Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Label Sample Description
2.2. Consumer Sensory Session
2.3. Video Analysis to Obtain Biometrics
2.4. Statistical Analysis
3. Results
3.1. Biometrics for Emotional Responses
3.2. Emotional Responses Based on Emojis
3.3. Sensory Perception of Label Features
3.4. Multivariate Data Analysis
4. Discussion
4.1. Virtual Sensory Sessions
4.2. Emotional Responses from Biometrics and Emoji Selection
4.3. Analysis of Areas of Interest within Labels
4.4. Multivariate Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swahn, J.; Mossberg, L.; Öström, Å.; Gustafsson, I.B. Sensory description labels for food affect consumer product choice. Eur. J. Mark. 2012, 46, 1628–1646. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, N.M.; Fuentes, S.; Gunaratne, T.M.; Torrico, D.D.; Ashman, H.; Francis, C.; Gonzalez Viejo, C.; Dunshea, F.R. Consumer acceptability, eye fixation, and physiological responses: A study of novel and familiar chocolate packaging designs using eye-tracking devices. Foods 2019, 8, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Gurr, P.A.; Dunshea, F.R. Analysis of thermochromic label elements and colour transitions using sensory acceptability and eye tracking techniques. LWT Food Sci. Technol. 2018, 89, 475–481. [Google Scholar] [CrossRef]
- Gunaratne, N.M.; Viejo, C.G.; Gunaratne, T.M.; Torrico, D.D.; Ashman, H.; Dunshea, F.R.; Fuentes, S. Effects of imagery as visual stimuli on the physiological and emotional responses. J. Multidiscip. Sci. J. 2019, 2, 206–225. [Google Scholar] [CrossRef] [Green Version]
- Farah, J.S.; Araujo, C.B.; Melo, L. Analysis of yoghurts’, whey-based beverages’ and fermented milks’ labels and differences on their sensory profiles and acceptance. Int. Dairy J. 2017, 68, 17–22. [Google Scholar] [CrossRef]
- Meyerding, S.G.; Gentz, M.; Altmann, B.; Meier-Dinkel, L. Beef quality labels: A combination of sensory acceptance test, stated willingness to pay, and choice-based conjoint analysis. Appetite 2018, 127, 324–333. [Google Scholar] [CrossRef]
- Sherman, S.; Tuten, T. Message on a bottle: The wine label’s influence. Int. J. Wine Bus. Res. 2011, 23, 221–234. [Google Scholar] [CrossRef]
- Barber, N.; Ismail, J.; Dodd, T. Purchase attributes of wine consumers with low involvement. J. Food Prod. Mark. 2007, 14, 69–86. [Google Scholar] [CrossRef]
- Henley, C.D.; Fowler, D.C.; Yuan, J.J.; Stout, B.L.; Goh, B.K. Label design: Impact on millennials’ perceptions of wine. Int. J. Wine Bus. Res. 2011, 23, 7–20. [Google Scholar] [CrossRef]
- Lick, E.; König, B.; Kpossa, M.R.; Buller, V. Sensory expectations generated by colours of red wine labels. J. Retail. Consum. Serv. 2017, 37, 146–158. [Google Scholar] [CrossRef]
- Savelli, E.; Bravi, L.; Francioni, B.; Murmura, F.; Pencarelli, T. PDO labels and food preferences: Results from a sensory analysis. Br. Food J. 2020. [Google Scholar] [CrossRef]
- Dubois, D.; Giboreau, A. Descriptors: Attributes? labels? terms? names. Food Qual. Prefer. 2006, 17, 671–672. [Google Scholar]
- Hemmerling, S.; Obermowe, T.; Canavari, M.; Sidali, K.L.; Stolz, H.; Spiller, A. Organic food labels as a signal of sensory quality—insights from a cross-cultural consumer survey. Org. Agric. 2013, 3, 57–69. [Google Scholar] [CrossRef]
- Barahona, I.; Sanmiguel Jaimes, E.M.; Yang, J.B. Sensory attributes of coffee beverages and their relation to price and package information: A case study of Colombian customers’ preferences. Food Sci. Nutr. 2020, 8, 1173–1186. [Google Scholar] [CrossRef]
- Imm, B.-Y.; Lee, J.H.; Lee, S.H. Effects of sensory labels on taste acceptance of commercial food products. Food Qual. Prefer. 2012, 25, 135–139. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, N.M.; Fuentes, S.; Gunaratne, T.M.; Torrico, D.D.; Francis, C.; Ashman, H.; Viejo, C.G.; Dunshea, F.R. Effects of packaging design on sensory liking and willingness to purchase: A study using novel chocolate packaging. Heliyon 2019, 5, e01696. [Google Scholar] [CrossRef] [Green Version]
- NeedScope International. How NeedScope Works. Available online: https://www.needscopeinternational.com/about-1 (accessed on 20 December 2020).
