Innovative Green Tea Mate: Physicochemical Profile and Sensory Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physicochemical Measurements
2.2.1. Colour Analysis of the Dried Product
2.2.2. Colour Analysis of the Drink
2.2.3. Chlorophyll Content Analysis
2.3. Nutraceutical Analyses
2.3.1. Total Phenolic Content (TPC)
2.3.2. Antioxidant Capacity
2.4. Chromatographic Analysis of Caffeine and Theobromine
2.5. Consumer Survey
2.6. Preliminary Internal Sensory Evaluation
2.7. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical Measurements
3.1.1. Colour Analysis of the Dried Product
3.1.2. Colour Analysis of the Drink
3.1.3. Chlorophyll Content Analysis
3.2. Nutraceutical Analyses: TPC and Antioxidant Capacity
3.3. Chromatographic Analysis of Caffeine and Theobromine
3.4. Consumer Survey
3.5. Preliminary Internal Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penteado Junior, J.F.; Goulart, I.C.G.d.R. Erva 20: Sistema de Produção para Erva-Mate; Brasília, D.F., Ed.; Embrapa: Brasília, Brazil, 2019; ISBN 978-85-7035-875-2. [Google Scholar]
- IBGE|Portal Do IBGE|IBGE. Available online: https://www.ibge.gov.br/ (accessed on 22 December 2023).
- Resende, R. A Erva-Mate e as Transformações Socioeconômicas e Políticas No Paraná. Revista Da Universidade Vale Do Rio Verde. Rev. Univ. Val. Verde 2017, 15, 278–295. [Google Scholar] [CrossRef]
- Isolabella, S.; Cogoi, L.; López, P.; Anesini, C.; Ferraro, G.; Filip, R. Study of the Bioactive Compounds during Yerba Mate (Ilex paraguariensis) Processing. Food Chem. 2010, 122, 695–699. [Google Scholar] [CrossRef]
- Mesquita, M.; Santos, E.; Kassuya, C.A.; Salvador, M.J. Chimarrão, Terere and Mate-Tea in Legitimate Technology Modes of Preparation and Consume: A Comparative Study of Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Anxiety Properties of the Mostly Consumed Beverages of Ilex paraguariensis St. Hil. J. Ethnopharmacol. 2021, 279, 114401. [Google Scholar] [CrossRef]
- Ruta de la Yerba Mate. Available online: https://www.rutadelayerbamate.org.ar/ (accessed on 22 December 2023).
- Folch, C. Stimulating Consumption: Yerba Mate Myths, Markets, and Meanings from Conquest to Present. Comp. Stud. Soc. Hist. 2010, 52, 6–36. [Google Scholar] [CrossRef]
- Burris, K.P.; Harte, F.M.; Michael Davidson, P.; Neal Stewart, C., Jr.; Zivanovic, S. Composition and Bioactive Properties of Yerba Mate (Llex paraguariensis A. St.-Hil.): A Review. Chil. J. Agric. Res. 2012, 72, 268–275. [Google Scholar] [CrossRef]
- Mendes, F.R.; Carlini, E.A. Brazilian Plants as Possible Adaptogens: An Ethnopharmacological Survey of Books Edited in Brazil. J. Ethnopharmacol. 2007, 109, 493–500. [Google Scholar] [CrossRef]
- Bracesco, N.; Sanchez, A.G.; Contreras, V.; Menini, T.; Gugliucci, A. Recent Advances on Ilex paraguariensis Research: Minireview. J. Ethnopharmacol. 2011, 136, 378–384. [Google Scholar] [CrossRef]
- Lutomski, P.; Goździewska, M.; Florek-Łuszczki, M. Health Properties of Yerba Mate. Ann. Agric. Environ. Med. 2020, 27, 310–313. [Google Scholar] [CrossRef]
- Puangpraphant, S.; Berhow, M.A.; Vermillion, K.; Potts, G.; Gonzalez de Mejia, E. Dicaffeoylquinic Acids in Yerba Mate (Ilex paraguariensis St. Hilaire) Inhibit NF-κB Nucleus Translocation in Macrophages and Induce Apoptosis by Activating Caspases-8 and -3 in Human Colon Cancer Cells. Mol. Nutr. Food Res. 2011, 55, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Valduga, E.; Sossela, R.; Freitas, D.; Reissmann, C.; Nakashima, T. Caracterização Química Da Folha de Ilex paraguariensis St. Hil. (Erva-Mate) e de Outras Espécies Utilizadas Na Adulteração Do Mate. Bol. Cent. Pesqui. Process. Aliment. 2009, 15, 25–36. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/homepage (accessed on 16 April 2024).
