Evaluation of a Phytogenic Feed Supplement Containing Carvacrol and Limonene on Sheep Performance and Parasitological Status on a Hungarian Milking Sheep Farm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Animals, Feeding, and Husbandry System
2.1.2. Blood Sampling and Measurements
2.1.3. Live Weight and Weight Gain Determination
2.2. Experiment 2
2.2.1. Animals, Feeding, and Husbandry System
2.2.2. Live Weight and Weight Gain Determination
2.2.3. Parasitological Methods
2.2.4. Statistical Analysis
2.2.5. Phytogenic Feed Supplement (PFS)
3. Results
3.1. Experiment 1
3.1.1. Blood Parameters
3.1.2. Weight Gain of the Lambs
3.2. Experiment 2
3.2.1. Live Weight and Average Daily Gain
3.2.2. Fecal Egg Count
3.2.3. Abomasal Nematode Burden
4. Discussion
4.1. The Effect of PFS on the Blood Parameters of Lactating Ewes and the Average Daily Gain of Single and Twin Suckling Lambs
4.2. The Effect of PFS on the Average Daily Gain and Parasitological Status of Fattening Lambs with Naturally Acquired GIN Infection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Hack, M.E.A.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-Kott, A.F.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef] [PubMed]
- Kuralkar, P.; Kuralkar, S. Role of herbal products in animal production—An updated review. J. Ethnopharmacol. 2021, 278, 114246. [Google Scholar] [CrossRef] [PubMed]
- Bodas, R.; Prieto, N.; García-Gonzáles, R.; Andrés, S.; Giráldes, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.; Castillejos, L.; Ferret, A. Essential Oils as Modifiers of Rumen Microbial Fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility1. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Mendel, M.; Chłopecka, M.; Dziekan, N.; Karlik, W. Phytogenic feed additives as potential gut contractility modifiers—A review. Anim. Feed. Sci. Technol. 2017, 230, 30–46. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Gallidis, E.; Ptochos, S. Anthelmintic resistance in sheep in Europe: A selected review. Veter Parasitol. 2012, 189, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Iqbal, Z.; Kerboeuf, D.; Muhammad, G.; Khan, M.N.; Afaq, M. Anthelmintic resistance: The state of play revisited. Vet. Parasitol. 2006, 79, 2413–2431. [Google Scholar] [CrossRef]
- Bath, G. The “BIG FIVE”—A South African perspective on sustainable holistic internal parasite management in sheep and goats. Small Rumin. Res. 2014, 118, 48–55. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Kyriazakis, I. Plant secondary metabolites: Antiparasitic effects and their role in ruminant production systems. Proc. Nutr. Soc. 2004, 63, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Whitty, C.J.M.; Watt, F.M. Map clusters of diseases to tackle multimorbidity. Nature 2020, 579, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Kassai, T. Helmintológia, 2nd ed.; Hungarian Veterinary Chamber: Budapest, Hungary, 2011. [Google Scholar]
- Lichtenfels, J.R.; Pilitt, P.A.; Hoberg, E.P. New Morphological Characters for Identifying Individual Specimens of Haemonchus spp. (Nematoda: Trichostrongyloidea) and a Key to Species in Ruminants of North America. Fac. Publ. Harold W. Manter Lab. Parasitol. 1994, 80, 107. [Google Scholar] [CrossRef]
- Reiczigel, J.; Rózsa, L. Quantitative Parasitology 3.0. 2005, Budapest. Distributed by the Authors. Available online: http://www.zoologia.hu/qp/ (accessed on 18 March 2023).
- Treacher, T.T.; Caja, G. Nutrition during Lactation. In Sheep Nutrition; Freer, M., Dove, H., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 213–236. [Google Scholar]
- Cowan, R.T.; Robinson, J.J.; Greenhalgh, J.F.D.; McHattie, I. Body composition changes in lactating ewes estimated by serial slaughter and deuterium dilution. Anim. Sci. 1979, 29, 81–90. [Google Scholar] [CrossRef]
- Bowden, D.M. Non-esterified fatty acids and ketone bodies in blood as indicators of nutritional status in ruminants: A review. Can. J. Anim. Sci. 1971, 51, 1–13. [Google Scholar] [CrossRef]
- Vernon, R.G.; Clegg, R.A.; Flint, D.J. Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochem. J. 1981, 200, 307–314. [Google Scholar] [CrossRef]