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Toet, A.; Kaneko, D.; Ushiama, S.; Hoving, S.; de Kruijf, I.; Brouwer, A.-M.; Kallen, V.; van Erp, J.B. EmojiGrid: A 2D pictorial scale for the assessment of food elicited emotions. Front. Psychol. 2018, 9, 2396. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yamanaka, T. How does Congruence of Scent and Music Affect People’s Emotions. Int. J. Affect. Eng. 2017, 17, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Yüksel, A. Tourist shopping habitat: Effects on emotions, shopping value and behaviours. Tour. Manag. 2007, 28, 58–69. [Google Scholar] [CrossRef]
- McDuff, D.; Mahmoud, A.; Mavadati, M.; Amr, M.; Turcot, J.; Kaliouby, R.E. AFFDEX SDK: A cross-platform real-time multi-face expression recognition toolkit. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2016; pp. 3723–3726. [Google Scholar]
- Torrico, D.D.F.S.; Gonzalez Viejo, C.; Ashman, H.; Dunshea, F.R. Pair social interaction on the sensory and facial expression responses of consumers towards snack products. In Proceedings of the 13th Pangborn Sensory Science Symposium, Edinburgh, UK, 28 July–2 August 2019. [Google Scholar]
- Schouteten, J.J.; de Steur, H.; De Pelsmaeker, S.; Lagast, S.; Gellynck, X.; de Bourdeaudhuij, I. Emotional and Sensory Evaluation of Cheese: The Effect of Health Labels. In Dairy in Human Health and Disease Across the Lifespan; Elsevier: Amsterdam, The Netherlands, 2017; pp. 295–311. [Google Scholar]
- Schouteten, J.J.; de Steur, H.; de Pelsmaeker, S.; Lagast, S.; de Bourdeaudhuij, I.; Gellynck, X. Impact of health labels on flavor perception and emotional profiling: A consumer study on cheese. Nutrients 2015, 7, 10251–10268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antúnez, L.; Vidal, L.; Sapolinski, A.; Giménez, A.; Maiche, A.; Ares, G. How do design features influence consumer attention when looking for nutritional information on food labels? Results from an eye-tracking study on pan bread labels. Int. J. Food Sci. Nutr. 2013, 64, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Giménez, A.; Bruzzone, F.; Vidal, L.; Antúnez, L.; Maiche, A. Consumer visual processing of food labels: Results from an eye-tracking study. J. Sens. Stud. 2013, 28, 138–153. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B.; Velasco, C.; Salgado-Montejo, A.; Spence, C. Using combined eye tracking and word association in order to assess novel packaging solutions: A case study involving jam jars. Food Qual. Prefer. 2013, 28, 328–338. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F.R. Robotics and computer vision techniques combined with non-invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial intelligence applications. Food Control 2018, 92, 72–79. [Google Scholar] [CrossRef]
- Shanmuga Vadivel, K.; Ngo, T.; Eckstein, M.; Manjunath, B. Eye tracking assisted extraction of attentionally important objects from videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE: New York, NY, USA; pp. 3241–3250.
