Sentiment Matters for Cryptocurrencies: Evidence from Tweets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sentiment Indicators
2.2. Measuring Jumps and Liquidity
2.3. Construction of Variables and Definition of Impact Window
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
https://coinculture.com/au/people/top-crypto-twitter-influencers/ (accessed on 31 March 2025) https://www.ajmarketing.io/post/top-31-crypto-twitter-influencers-by-followers-in-2022 (accessed on 31 March 2025) https://shapeshift.com/library/10-of-the-best-places-to-find-bitcoin-news (accessed on 31 March 2025) https://influencermarketinghub.com/top-crypto-influencers/ (accessed on 31 March 2025) https://blog.feedspot.com/cryptocurrency_magazines/ (accessed on 31 March 2025) https://www.analyticsinsight.net/top-10-cryptocurrency-influencers-you-must-follow-in-2021/ (accessed on 31 March 2025) https://www.investopedia.com/crypto-influencers-you-should-follow-5224141 (accessed on 31 March 2025) https://blogen.influence4you.com/top-10-crypto-influencers/ (accessed on 31 March 2025) https://coinbound.io/top-crypto-influencers/ (accessed on 31 March 2025) https://beincrypto.com/learn/crypto-news-aggregators/ (accessed on 31 March 2025) |
Tweet ID | 1 | 2 | 3 | 4 | 5 | |
Keyword | “Bitcoin” | “Ripple” | “Litecoin” | “altcoin” | “Bitcoin” | |
Account | Bloomberg Crypto | Financial Times | CoinDesk | CoinTelegraph | Michael Saylor | |
Timestamp | 2018-02-02 13:17:17 | 2017-10-10 13:34:59 | 2021-09-13 19:35:18 | 2021-09-30 22:37:01 | 2021-09-21 13:10:37 | |
RoBERTa | Sentiment | NEUTRAL | NEUTRAL | NEUTRAL | NEGATIVE | POSITIVE |
Sign | 0 | 0 | 0 | −1 | 1 | |
Coef. | 0.826 | 0.901 | 0.881 | 0.787 | 0.980 | |
BERT | Sentiment | NEGATIVE | NEGATIVE | NEGATIVE | NEGATIVE | POSITIVE |
Sign | −1 | −1 | −1 | −1 | 1 | |
Coef. | 0.832 | 0.988 | 0.998 | 0.999 | 0.999 | |
FINBERT | Sentiment | NEUTRAL | NEUTRAL | NEGATIVE | NEGATIVE | NEUTRAL |
Sign | 0 | 0 | −1 | −1 | 0 | |
Coef. | 0.915 | 0.813 | 0.922 | 0.710 | 0.839 | |
Vader | Sentiment | NEUTRAL | NEUTRAL | NEUTRAL | NEGATIVE | POSITIVE |
Sign | 0 | 0 | 0 | −1 | 1 | |
Coef. | 1 | 1 | 0.922 | 0.667 | 0.722 | |
L&M | Sentiment | NEUTRAL | NEUTRAL | NEUTRAL | NEGATIVE | POSITIVE |
Sign | 0 | 0 | 0 | −1 | 1 | |
Coef. | 1 | 1 | 1 | 1 | 1 | |
SENTIMENT RESULTS | ||||||
M1 | Sentiment | NEUTRAL | NEUTRAL | NEGATIVE | NEGATIVE | POSITIVE |
M2 | Sentiment | NEUTRAL | NEUTRAL | NEUTRAL | NEGATIVE | POSITIVE |
Tweets/No Tweets Periods | Log Returns-Mean | Jumps Dimension (Li)-Mean | Jumps Dimension-Std.Dev | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 h Before Tweets/First 60 min Without Tweets | 1 h After Tweets/Last 60 min Without Tweets | 1 h Before Tweets/First 60 min Without Tweets | 1 h After Tweets/Last 60 min Without Tweets | 1 h Before Tweets/First 60 min Without Tweets | 1 h After Tweets/Last 60 min Without Tweets | ||||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
