Y.X.; Byrne, D.V.; Castura, J.C.; Kidmose, U. Investigating the temporality of binary taste interactions in blends of sweeteners and citric acid in solution. J. Sens. Stud. 2022, 37, e12270. [Google Scholar] [CrossRef]
- Tan, V.W.K.; Wee, M.S.M.; Tomic, O.; Forde, C.G. Rate-All-That-Apply (RATA) comparison of taste profiles for different sweeteners in black tea, chocolate milk, and natural yogurt. J. Food Sci. 2020, 85, 486–492. [Google Scholar] [CrossRef]
- Pedersen, L.; Bertelsen, A.S.; Byrne, D.V.; Kidmose, U. Sensory Interactions between Sweetness and Fat in a Chocolate Milk Beverage. Foods 2023, 12, 2711. [Google Scholar] [CrossRef]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef]
- Harwood, W.S.; Drake, M. Application of temporal penalty analysis for the optimization of sugar reduction in protein beverages. J. Sens. Stud. 2021, 36, e12644. [Google Scholar] [CrossRef]
- Parker, M.N.; Lopetcharat, K.; Drake, M.A. Consumer acceptance of natural sweeteners in protein beverages. J. Dairy Sci. 2018, 101, 8875–8889. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, A.S.; Mielby, L.A.; Alexi, N.; Byrne, D.V.; Kidmose, U. Sweetness Enhancement by Aromas: Measured by Descriptive Sensory Analysis and Relative to Reference Scaling. Chem. Senses 2020, 45, 293–301. [Google Scholar] [CrossRef]
- Stoer, N.L.; Lawless, H.T. Comparison of Single Product Scaling and Relative-to-Reference Scaling in Sensory Evaluation of Dairy Products. J. Sens. Stud. 2007, 8, 257–270. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Descriptive Analysis. In Sensory Evaluation of Food, 2nd ed.; Food Science Text Series; Springer: New York, NY, USA, 2010; pp. 227–257. [Google Scholar]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/36385.html (accessed on 19 May 2024).
- ISO 8586:2012; Sensory analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/45352.html (accessed on 19 May 2024).
- Ares, G.; Castura, J.C.; Antúnez, L.; Vidal, L.; Giménez, A.; Coste, B.; Picallo, A.; Beresford, M.K.; Chheang, S.L.; Jaeger, S.R. Comparison of two TCATA variants for dynamic sensory characterization of food products. Food Qual. Prefer. 2016, 54, 160–172. [Google Scholar] [CrossRef]
- Visalli, M.; Mahieu, B.; Thomas, A.; Schlich, P. Concurrent vs. retrospective temporal data collection: Attack-evolution-finish as a simplification of Temporal Dominance of Sensations? Food Qual. Prefer. 2020, 85, 103956. [Google Scholar] [CrossRef]
- Dinnella, C.; Masi, C.; Naes, T.; Monteleone, E. A new approach in TDS data analysis: A case study on sweetened coffee. Food Qual. Prefer. 2013, 30, 33–46. [Google Scholar] [CrossRef]
- McMahon, K.M.; Culver, C.; Castura, J.C.; Ross, C.F. Perception of carbonation in sparkling wines using descriptive analysis (DA) and temporal check-all-that-apply (TCATA). Food Qual. Prefer. 2017, 59, 14–26. [Google Scholar] [CrossRef]
- Meyners, M.; Hasted, A. On the applicability of ANOVA models for CATA data. Food Qual. Prefer. 2021, 92, 104219. [Google Scholar] [CrossRef]
- Meyners, M.; Hasted, A. On the choice of appropriate models for CATA data—A further reply to Bi and Kuesten. Food Qual. Prefer. 2023, 106, 104818. [Google Scholar] [CrossRef]
- Vigneau, E.; Chen, M.K.; Qannari, E.M. ClustVarLV: An R Package for the Clustering of Variables Around Latent Variables. R J. 2015, 7, 134–148. [Google Scholar] [CrossRef]
- Vigneau, E.; Qannari, E.M.; Navez, B.; Cottet, V. Segmentation of consumers in preference studies while setting aside atypical or irrelevant consumers. Food Qual. Prefer. 2016, 47, 54–63. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V. emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 19 May 2024).