- Gunaratne, M. Implementation of Non-Invasive Biometrics to Identify Effects of Chocolate Packaging Towards Consumer Emotional and Sensory Responses; University of Melbourne: Melbourne, Australia, 2019. [Google Scholar]
- Yan, L.; Xiaojun, F.; Li, J.; Dong, X. Extrinsic cues, perceived quality, and purchase intention for private labels: Evidence from the Chinese market. Asia Pac. J. Mark. Logist. 2019, 31, 714–727. [Google Scholar] [CrossRef]
- Cimino, A.E.; Cowell, A.C.; Nieschwitz, N.C.; Kershaw, J.C. Subtle sensory and labeling modifications have minimal impact on expected appetitive sensations in chewy bars. Food Res. Int. 2020, 137, 109386. [Google Scholar] [CrossRef]
- Li, T.; Dando, R. Impact of common food labels on consumer liking in vanilla yogurt. Foods 2019, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Samant, S.S.; Seo, H.-S. Quality perception and acceptability of chicken breast meat labeled with sustainability claims vary as a function of consumers’ label-understanding level. Food Qual. Prefer. 2016, 49, 151–160. [Google Scholar] [CrossRef]
- Hartley, I.E.; Keast, R.S.; Liem, D.G. Physical activity-equivalent label reduces consumption of discretionary snack foods. Public Health Nutr. 2018, 21, 1435–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, C.; Gómez-Rico, A.; Guinard, J.-X. Evaluating bottles and labels versus tasting the oils blind: Effects of packaging and labeling on consumer preferences, purchase intentions and expectations for extra virgin olive oil. Food Res. Int. 2013, 54, 2112–2121. [Google Scholar] [CrossRef]
Attribute | Abbreviation | Scale | Anchors |
---|---|---|---|
Strength | Strength | 9-point scale | 1: Extremely mild–9: Extremely strong |
Pleasantness (Valence) | Pleasantness | 9-point hedonic scale | 1: Unpleasant–9: Pleasant |
Arousal | Arousal | 9-point scale | 1: Relaxed–9: Stimulated |
FaceScale (Emotional response) | FaceScale | 9-point hedonic scale | |
Perceived quality | PQuality | 9-point scale | 1: Extremely low–9: Extremely high |
Willingness to purchase | WPurchase | 9-point scale | 1: Extremely unlikely–9: Extremely likely |
CATA Emojis | |||
CATA Area of Interest | |||
Colors | Layout | Font | Pattern/Texture |
Graphics | Brand | Logo | Intensity Scale |
Product name |
Attribute | Type of Response | Attribute | Type of Response |
---|---|---|---|
Sadness | Emotion | Valence | Emotional dimension |
Anger | Emotion | Emoji (Smiley) | |
Surprise | Emotion | Emoji (Laughing) | |
Fear | Emotion | Emoji (Disappointed) | |
Disgust | Emotion | Emoji (Rage) | |
Joy | Emotion | Emoji (Wink) | |
Engagement | Emotional dimension | Emoji (Scream) | |
Relaxed | Emotional dimension |
Sample/Attribute | Strength | Pleasantness | Arousal | FaceScale | PQuality | WPurchase |
---|---|---|---|---|---|---|
Fun | 4.69 d | 6.23 b,c | 4.89 b | 5.86 b | 5.66 d | 4.84 b |
±0.22 | ±0.23 | ±0.25 | ±0.23 | ±0.23 | ±0.26 | |
Bold | 4.27 d | 4.20 d | 5.63 a | 4.19 c | 4.55 e | 3.70 c |
±0.10 | ±0.20 | ±0.23 | ±0.21 | ±0.14 | ±0.24 | |
Natural | 6.41 b | 7.31 a | 3.75 c | 7.09 a | 7.20 b | 6.80 a |