BTC | All | 1.62 × 10−5 | 1.69 × 10−5 | −0.353958848 | −0.01022248 | 21.80737541 | 18.01872714 | ||||||
Positive | 1.82 × 10−5 | 2.77 × 10−5 | 2.58 × 10−5 | 1.8 × 10−5 | −0.08605 | 0.553981 | 0.197284 | 0.268116 | 10.10102 | 8.679763 | 8.380771 | 8.579001 | |
Neutral | 1.69 × 10−5 | 1.42 × 10−5 | 1.71 × 10−5 | 2.02 × 10−5 | −0.25753 | −0.38086 | 0.053163 | -0.08124 | 21.61532 | 20.94083 | 20.88763 | 21.28642 | |
Negative | 1.21 × 10−5 | 1.71 × 10−5 | 9.72 × 10−6 | 3.6 × 10−6 | −0.92607 | −1.01116 | -0.3953 | -0.15576 | 27.90039 | 32.43057 | 9.460675 | 9.224091 | |
No tweets | −8.89 × 10−6 | −5.27 × 10−6 | −0.06565678 | −0.557857715 | 39.19803455 | 20.91391437 | |||||||
ETH | All | 5.4 × 10-6 | 8.9 × 10−6 | −0.249002058 | −0.333873586 | 7.450128407 | 7.49117884 | ||||||
Positive | 5.01 × 10−5 | 4.88 × 10−5 | 3.27 × 10−5 | 1.52 × 10−5 | −0.45885 | −0.20885 | -0.27496 | -0.27329 | 7.813264 | 7.993783 | 7.428038 | 7.557206 | |
Neutral | 4.95 × 10−6 | 2.12 × 10−7 | 6.32 × 10−7 | 6.02 × 10−7 | −0.15422 | −0.23324 | -0.31073 | -0.28003 | 7.38997 | 7.397817 | 7.565302 | 7.482183 | |
Negative | −2 × 10−5 | −1.5 × 10−6 | 2.02 × 10−5 | 2.22 × 10−5 | −0.45553 | −0.39214 | -0.35417 | -0.58726 | 7.398817 | 7.300956 | 7.313165 | 7.572112 | |
No tweets | 6.78 × 10−6 | 5.88 × 10−6 | −0.070307966 | 0.026974313 | 7.798621091 | 7.700499101 | |||||||
LTC | All | −5.46 × 10−6 | 9.7 × 10−7 | −0.179185507 | −0.300046233 | 7.788037171 | 7.373820222 | ||||||
Positive | 1.11 × 10−5 | 1.53 × 10−5 | 1.78 × 10−5 | 8.28 × 10−6 | −0.3414 | −0.26047 | −0.25228 | −0.40545 | 7.350802 | 7.276833 | 7.828838 | 7.389789 | |
Neutral | −5.4 × 10−6 | −8.6 × 10−6 | −4.8 × 10−6 | 5.13 × 10−7 | −0.11059 | −0.16753 | −0.42245 | −0.2989 | 7.908298 | 7.87565 | 7.318658 | 7.412558 | |
Negative | −1.8 × 10−6 | −4 × 10−6 | 9.9 × 10−6 | −3 × 10−6 | −0.31619 | −0.18631 | 0.162506 | −0.15838 | 7.649259 | 7.633856 | 7.338825 | 7.289335 | |
No tweets | 1.05 × 10−5 | 3.95 × 10−6 | −0.037358443 | 0.037097374 | 7.461527187 | 7.41699811 | |||||||
XRP | All | −2.58 × 10−6 | −1.66 × 10−6 | −0.02145997 | −0.124668348 | 7.354365253 | 7.653179333 | ||||||
Positive | 1.22 × 10−5 | 1.24 × 10−5 | 1.93 × 10−5 | −1.8 × 10−6 | −0.02551 | 0.019064 | 0.165351 | −0.16439 | 7.752938 | 7.277341 | 6.871955 | 7.962178 | |
Neutral | 4.85 × 10−7 | −3.8 × 10−6 | −1 × 10−5 | −1.1 × 10−6 | 0.06968 | 0.009106 | −0.23124 | −0.14338 | 7.289987 | 7.368963 | 8.000351 | 7.745979 | |