- Schiffman, S.S.; Booth, B.J.; Losee, M.L.; Pecore, S.D.; Warwick, Z.S. Bitterness of sweeteners as a function of concentration. Brain Res. Bull. 1995, 36, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Lee, H.; Shin, J.Y. Sensory Properties and Consumer Acceptability of Coffee Drinks Contained Sucralose and Acesulfame-K. Korean Soc. Food Sci. Technol. 2007, 39, 527–533. [Google Scholar]
- Mora, M.; Wijaya, F.; Jiang, G.; Gibney, P.; Dando, R. Sensory profiling of natural sweeteners and sucrose-sweetener binary mixtures. J. Food Sci. 2023, 88, 2984–2995. [Google Scholar] [CrossRef] [PubMed]
- Prakash, I.; Markosyan, A.; Bunders, C. Development of Next Generation Stevia Sweetener: Rebaudioside M. Foods 2014, 3, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Gatlin, L.A.; Sattely-Miller, E.A.; Graham, B.G.; Heiman, S.A.; Stagner, W.C.; Erickson, R.P. The effect of sweeteners on bitter taste in young and elderly subjects. Brain Res. Bull. 1994, 35, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Hong, J.H. Effects of aroma-taste interaction on the sensory attributes of rebaudiosides in soymilk and milk. J. Sci. Food Agric. 2023, 103, 7445–7454. [Google Scholar] [CrossRef]
- Bertelsen, A.S.; Mielby, L.A.; Alexi, N.; Byrne, D.V.; Kidmose, U. Individual Differences in Sweetness Ratings and Cross-Modal Aroma-Taste Interactions. Foods 2020, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, A.S.; Zeng, Y.; Mielby, L.A.; Sun, Y.-X.; Byrne, D.V.; Kidmose, U. Cross-modal Effect of Vanilla Aroma on Sweetness of Different Sweeteners among Chinese and Danish Consumers. Food Qual. Prefer. 2021, 87, 104036. [Google Scholar] [CrossRef]
- Sousa Lima, R.; Cazelatto de Medeiros, A.; Andre Bolini, H.M. Sucrose replacement: A sensory profile and time-intensity analysis of a tamarind functional beverage with artificial and natural non-nutritive sweeteners. J. Sci. Food Agric. 2021, 101, 593–602. [Google Scholar] [CrossRef]
- Cadena, R.S.; Cruz, A.G.; Netto, R.R.; Castro, W.F.; Faria, J.D.F.; Bolini, H.M.A. Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time. Food Res. Int. 2013, 54, 1670–1679. [Google Scholar] [CrossRef]
- Reis, F.; Alcaire, F.; Deliza, R.; Ares, G. The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Qual. Prefer. 2017, 62, 227–236. [Google Scholar] [CrossRef]
- Yang, Q.; Kraft, M.; Shen, Y.C.; MacFie, H.; Ford, R. Sweet Liking Status and PROP Taster Status impact emotional response to sweetened beverage. Food Qual. Prefer. 2019, 75, 133–144. [Google Scholar] [CrossRef]
- Muenprasitivej, N.; Tao, R.; Nardone, S.J.; Cho, S. The Effect of Steviol Glycosides on Sensory Properties and Acceptability of Ice Cream. Foods 2022, 11, 1745. [Google Scholar] [CrossRef]
- Honorio, A.R.; Soares, A.F.; de Lima, D.C.N.; Tribst, A.A.L. Passion fruit nectar sweetened with stevia and sucralose: Is perception affected by the regular consumption of sweeteners or diabetes? Int. J. Gastron. Food Sci. 2021, 25, 100404. [Google Scholar] [CrossRef]
- Rocha, I.F.; Bolini, H.M. Passion fruit juice with different sweeteners: Sensory profile by descriptive analysis and acceptance. Food Sci. Nutr. 2015, 3, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Mahato, D.K.; Keast, R.; Liem, D.G.; Russell, C.G.; Cicerale, S.; Gamlath, S. Optimisation of natural sweeteners for sugar reduction in chocolate flavoured milk and their impact on sensory attributes. Int. Dairy J. 2021, 115, 104922. [Google Scholar] [CrossRef]