±0.25 | ±0.21 | ±0.19 | ±0.24 | ±0.24 | ±0.28 | |
Everyday | 5.53 c | 6.00 c | 4.39 b,c | 5.95 b | 5.88 c,d | 5.50 b |
±0.19 | ±0.22 | ±0.20 | ±0.23 | ±0.22 | ±0.26 | |
Classic | 6.86 b | 5.78 c | 4.64 b | 5.64 b | 6.44 c | 5.31 b |
±0.23 | ±0.14 | ±0.26 | ±0.17 | ±0.16 | ±0.20 | |
Premium | 8.48 a | 6.77 a,b | 6.27 a | 6.94 a | 7.95 a | 6.61 a |
±0.20 | ±0.15 | ±0.22 | ±0.14 | ±0.17 | ±0.28 |
Emojis/Samples | Fun | Bold | Natural | Everyday | Classic | Premium |
---|---|---|---|---|---|---|
0.26 b,c | 0.49 a,b | 0.25 b,c | 0.51 a | 0.13 c | 0.44 a,b | |
0.17 a,b | 0.29 a,b | 0.29 a,b | 0.12 b | 0.41 a | 0.13 b | |
NS | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.01 |
0.12 b | 0.09 b | 0.23 a,b | 0.12 b | 0.38 a | 0.42 a | |
NS | 0.06 | 0.00 | 0.09 | 0.13 | 0.09 | 0.13 |
NS | 0.03 | 0.00 | 0.01 | 0.00 | 0.07 | 0.03 |
0.06 b | 0.04 b | 0.10 ab | 0.01 b | 0.28 a | 0.00 b | |
NS | 0.00 | 0.01 | 0.03 | 0.00 | 0.07 | 0.09 |
NS | 0.23 | 0.13 | 0.07 | 0.06 | 0.20 | 0.06 |
NS | 0.17 | 0.17 | 0.07 | 0.26 | 0.06 | 0.16 |
NS | 0.09 | 0.01 | 0.07 | 0.01 | 0.07 | 0.04 |
0.09 b | 0.23 a,b | 0.15 a,b | 0.30 a | 0.07 b | 0.28 a,b | |
0.39 a,b,c | 0.52 a,b | 0.39 a,b,c | 0.61 a | 0.20 c | 0.32 a,b | |
0.12 a,b | 0.07 b | 0.06 b | 0.16 ab | 0.03 b | 0.32 a | |
NS | 0.01 | 0.00 | 0.03 | 0.06 | 0.04 | 0.00 |
0.32 a | 0.17 a,b | 0.25 a | 0.16 a,b | 0.23 a,b | 0.04 b | |
0.01 | 0.00 NS | 0.04 | 0.00 | 0.15 | 0.00 | |
0.17 a,b,c | 0.19 a,b | 0.15 b,c | 0.03 c | 0.38 a | 0.13 b,c |
AOI/Samples | Fun | Bold | Natural | Everyday | Classic | Premium |
---|---|---|---|---|---|---|
Colors | 0.48 b,c | 0.57 a,b | 0.39 b,c | 0.75 a | 0.25 c | 0.75 a |
Layout | 0.41 b,c | 0.39 b,c | 0.52 a,b,c | 0.77 a | 0.35 c | 0.62 a,b |
Font | 0.48 a | 0.29 a,b | 0.25 a,b | 0.45 a,b | 0.22 b | 0.42 a,b |
Pattern/Texture | 0.22 b | 0.30 a,b | 0.26 b | 0.55 a | 0.26 b | 0.45 a,b |
Graphics | 0.15 b | 0.35 b | 0.36 a,b | 0.60 a | 0.17 b | 0.26 b |
* Brand | 0.09 c | 0.07 c | 0.12 b,c | 0.26 a,b | 0.07 c | 0.29 a |
NS Logo | 0.26 | 0.25 | 0.29 | 0.32 | 0.12 | 0.35 |
NS Intensity scale | 0.36 | 0.26 | 0.36 | 0.44 | 0.33 | 0.51 |
NS Product name | 0.28 | 0.19 | 0.19 | 0.2 | 0.29 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Zhang, H.; Khamly, A.; Xing, Y.; Fuentes, S. Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference. Beverages 2021, 7, 5. https://doi.org/10.3390/beverages7010005
Gonzalez Viejo C, Zhang H, Khamly A, Xing Y, Fuentes S. Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference. Beverages. 2021; 7(1):5. https://doi.org/10.3390/beverages7010005
Chicago/Turabian StyleGonzalez Viejo, Claudia, Hanyan Zhang, Annabel Khamly, Yunjia Xing, and Sigfredo Fuentes. 2021. "Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference" Beverages 7, no. 1: 5. https://doi.org/10.3390/beverages7010005
APA StyleGonzalez Viejo, C., Zhang, H., Khamly, A., Xing, Y., & Fuentes, S. (2021). Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference. Beverages, 7(1), 5. https://doi.org/10.3390/beverages7010005