Negative | −2.66 × 10−5 | −8.2 × 10−6 | 1.41 × 10−5 | 9.7 × 10−6 | −0.36224 | −0.26226 | 0.045657 | 0.02815 | 7.283687 | 7.330573 | 7.041495 | 6.983758 | |
No tweets | 1.68 × 10−5 | 1.27 × 10−5 | −0.126518695 | −0.017256423 | 8.620677641 | 7.687701938 |
Tweets | p-Values | Standard Errors | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lag 0 | Lag 1 | Lag 2 | Lag 3 | Lag 0 | Lag 1 | Lag 2 | Lag 3 | ||||||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
BTC | All | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0.223 | 0.139 | 0.073 | 0.248 | 0.06 | 0.046 | 0.229 | 0.094 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0.106 | 0.097 | 0.028 | 0.039 | 0.12 | 0.027 | 0.081 | 0.109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
ETH | All | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0.231 | 0.122 | 0.095 | 0.055 | 0.018 | 0.011 | 0.032 | 0.026 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0.066 | 0.079 | 0.05 | 0.056 | 0.028 | 0.055 | 0.053 | 0.079 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
LTC | All | 0 | 0.001 | 0 | 0.002 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0.105 | 0.16 | 0.828 | 0.712 | 0.061 | 0.065 | 0.586 | 0.095 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0 | 0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0.114 | 0.122 | 0.563 | 0.143 | 0.195 | 0.177 | 0.939 | 0.163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Tweets | R-squared | β-coefficients | |||||||||||||||
Lag 0 | Lag 1 | Lag 2 | Lag 3 | Lag 0 | Lag 1 | Lag 2 | Lag 3 | ||||||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
BTC | All | 0 | 0.0001 | 0.0001 | 0 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0 | 0.0001 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
ETH | All | 0 | 0.0001 | 0.0001 | 0.0001 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0 | 0 | 0 | 0.0001 | 0.0001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
LTC | All | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Positive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Neutral | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Negative | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p-Value | Tweets | Tweets–Independent Variable | Tweets–Dependent Variable | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lag 0 | Lag 1 | Lag 2 | Lag 3 | Lag 0 | Lag 1 | Lag 2 | Lag 3 | ||||||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
BTC | All | 0.953 | 0.878 | 0.416 | 0.276 | 0.953 | 0.878 | 0.416 | 0.276 | ||||||||
Positive | 0.665 | 0.045 | 0.386 | 0.236 | 0.008 | 0.911 | 0.406 | 0.051 | 0.665 | 0.045 | 0.386 | 0.236 | 0.008 | 0.089 | 0.406 | 0.051 | |
Neutral | 0.947 | 0.532 | 0.595 | 0.758 | 0.007 | 0.881 | 0.484 | 0.433 | 0.947 | 0.532 | 0.595 | 0.758 | 0.881 | 0.854 | 0.484 | 0.433 | |