- Lee, S.H.; Choe, S.Y.; Seo, G.G.; Hong, J.H. Can “Functional Sweetener” Context Increase Liking for Cookies Formulated with Alternative Sweeteners? Foods 2021, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Leksrisompong, P.P.; Lopetcharat, K.; Guthrie, B.; Drake, M.A. Preference mapping of lemon lime carbonated beverages with regular and diet beverage consumers. J. Food Sci. 2013, 78, S320–S328. [Google Scholar] [CrossRef] [PubMed]
- Markey, O.; Lovegrove, J.A.; Methven, L. Sensory profiles and consumer acceptability of a range of sugar-reduced products on the UK market. Food Res. Int. 2015, 72, 133–139. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Chheang, S.L.; Jin, D.; Ryan, G.S.; Ares, G. How do CATA questions work? Relationship between likelihood of selecting a term and perceived attribute intensity. J. Sens. Stud. 2023, 38, e12833. [Google Scholar] [CrossRef]
- DuBois, G.E.; Prakash, I. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu. Rev. Food Sci. Technol. 2012, 3, 353–380. [Google Scholar] [CrossRef]
- Ayya, N.; Lawless, H.T. Quantitative and Qualitative Evaluation of High-Intensity Sweeteners and Sweetener Mixtures. Chem. Senses 1992, 17, 245–259. [Google Scholar] [CrossRef]
- Horne, J.; Lawless, H.T.; Speirs, W.; Sposato, D. Bitter taste of saccharin and acesulfame-K. Chem. Senses 2002, 27, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kamerud, J.K.; Delwiche, J.F. Individual differences in perceived bitterness predict liking of sweeteners. Chem. Senses 2007, 32, 803–810. [Google Scholar] [CrossRef]
- Allen, A.L.; McGeary, J.E.; Hayes, J.E. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31. Chemosens. Percept. 2013, 6, 109–117. [Google Scholar] [CrossRef]
- Bobowski, N.; Reed, D.R.; Mennella, J.A. Variation in the TAS2R31 bitter taste receptor gene relates to liking for the nonnutritive sweetener Acesulfame-K among children and adults. Sci. Rep. 2016, 6, 39135. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.L.; McGeary, J.E.; Knopik, V.S.; Hayes, J.E. Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31. Chem. Senses 2013, 38, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Hopfer, H.; Riak, A.C.; Roberts, R.F.; Hayes, J.E.; Ziegler, G.R. Synergistic and antagonistic ingredient interactions as a sugar reduction strategy in chocolate milk. J. Sens. Stud. 2022, 37. [Google Scholar] [CrossRef]
- Li, Y.; Ahuja, J.; Nguyen, Q.; Pehrsson, P. Top Sweeteners in Top Contributors of Commercially Processed Foods With Added Sugars in the U.S.: Application of the IngID Program. Curr. Dev. Nutr. 2021, 5, 560. [Google Scholar] [CrossRef]
- Jaeger, S.; Chheang, S.L.; Jin, D.; Roigard, C.; Ares, G. Check-all-that-apply (CATA) questions: Sensory term citation frequency reflects rated term intensity and applicability. Food Qual. Prefer. 2020, 86, 103986. [Google Scholar] [CrossRef]
- Alexi, N.; Nanou, E.; Lazo, O.; Guerrero, L.; Grigorakis, K.; Byrne, D.V. Check-All-That-Apply (CATA) with semi-trained assessors: Sensory profiles closer to descriptive analysis or consumer elicited data? Food Qual. Prefer. 2018, 64, 11–20. [Google Scholar] [CrossRef]