- Lara Cardozo Junior, E.; Morand, C. Interest of Mate (Ilex paraguariensis A. St.-Hil.) as a New Natural Functional Food to Preserve Human Cardiovascular Health—A Review. J. Funct. Foods 2016, 21, 440–454. [Google Scholar] [CrossRef]
- Bastos, D.H.; Saldanha, L.A.; Catharino, R.R.; Sawaya, A.; Cunha, I.B.; Carvalho, P.O.; Eberlin, M.N. Phenolic Antioxidants Identified by ESI-MS from Yerba Maté (Ilex paraguariensis) and Green Tea (Camelia sinensis) Extracts. Molecules 2007, 12, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Goya, L.; Lecumberri, E. LC/MS Characterization of Phenolic Constituents of Mate (Ilex paraguariensis, St. Hil.) and Its Antioxidant Activity Compared to Commonly Consumed Beverages. Food Res. Int. 2007, 40, 393–405. [Google Scholar] [CrossRef]
- Deladino, L.; Teixeira, A.S.; Reta, M.; García, A.D.M.; Navarro, A.S.; Martino, M.N. Major Phenolics in Yerba Mate Extracts (Ilex paraguariensis) and Their Contribution to the Total Antioxidant Capacity. Food Nutr. Sci. 2013, 4, 154–162. [Google Scholar] [CrossRef]
- Filip, R.; Lopez, P.; Coussio, J.; Ferraro, G. Mate Substitutes or Adulterants: Study of Xanthine Content. Phytother. Res. 1998, 12, 129–131. [Google Scholar] [CrossRef]
- Bastos, D.; Fornari, A.; Queiroz, Y.; Soares-Freitas, R.; Torres, E. The Chlorogenic Acid and Caffeine Content of Yerba Maté (Ilex paraguariensis) Beverages. Acta Farm. Bonaer. 2005, 24, 91–95. [Google Scholar]
- Bergottini, V.; Hervé, V.; Sosa, D.; Otegui, M.; Zapata, P.; Junier, P. Exploring the Diversity of the Root-Associated Microbiome of Ilex paraguariensis St. Hil. (Yerba mate). Appl. Soil Ecol. 2017, 109, 23–31. [Google Scholar] [CrossRef]
- Reissmann, C.B.; Radomski, M.I.; Quadros, R.M.B.D. Chemical Composition of Ilex paraguariensis St. Hil. under Different Management Conditions in Seven Localities of Paraná State. Braz. Arch. Biol. Technol. 1999, 42, 1–7. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative Study of Young Shoots and the Mature Red Headed Cabbage as Antioxidant Food Resources with Antiproliferative Effect on Prostate Cancer Cells. RSC Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef]
- A Embrapa—Portal Embrapa. Available online: https://www.embrapa.br/ (accessed on 22 December 2023).
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.M. Yerba Mate: Cultivation Systems, Processing and Chemical Composition. A Review. Sci. Agric. 2021, 78, e20190259. [Google Scholar] [CrossRef]
- Kaezer, A.R.; Aiub, C.A.F.; Mazzei, J.L.; Ribeiro-Pinto, L.F.; Felzenszwalb, I. Antimutagenic Effect and Phenolic Content of Green and Roasted Yerba Mate Beverages in Different Packages Available in the Brazilian Market. CyTA-J. Food 2012, 10, 144–151. [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J.R. Green Tea. In Tea in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2013; pp. 19–31. ISBN 978-0-12-384937-3. [Google Scholar]
- McLellan, M.; Lind, L.; Kime, R. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L,a,b Data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Tea and Herbal Infusions Europe. Available online: https://thie-online.eu/ (accessed on 25 June 2024).