Negative | 0.529 | 0.52 | 0.157 | 0.14 | 0.667 | 0.868 | 0.069 | 0.003 | 0.529 | 0.52 | 0.157 | 0.14 | 0.868 | 0.941 | 0.069 | 0.003 | |
ETH | All | 0.67 | 0.991 | 0.616 | 0.236 | 0.67 | 0.991 | 0.616 | 0.236 | ||||||||
Positive | 0.417 | 0.339 | 0.357 | 0.883 | 0.249 | 0.705 | 0.143 | 0.844 | 0.417 | 0.339 | 0.357 | 0.883 | 0.249 | 0.705 | 0.143 | 0.844 | |
Neutral | 0.827 | 0.983 | 0.878 | 0.875 | 0.47 | 0.875 | 0.199 | 0.142 | 0.827 | 0.983 | 0.878 | 0.875 | 0.47 | 0.875 | 0.199 | 0.142 | |
Negative | 0.206 | 0.746 | 0.282 | 0.775 | 0.438 | 0.514 | 0.126 | 0.879 | 0.206 | 0.746 | 0.282 | 0.775 | 0.438 | 0.514 | 0.126 | 0.879 | |
LTC | All | 0.565 | 0.152 | 0.545 | 0.046 | 0.564 | 0.152 | 0.545 | 0.046 | ||||||||
Positive | 0.046 | 0.942 | 0.423 | 0.107 | 0.847 | 0.483 | 0.603 | 0.159 | 0.046 | 0.942 | 0.423 | 0.107 | 0.847 | 0.483 | 0.603 | 0.159 | |
Neutral | 0.861 | 0.262 | 0.312 | 0.298 | 0.374 | 0.81 | 0.169 | 0.051 | 0.861 | 0.262 | 0.312 | 0.298 | 0.374 | 0.81 | 0.169 | 0.051 | |
Negative | 0.443 | 0.258 | 0.52 | 0.904 | 0.883 | 0.097 | 0.137 | 0.531 | 0.443 | 0.258 | 0.52 | 0.904 | 0.883 | 0.097 | 0.137 | 0.531 | |
XRP | All | 0.152 | 0.053 | 0.964 | 0.724 | 0.152 | 0.053 | 0.964 | 0.724 | ||||||||
Positive | 0.183 | 0.08 | 0.593 | 0.835 | 0.835 | 0.851 | 0.028 | 0.183 | 0.183 | 0.08 | 0.593 | 0.835 | 0.835 | 0.851 | 0.028 | 0.183 | |
Neutral | 0.355 | 0.198 | 0.024 | 0.045 | 0.711 | 0.655 | 0.196 | 0.319 | 0.355 | 0.198 | 0.024 | 0.045 | 0.711 | 0.655 | 0.196 | 0.319 | |
Negative | 0.008 | 0.012 | 0.569 | 0.82 | 0.528 | 0.279 | 0.787 | 0.825 | 0.008 | 0.012 | 0.569 | 0.82 | 0.528 | 0.279 | 0.787 | 0.825 |
References
- Pedersen, L.H. Game on: Social networks and markets. J. Financ. Econ. 2022, 146, 1097–1119. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Zhang, D. Social-media and intraday stock returns: The pricing power of sentiment. Financ. Res. Lett. 2019, 30, 116–123. [Google Scholar] [CrossRef]
- Chordia, T.; Roll, R.; Subrahmanyam, A. Market Liquidity and Trading Activity. J. Financ. 2001, 56, 501–530. [Google Scholar] [CrossRef]
- Hendershott, T.; Jones, C.M.; Menkveld, A.J. Does Algorithmic Trading Improve Liquidity? J. Financ. 2011, 66, 1–33. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C. Do cryptocurrency markets react to issuer sentiments? Evidence from Twitter. Res. Int. Bus. Financ. 2022, 61, 101656. [Google Scholar] [CrossRef]
- Akyildirim, E.; Aysan, A.F.; Cepni, O.; Serbest, Ö. Sentiment matters: The effect of news-media on spillovers among cryptocurrency returns. Eur. J. Financ. 2024, 30, 1577–1613. [Google Scholar] [CrossRef]
- Choi, H. Investor attention and bitcoin liquidity: Evidence from bitcoin tweets. Financ. Res. Lett. 2021, 39, 101555. [Google Scholar] [CrossRef]