- Moussaoui, K.A.; Varela, P. Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Qual. Prefer. 2010, 21, 1088–1099. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Crofton, V.A.; Beeker, T.G. Sensory evaluation of soft drinks with various sweeteners. Physiol. Behav. 1985, 34, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Riera, C.E.; Vogel, H.; Simon, S.A.; Coutre, J.l. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 293, R626–R634. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Nemet, I.; Alamri, H.; Wilcox, J.; Gupta, N.; Nimer, N.; Haghikia, A.; Li, X.S.; Wu, Y.; Saha, P.P.; et al. The artificial sweetener erythritol and cardiovascular event risk. Nat. Med. 2023, 29, 710–718. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the safety of the proposed extension of use of erythritol (E 968) as a food additive. EFSA J. 2015, 13, 4033. [Google Scholar] [CrossRef]
- Tiefenbacher, K.F. Technology of Main Ingredients—Sweeteners and Lipids. In Wafer and Waffle; Elsevier: Amsterdam, The Netherlands, 2017; pp. 123–225. [Google Scholar]
- O’Mahony, M.; Goldenberg, M.; Stedmon, J.; Alford, J. Confusion in the use of the taste adjectives ‘sour’ and ‘bitter’. Chem. Senses 1979, 4, 301–318. [Google Scholar] [CrossRef]
Treatment | Added Sucrose Replacement | Energy Reduction/100 mL (kcal) | Total Energy/100 mL (kcal) | Sweetener Concentration %w/w 1 | |||
---|---|---|---|---|---|---|---|
Sucrose | Ace-K | Reb M | Erythritol | ||||
S | - | - | 63.3 | 6% | - | - | - |
S+R | 58% | −14 | 49.3 | 2.50% | - | 0.01% | 1.60% |
S+A | 58% | −14 | 49.3 | 2.50% | 0.02% | - | - |
R | 100% | −24 | 39.3 | - | - | 0.02% | 1.60% |
A | 100% | −24 | 39.3 | - | 0.05% | - | - |
Sensory Attribute | Evaluation Phase | Definition | Reference |
---|---|---|---|
Flavor | |||
Overall flavor | S1m, S2f | Overall flavor intensity of the sample as a whole | Definition only |
Cocoa powder | S1m, S1f, S2f | Flavor associated with cocoa powder | Definition only |
Creamy-fatty | S1m, S1f | Flavor associated with fatty dairy products like cream | Definition only |
Nutty | S1m | Flavor associated with hazelnut | Hazelnut aroma (Sosa ingredients, Navarcles, Spain) |
Caramel | S1m | Flavor associated with caramel | Caramel aroma (Sosa ingredients, Navarcles, Spain) |
Milky | S1m | Flavor associated with dairy products like milk | Lactose free Arla® LactoFREE semi-skimmed milk (Arla Foods Amba, Viby J, Denmark) |
Licorice | S1f | Flavor associated with licorice | 0.5% Reb M in aqueous solution |
Lactic | S2f | Flavor associated with sour dairy products like sour cream after swallowing | Definition only |
Taste | |||
Sweet | S1m, S1f, S2f | Sweet taste | Definition only |
Bitter | S1m, S1f, S2f | Bitter taste | Definition only |
Mouthfeel | |||
Mouthcoating | S1f, S2m, S2f | Degree to which the product is coating the oral cavity | Definition only |
Mouthdrying | S1f, S2m, S2f | Degree to which the product creates dryness in the oral cavity | Definition only |
Pungent | S1f | Degree to which the product creates an irritation in the oral cavity | 0.5% Reb M in aqueous solution |
Grainy | S2m | Amount of distinct loose particles in the product mass which have grainy/dusty texture | 0% sucrose CFM |
Viscosity | S2m | Flow of the sample in the mouth like skimmed milk | Definition only |
Mouthwatering | S2m | Degree to which the product creates salivation | Definition only |