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. ISBN 978-0-12-182048-0. [Google Scholar]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Pellegrini, N.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F.; Serafini, M. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Santa Cruz, M.J.; Garitta, L.; Hough, G. Sensory Descriptive Analysis of Yerba Mate (Ilex paraguariensis Saint Hilaire), a South American Beverage. Food Sci. Technol. Int. 2002, 8, 25–31. [Google Scholar] [CrossRef]
- Lee, J.; Chambers, D.H. A Lexicon for Flavor Descriptive Analysis of Green Tea. J. Sens. Stud. 2007, 22, 256–272. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Schmalko, M.E.; Alzamora, S.M. Color, Chlorophyll, Caffeine, and Water Content Variation during Yerba Maté Processing. Dry. Technol. 2001, 19, 599–610. [Google Scholar] [CrossRef]
- Molin, R.F.; Valduga, A.T.; Di Luccio, M.; Dartora, N.; Cichoski, A.J.; Pistore, M.; Rigo, E. Assessment of Oxidation of Leaves of Ilex paraguariensis (St. Hil). Braz. Arch. Biol. Technol. 2011, 54, 337–345. [Google Scholar] [CrossRef]
- Tomasi, J.D.C.; De Lima, G.G.; Wendling, I.; Helm, C.V.; Hansel, F.A.; De Godoy, R.C.B.; Grunennvaldt, R.L.; De Melo, T.O.; Tomazzoli, M.M.; Deschamps, C. Effects of Different Drying Methods on the Chemical, Nutritional and Colour of Yerba Mate (Ilex Paraguariensis) Leaves. Int. J. Food Eng. 2021, 17, 551–560. [Google Scholar] [CrossRef]
- Vargas Motta, A.C.; Barbosa, J.Z.; Magri, E.; Pedreira, G.Q.; Santin, D.; Prior, S.A.; Consalter, R.; Young, S.D.; Broadley, M.R.; Benedetti, E.L. Elemental Composition of Yerba Mate (Ilex paraguariensis A.St.-Hil.) under Low Input Systems of Southern Brazil. Sci. Total Environ. 2020, 736, 139637. [Google Scholar] [CrossRef] [PubMed]
- Marx, F.; Janssens, M.J.J.; Urfer, P.; Scherer, R. Caffeine and Theobromine Composition of Mate (Ilex paraguariensis) Leaves in Five Plantations of Misiones, Argentina. Plant Foods Hum. Nutr. 2003, 58, 1–8. [Google Scholar] [CrossRef]
- Theppakorn, T. Chemical Constituents of Oolong Tea Produced in Thailand and Their Correlation with Infusion Colour. Maejo Int. J. Sci. Technol. 2015, 9, 344–354. [Google Scholar]
- Li, Y.; Luo, Q.; Qin, M.; Xu, W.; Wang, X.; Zhou, J.; He, C.; Chen, Y.; Yu, Z.; Ni, D. Study on Color, Aroma, and Taste Formation Mechanism of Large-Leaf Yellow Tea during an Innovative Manufacturing Process. Food Chem. 2024, 438, 138062. [Google Scholar] [CrossRef] [PubMed]
- Morawicki, R.O.; Schmalko, M.E.; Känzig, R.G. Chlorophyll Stability in Yerba Maté Leaves in Controlled Atmospheres. Braz. Arch. Biol. Technol. 1999, 42, 1–5. [Google Scholar] [CrossRef]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, Antioxidants, and the Degenerative Diseases of Aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Gonzalez de Mejia, E. Polyphenolic Compounds, Antioxidant Capacity, and Quinone Reductase Activity of an Aqueous Extract of Ardisia Compressa in Comparison to Mate (Ilex paraguariensis) and Green (Camellia sinensis) Teas. J. Agric. Food Chem. 2004, 52, 3583–3589. [Google Scholar] [CrossRef]