- Akyildirim, E.; Sensoy, A.; Corbet, S.; Yarovaya, L. Social media sentiment and its impact on cryptocurrency returns and volatility. J. Financ. Econ. 2021, 142, 101234. [Google Scholar]
- Huynh, T.L.D. Does Bitcoin React to Trump’s Tweets? J. Behav. Exp. Financ. 2021, 31, 100546. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Araci, D.T. FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. arXiv 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. J. Financ. 2011, LXVI, 35–65. [Google Scholar] [CrossRef]
- Hutto, C.J.; Gilbert, E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; pp. 216–225. [Google Scholar]
- Nair, M.; Abd-Elmegid, L.A.; Marie, M.I. Sentiment analysis model for cryptocurrency tweets using different deep learning techniques. J. Intell. Syst. 2024, 33, 20230085. [Google Scholar] [CrossRef]
- Lee, S.S.; Mykland, P.A. Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics. Rev. Financ. Stud. 2008, 21, 2535–2563. [Google Scholar] [CrossRef]
- Amihud, Y. Illiquidity and stock returns: Cross-section and time-series effects. J. Financ. Mark. 2002, 5, 31–56. [Google Scholar]
- Goyenko, R.Y.; Holden, C.W.; Trzcinka, C.A. Do liquidity measures measure liquidity? J. Financ. Econ. 2009, 92, 153–181. [Google Scholar] [CrossRef]
- Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanisz, T.; Wątorek, M. Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19. Entropy 2020, 22, 1043. [Google Scholar] [CrossRef] [PubMed]
- Smales, L.A. Investor attention and the cryptocurrency market. Int. Rev. Financ. Anal. 2022, 79, 101972. [Google Scholar] [CrossRef]
Category | Account | Followers * |
---|---|---|
crypto influencers | Elon Musk @elonmusk | 71.2 M |
Michael Saylor @saylor | 2.1 M | |
Anthony Pompliano @APompliano | 1.4 M | |
general news publications | Reuters @Reuters | 24 M |
The Wall Street Journal @WSJ | 19.3 M | |
Financial Times @FT | 4.8 M | |
crypto-specific publications | CoinDesk @CoinDesk | 2.6 M |
Cointelegraph @Cointelegraph | 1.5 M | |
Bloomberg Crypto @crypto | 0.8 M |
Tweets/No Tweets Periods | Log Returns-Std Dev | Volume-Mean | Amihud-Mean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | ||||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
BTC | All | 0.0009887 | 0.0009482 | 156.66849 | 155.26645 | 2.35 × 10−5 | 2.35 × 10−5 | ||||||
Positive | 0.0009 | 0.0010 | 0.0009 | 0.0010 | 160.21 | 170.54 | 153.05 | 163.22 | 2.38 × 10−5 | 2.3 × 10−3 | 2.36 × 10−5 | 2.25 × 10−5 | |
Neutral | 0.001 | 0.0009 | 0.0009 | 0.0009 | 157.28 | 154.10 | 156.16 | 153.36 | 2.34 × 10−5 | 2.36 × 10−5 | 2.36 × 10−5 | 2.38 × 10−5 | |
Negative | 0.0009 | 0.0010 | 0.0009 | 0.0009 | 151.67 | 158.76 | 153.37 | 159.04 | 2.32 × 10−5 | 2.29 × 10−5 | 2.3 × 10−5 | 2.25 × 10−5 | |