Cooling | S2f | Degree to which the product creates a sensation of reduced temperature in mouth | Definition only |
Evaluation Phase | Attribute | Treatment Effect p-Value | Treatments | ||||
---|---|---|---|---|---|---|---|
S | S+R | S+A | R | A | |||
S1m | Sweet | 0.658 | 51.3 ± 8.7 | 49.8 ± 9.9 | 51.3 ± 10.1 | 47.7 ± 11.2 | 51.6 ± 12.5 |
Bitter | 0.046 | 53.5 ± 5.9 | 55.4 ± 6.8 | 57.6 ± 8.0 | 60.6 ± 10.0 | 61.9 ± 12.9 * | |
S1f | Sweet | 0.982 | 50.1 ± 8.8 | 49.8 ± 8.5 | 49.1 ± 11.1 | 49.0 ± 10.5 | 49.7 ± 12.1 |
Bitter | 0.008 | 54.1 ± 6.6 | 54.7 ± 8.0 | 56.9 ± 6.2 | 61.2 ± 9.2 * | 61.2 ± 9.3 * | |
Pungent | 0.022 | 49.6 ± 10.0 | 52.8 ± 11.1 | 52.9 ± 10.1 | 59.4 ± 11.6 * | 53.4 ± 10.8 | |
Licorice | <0.001 | 51.2 ± 6.2 | 52.0 ± 5.7 | 53.5 ± 6.4 | 65.3 ± 14.0 * | 57.6 ± 10.6 | |
S2m | Mouthwatering | 0.018 | 56.4 ± 8.5 | 54.2 ± 8.3 | 53.9 ± 10.0 | 47.8 ± 13.6 * | 49.5 ± 9.0 |
S2f | Sweet | 0.433 | 50.3 ± 6.7 | 48.6 ± 5.9 | 51.1 ± 9.7 | 46.9 ± 9.9 | 48.3 ± 11.2 |
Bitter | 0.020 | 54.6 ± 5.0 | 56.4 ± 7.3 | 55.8 ± 6.2 | 60.0 ± 9.9 * | 61.1 ± 8.8 * | |
Mouthdrying | 0.042 | 51.9 ± 7.5 | 56.4 ± 10.2 | 56.0 ± 10.4 | 61.0 ± 11.2 * | 56.6 ± 10.6 | |
Cooling | 0.008 | 51.3 ± 6.0 | 51.4 ± 5.1 | 55.9 ± 8.2 | 56.5 ± 9.6 | 56.9 ± 9.6 * |
Cluster 1 | Cluster 2 | p-Value | |
---|---|---|---|
Number of consumers | 44 | 44 | - |
Number of females (%) | 25 (56.8) | 29 (65.9) | 0.51 1 |
Age (in years) | 23.3 ± 2.8 | 23.8 ± 3.4 | 0.40 |
Days intaking CFM per year | 33.9 ± 57.2 | 24.4 ± 28.0 | 0.32 |
Days intaking sucrose-sweetened beverage per year | 68.9 ± 77.1 | 71.8 ± 92.5 | 0.87 |
Days intaking NNS beverages per year | 82.3 ± 105.0 | 47.2 ± 80.8 | 0.08 |
Factors | Cluster 1 | Cluster 2 |
---|---|---|
Taste | 98% | 98% |
Low price | 57% | 57% |
Thick texture | 32% | 30% |
Naturalness | 23% | 41% |
Climate impact | 20% | 18% |
Brand | 16% | 18% |
Organic | 16% | 16% |
Animal welfare | 14% | 9% |
No additives | 11% | 11% |
Low energy | 11% | 7% |
Allergy/intolerance | 11% | 2% |
Low fat | 9% | 7% |
Other | 7% | 9% |
None | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, G.B.H.; Christensen, C.L.D.; Castura, J.C.; Alexi, N.; Byrne, D.V.; Kidmose, U. Sugar Replacement in Chocolate-Flavored Milk: Differences in Consumer Segments’ Liking of Sweetener Systems Relate to Temporal Perception. Beverages 2024, 10, 54. https://doi.org/10.3390/beverages10030054
Andersen GBH, Christensen CLD, Castura JC, Alexi N, Byrne DV, Kidmose U. Sugar Replacement in Chocolate-Flavored Milk: Differences in Consumer Segments’ Liking of Sweetener Systems Relate to Temporal Perception. Beverages. 2024; 10(3):54. https://doi.org/10.3390/beverages10030054
Chicago/Turabian StyleAndersen, Glenn Birksø Hjorth, Caroline Laura Dam Christensen, John C. Castura, Niki Alexi, Derek V. Byrne, and Ulla Kidmose. 2024. "Sugar Replacement in Chocolate-Flavored Milk: Differences in Consumer Segments’ Liking of Sweetener Systems Relate to Temporal Perception" Beverages 10, no. 3: 54. https://doi.org/10.3390/beverages10030054
APA StyleAndersen, G. B. H., Christensen, C. L. D., Castura, J. C., Alexi, N., Byrne, D. V., & Kidmose, U. (2024). Sugar Replacement in Chocolate-Flavored Milk: Differences in Consumer Segments’ Liking of Sweetener Systems Relate to Temporal Perception. Beverages, 10(3), 54. https://doi.org/10.3390/beverages10030054