- Ölmez, H.; Yilmaz, A. Changes in Chemical Constituents and Polyphenol Oxidase Activity of Tea Leaves with Shoot Maturity and Cold Storage: Chemical Constituents and Polyphenol Oxidase Activity. J. Food Process. Preserv. 2009, 34, 653–665. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván D′Alessandro, L.; Manrique, G.D. Effect of Roasting Conditions on the Antioxidant Compounds of Quinoa Seeds. Int. J. Food Sci. Technol. 2016, 51, 1018–1025. [Google Scholar] [CrossRef]
- Frizon, C.N.T.; Oliveira, G.A.; Perussello, C.A.; Peralta-Zamora, P.G.; Camlofski, A.M.O.; Rossa, Ü.B.; Hoffmann-Ribani, R. Determination of Total Phenolic Compounds in Yerba Mate (Ilex paraguariensis) Combining near Infrared Spectroscopy (NIR) and Multivariate Analysis. LWT Food Sci. Technol. 2015, 60, 795–801. [Google Scholar] [CrossRef]
- Dall’Orto, V.C.; Vago, J.M.; Carballo, R.R.; Rezzano, I.N. Comparison of Tyrosinase Biosensor and Colorimetric Method for Polyphenol Analysis in Different Kinds of Teas. Anal. Lett. 2005, 38, 19–33. [Google Scholar] [CrossRef]
- Lorini, A.; Damin, F.M.; de Oliveira, D.N.; Crizel, R.L.; Godoy, H.T.; Galli, V.; Meinhart, A.D. Characterization and Quantification of Bioactive Compounds from Ilex paraguariensis Residue by HPLC-ESI-QTOF-MS from Plants Cultivated under Different Cultivation Systems. J. Food Sci. 2021, 86, 1599–1619. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed Editora: Porto Alegre, Brazil, 2017; ISBN 978-85-8271-367-9. [Google Scholar]
- Prawira-Atmaja, M.I.; Shabri; Khomaini, H.S.; Maulana, H.; Harianto, S.; Rohdiana, D. Changes in Chlorophyll and Polyphenols Content in Camellia sinensis Var. Sinensis at Different Stage of Leaf Maturity. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012010. [Google Scholar] [CrossRef]
- Ashihara, H.; Crozier, A. Biosynthesis and Metabolism of Caffeine and Related Purine Alkaloids in Plants. In Advances in Botanical Research; Callow, J.A., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 30, pp. 117–205. [Google Scholar]
- Ashihara, H.; Sano, H.; Crozier, A. Caffeine and Related Purine Alkaloids: Biosynthesis, Catabolism, Function and Genetic Engineering. Phytochemistry 2008, 69, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.; Zanin, F.F.; Pereira, D.F.; Athayde, M.L. Variação anual de metilxantinas totais em amostras de Ilex paraguariensis A. St.-Hil. (erva-mate) em Ijuí e Santa Maria, Estado do Rio Grande do Sul. Quím. Nova 2006, 29, 1233–1236. [Google Scholar] [CrossRef]
- Blum-Silva, C.H.; Chaves, V.C.; Schenkel, E.P.; Coelho, G.C.; Reginatto, F.H. The Influence of Leaf Age on Methylxanthines, Total Phenolic Content, and Free Radical Scavenging Capacity of Ilex paraguariensis Aqueous Extracts. Rev. Bras. Farmacogn. 2015, 25, 1–6. [Google Scholar] [CrossRef]