No tweets | 0.0005818 | 0.0006113 | 80.904839 | 82.05251 | 3.13 × 10−5 | 3.22 × 10−5 | |||||||
ETH | All | 0.0011408 | 0.0011027 | 1549.4472 | 1550.84 | 3.92 × 10−6 | 3.88 × 10−6 | ||||||
Positive | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 1566.49 | 1677.08 | 1539.37 | 1644.36 | 3.84 × 10−6 | 3.58 × 10−6 | 3.92 × 10−6 | 3.63 × 10−6 | |
Neutral | 0.00115 | 0.00113 | 0.0011 | 0.00110 | 1553.16 | 1525.10 | 1559.49 | 1536.85 | 3.93 × 10−6 | 3.99 × 10−6 | 3.88 × 10−6 | 3.95 × 10−6 | |
Negative | 0.00108 | 0.00116 | 0.00109 | 0.00104 | 1522.16 | 1590.12 | 1526.60 | 1554.84 | 3.97 × 10−6 | 3.8 × 10−6 | 3.81 × 10−6 | 3.62 × 10−6 | |
No tweets | 0.0008341 | 0.000862 | 933.32961 | 912.16757 | 6.46 × 10−6 | 6.64 × 10−6 | |||||||
LTC | All | 0.00132 | 0.001275 | 2046.9558 | 2059.2202 | 5.19 × 10−6 | 4.96 × 10−6 | ||||||
Positive | 0.00131 | 0.00144 | 0.00124 | 0.00124 | 2084.81 | 2159.54 | 2033.28 | 2153.79 | 5.33 × 10−6 | 4.94 × 10−6 | 5.13 × 10−6 | 4.55 × 10−6 | |
Neutral | 0.00134 | 0.0013 | 0.00128 | 0.00129 | 2060.90 | 2034.76 | 2082.96 | 2054.23 | 5.09 × 10−6 | 5.27 × 10−6 | 4.91 × 10−6 | 5.05 × 10−6 | |
Negative | 0.00123 | 0.00133 | 0.00128 | 0.00118 | 1964.35 | 2021.66 | 1988.62 | 2002.11 | 5.49 × 10−6 | 4.94 × 10−6 | 5.02 × 10−6 | 4.72 × 10−6 | |
No tweets | 0.0009417 | 0.0009537 | 1247.5885 | 1230.7925 | 9.85 × 10−6 | 1.02 × 10−5 | |||||||
XRP | All | 0.0015141 | 0.0015058 | 466,770.24 | 467,447.07 | 8.29 × 10−8 | 6.82 × 10−8 | ||||||
Positive | 0.00153 | 0.00166 | 0.00164 | 0.00158 | 500,742.2 | 524,344.6 | 484,714.1 | 515,844.8 | 1.08 × 10−7 | 5.77 × 10−8 | 6.42 × 10−8 | 6.12 × 10−8 | |
Neutral | 0.00152 | 0.00149 | 0.00147 | 0.00150 | 462,710 | 459,772.5 | 462,725.1 | 460,876.9 | 8.2 × 10−8 | 8.93 × 10−8 | 6.86 × 10−8 | 6.98 × 10−8 | |
Negative | 0.0014 | 0.0015 | 0.0015 | 0.0014 | 456,097.5 | 459,633.6 | 472,123.7 | 466,104.9 | 6.68 × 10−8 | 6.35 × 10−8 | 7.01 × 10−8 | 6.42 × 10−8 | |
No tweets | 0.0010062 | 0.001017 | 309,911.67 | 311,668.93 | 0.0043143 | 0.0043143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, R.; Donoiu, P.C. Sentiment Matters for Cryptocurrencies: Evidence from Tweets. Data 2025, 10, 50. https://doi.org/10.3390/data10040050
Lupu R, Donoiu PC. Sentiment Matters for Cryptocurrencies: Evidence from Tweets. Data. 2025; 10(4):50. https://doi.org/10.3390/data10040050
Chicago/Turabian StyleLupu, Radu, and Paul Cristian Donoiu. 2025. "Sentiment Matters for Cryptocurrencies: Evidence from Tweets" Data 10, no. 4: 50. https://doi.org/10.3390/data10040050
APA StyleLupu, R., & Donoiu, P. C. (2025). Sentiment Matters for Cryptocurrencies: Evidence from Tweets. Data, 10(4), 50. https://doi.org/10.3390/data10040050