- Oellig, C.; Schunck, J.; Schwack, W. Determination of Caffeine, Theobromine and Theophylline in Mate Beer and Mate Soft Drinks by High-Performance Thin-Layer Chromatography. J. Chromatogr. A 2018, 1533, 208–212. [Google Scholar] [CrossRef]
- Borré, G.L.; Kaiser, S.; Pavei, C.; Da Silva, F.A.; Bassani, V.L.; Ortega, G.G. Comparison of Methylxanthine, Phenolics and Saponin Contents in Leaves, Branches and Unripe Fruits from Ilex paraguariensis A. St.-Hil (Mate). J. Liq. Chromatogr. Relat. Technol. 2010, 33, 362–374. [Google Scholar] [CrossRef]
- Duarte, S.; Puchades, A.; Jiménez-Hernández, N.; Betoret, E.; Gosalbes, M.J.; Betoret, N. Almond (Prunus dulcis) Bagasse as a Source of Bioactive Compounds with Antioxidant Properties: An In Vitro Assessment. Antioxidants 2023, 12, 1229. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Mellano, M.G.; Carini, V.; Bergamasco, E.; Gamba, G.; Beccaro, G.L. Application of Traditional Cooking Methods in Chestnut Processing: Effects of Roasting and Boiling on Secondary Metabolites and Antioxidant Capacity in Castanea Spp. Fruits. Agriculture 2023, 13, 530. [Google Scholar] [CrossRef]
- Samsonowicz, M.; Regulska, E.; Karpowicz, D.; Leśniewska, B. Antioxidant Properties of Coffee Substitutes Rich in Polyphenols and Minerals. Food Chem. 2019, 278, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Karanlik, S.; Görücü Keskin, S.; Soysal, Y. Utilization of Color Parameters to Estimate Moisture Content and Nutrient Levels of Peanut Leaves. Turk. J. Agric. For. 2013, 37, 604–612. [Google Scholar] [CrossRef]
- Kafkas, E.Y. Comparison of Fruit Quality Characteristics of Berries. Agric. Sci. 2021, 12, 907–915. [Google Scholar] [CrossRef]
- Buechel, E.C.; Li, R. Mysterious Consumption: Preference for Horizontal (vs. Vertical) Uncertainty and the Role of Surprise. J. Consum. Res. 2023, 49, 987–1013. [Google Scholar] [CrossRef]
- Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A Comprehensive Review on Chemistry, Health Implications, and Technological Considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef] [PubMed]
- Samoggia, A.; Landuzzi, P.; Vicién, C.E. Market Expansion of Caffeine-Containing Products: Italian and Argentinian Yerba Mate Consumer Behavior and Health Perception. Int. J. Environ. Res. Public Health 2021, 18, 8117. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, R.C.B.; Chambers, I.V.E.; Yang, G. Development of a Preliminary Sensory Lexicon for Mate Tea. J. Sens. Stud. 2020, 35, e12570. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Byrne, D.V.; Martens, M. Evaluation of Pork Colour: Sensory Colour Assessment Using Trained and Untrained Sensory Panellists. Meat Sci. 2003, 63, 119–129. [Google Scholar] [CrossRef]
- Rosa, A.; Pinna, I.; Piras, A.; Porcedda, S.; Masala, C. Sex Differences in the Bitterness Perception of an Aromatic Myrtle Bitter Liqueur and Bitter Compounds. Nutrients 2023, 15, 2030. [Google Scholar] [CrossRef] [PubMed]
- Pagliosa, C.M.; Pereira, S.M.; Vieira, M.A.; Costa, L.A.; Teixeira, E.; Amboni, R.D.M.; Amante, E.R. Bitterness in Yerba Mate (Ilex paraguariensis) Leaves. J. Sens. Stud. 2009, 24, 415–426. [Google Scholar] [CrossRef]
- Streit, N.M.; Hecktheuer, L.H.R.; Do Canto, M.W.; Mallmann, C.A.; Streck, L.; Parodi, T.V.; Canterle, L.P. Relation among Taste-Related Compounds (Phenolics and Caffeine) and Sensory Profile of Erva-Mate (Ilex paraguariensis). Food Chem. 2007, 102, 560–564. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | °h | C | |
---|---|---|---|---|---|---|
Dried product | CI 1 | 34.51 ± 1.85 β | −8.00 ± 0.17 γ | 31.99 ± 0.54 α | 178.67 ± 0.004 β | 32.96 ± 0.56 β |
CB 2 | 38.78 ± 2.19 α | −11.68 ± 0.35 δ | 34.07 ± 0.62 α | 178.76 ± 0.01 β | 36.02 ± 0.68 α | |
L1 3 | 24.27 ± 2.42 γ | −0.49 ± 0.42 β | 14.50 ± 2.45 β | 178.78 ± 0.98 β | 14.51 ± 2.46 γδ | |
L2 4 | 22.27 ± 1.82 γ | −0.02 ± 0.27 β | 11.97 ± 2.27 β | 180.32 ± 1.60 α | 11.97 ± 2.27 γ | |
L3 5 | 23.93 ± 2.73 γ | −0.34 ± 0.40 β | 15.34 ± 2.70 β | 179.39 ± 1.50 αβ | 15.35 ± 2.70 γ | |
L 6 | 24.64 ± 2.92 γ | 5.27 ± 0.54 α | 14.99 ± 1.74 β | 1.23 ± 0.02 γ | 15.89 ± 1.79 γ | |
Drink | CI 1 | 36.14 ± 3.27 α | −4.94 ± 1.26 β | 25.62 ± 3.03 α | 178.62 ± 0.03 α | 26.10 ± 3.20 α |
CB 2 | 34.18 ± 2.38 α | −4.48 ± 0.99 β | 22.75 ± 1.01 α | 178.62 ± 0.05 α | 23.20 ± 0.81 α | |
L1 3 | 34.29 ± 0.83 α | −5.57 ± 2.05 β | 22.03 ± 2.00 α | 178.67 ± 0.07 α | 22.76 ± 2.43 α | |
L2 4 | 34.83 ± 1.04 α | −4.46 ± 0.93 β | 24.91 ± 1.08 α | 178.59 ± 0.04 α | 25.27 ± 1.09 α | |
L3 5 | 34.49 ± 3.07 α | −3.39 ± 2.21 β | 21.99 ± 3.90 α | 178.60 ± 0.06 α | 22.36 ± 4.25 α | |
L 6 | 13.18 ± 0.96 β | 0.62 ± 0.01 α | 3.22 ± 0.07 β | 1.38 ± 0.00 β | 3.28 ± 0.07 β |
Sample | Caffeine (mg/g Dry Product) | Theobromine (mg/g Dry Product) |
---|---|---|
CI 1 | 5.13 ± 1.64 c | 2.16 ± 0.33 b |
CB 2 | 1.57 ± 1.24 d | 1.53 ± 0.33 c |
L1 3 | 21.72 ± 3.68 a | 1.51 ± 0.15 c |
L2 4 | 10.53 ± 0.48 b | 1.91 ± 0.14 b |
L3 5 | 20.63 ± 3.58 a | 2.74 ± 0.40 a |
L 6 | 4.46 ± 1.78 cd | 0.41 ± 0.06 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ollani, S.; Lo Presti, C.; Donno, D.; Stura, I.; Giuggioli, N.R.; Peano, C. Innovative Green Tea Mate: Physicochemical Profile and Sensory Aspects. Beverages 2024, 10, 60. https://doi.org/10.3390/beverages10030060
Ollani S, Lo Presti C, Donno D, Stura I, Giuggioli NR, Peano C. Innovative Green Tea Mate: Physicochemical Profile and Sensory Aspects. Beverages. 2024; 10(3):60. https://doi.org/10.3390/beverages10030060
Chicago/Turabian StyleOllani, Selene, Caterina Lo Presti, Dario Donno, Ilaria Stura, Nicole Roberta Giuggioli, and Cristiana Peano. 2024. "Innovative Green Tea Mate: Physicochemical Profile and Sensory Aspects" Beverages 10, no. 3: 60. https://doi.org/10.3390/beverages10030060
APA StyleOllani, S., Lo Presti, C., Donno, D., Stura, I., Giuggioli, N. R., & Peano, C. (2024). Innovative Green Tea Mate: Physicochemical Profile and Sensory Aspects. Beverages, 10(3), 60. https://doi.org/10.3390/beverages10030060