- Sargison, N.D. Pregnancy Toxaemia. In Diseases of Sheep, 2nd ed.; Aitken, I.D., Ed.; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant Extracts Affect In Vitro Rumen Microbial Fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of Essential Oil Active Compounds on Rumen Microbial Fermentation and Nutrient Flow in In Vitro Systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in Membrane Fatty Acids Composition of Microbial Cells Induced by Addiction of Thymol, Carvacrol, Limonene, Cinnamaldehyde, and Eugenol in the Growing Media. J. Agric. Food Chem. 2006, 54, 2745–2749. [Google Scholar] [CrossRef]
- Patra, A.K. Effects of Essential Oils on Rumen Fermentation, Microbial Ecology and Ruminant Production. Asian J. Anim. Veter Adv. 2011, 6, 416–428. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Mbiriri, D.T.; Cho, S.; Mamvura, C.I.; Choi, N.J. Assessment of rumen microbial adaptation to garlic oil, carvacrol and thymol using the consecutive batch culture system. J. Vet. Sci. Anim. Husb. 2016, 4, 1–7. [Google Scholar]
- Igimi, H.; Nishimura, M. Studies on the Metabolism of d-limonene (p-mentha-l,8 diene). I. The absorption, distribution and excretion of d-limonene in rats. Xenobiotica 1974, 4, 77–84. [Google Scholar] [CrossRef]
- Michiels, J.; Missotten, J.; Dierick, N.; Fremaut, D.; Maene, P. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnemaldehyde along the gastointestinal tract of piglets. J. Sci. Food Agri. 2008, 88, 2371–2381. [Google Scholar] [CrossRef]
- Michiels, J.; Missotten, J.; Van Hoorick, A.; Ovyn, A.; Fremaut, D.; De Smet, S.; Dierick, N. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch. Anim. Nutr. 2010, 64, 136–154. [Google Scholar] [CrossRef]
- Nazifi, S.; Saeb, M.; Ghavami, S.M. Serum Lipid Profile in Iranian Fat-tailed Sheep in Late Pregnancy, at Parturition and During the Post-parturition Period. J. Veter Med. Ser. A 2002, 49, 9–12. [Google Scholar] [CrossRef]
- Antunović, Z.; Šperanda, M.; Steiner, Z. The influence of age and the reproductive status to the blood indicators of the ewes. Arch. Tierz. 2004, 47, 265–273. [Google Scholar] [CrossRef]
- Tadayon, Z.; Rouzbehan, Y.; Rezaei, J. Effects of feeding different levels of dried orange pulp and recycled poultry bedding on the performance of fattening lambs. J. Anim. Sci. 2017, 5, 1751–1765. [Google Scholar] [CrossRef]
- Andre, W.P.; Ribeiro, W.L.; Cavalcante, G.S.; Santos, J.M.; Macedo, I.T.; Paula, H.C.; de Freitas, R.M.; de Morais, S.M.; Melo, J.V.; Bevilaqua, C.M. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Veter Parasitol. 2016, 218, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Katiki, L.; Barbieri, A.; Araujo, R.; Veríssimo, C.; Louvandini, H.; Ferreira, J. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro. Veter Parasitol. 2017, 243, 47–51. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, J.; Almeida, A.; Brito, M.; Marques, T.; Lima, T.; de Sousa, D.; Nakano, E.; Mendonça, R.; Freitas, R. Anthelmintic Activity of the Natural Compound (+)-Limonene Epoxide against Schistosoma mansoni. Planta Med. 2013, 79, 253–258. [Google Scholar] [CrossRef] [PubMed]
Experiment 1 1 | Experiment 2 2 | |
---|---|---|
Dry matter, g/kg feed | 894.2 | 892.5 |
Crude protein, g/kg | 200.9 | 149.6 |
Crude fiber, g/kg | 91.3 | 78.8 |
Crude fat, g/kg | 92.8 | 36.6 |
Crude ash, g/kg | 72.1 | 75.1 |
Ca, g/kg | 11.6 | 12.8 |
P, g/kg | 5.4 | 5.7 |
NEm, MJ/kg | 6.71 | 7.11 |
NEl, MJ/kg | 7.32 | - |
NEg, MJ/kg | 7. 41 | 4.74 |
Parameters 1 | Reference Values | CTR (n = 12) | SUP (n = 13) | SEM 2 | p Value |
---|---|---|---|---|---|
AST, IU/L | 60–280 | 130.25 | 127.85 | 8.42 | 0.624 |
ALT, IU/L | 26–34 | 15.92 | 13.46 | 0.659 | 0.093 |
ALP, IU/L | 63–387 | 345.17 | 292.23 | 24.77 | 0.318 |
GGT, IU/L | 20–52 | 57.67 | 61.15 | 2.73 | 0.559 |
CK, IU/L | 100–547 | 307.08 | 313.85 | 26.11 | 0.462 |
LDH, IU/L | 238–440 | 1831.67 | 1572.46 | 65.2 | 0.103 |
ALB, g/L | 2.4–3 | 30.09 | 28.96 | 0.454 | 0.191 |
TP, g/L | 60–79 | 87.68 | 88.16 | 1.568 | 0.624 |
BHB, mmol/L | 0.45–0.64 | 0.93 | 0.48 | 0.055 | <0.001 |
TRIG, mmol/L | 0.06–0.34 | 0.17 | 0.11 | 0.01 | 0.014 |
NEFAs, mmol/L | 0.1–0.5 | 0.21 | 0.11 | 0.025 | 0.021 |
CHOL, mmol/L | 1.35–1.97 | 1.86 | 1.61 | 0.061 | 0.059 |
GLU, mmol/L | 2.78–4.44 | 1.59 | 1.32 | 0.081 | 0.087 |
FRA, μmol/L | 1250–1360 | 158.5 | 145.62 | 2.087 | 0.002 |
UREA, mmol/L | 2.8–7.1 | 7.17 | 7.74 | 0.217 | 0.245 |
Parameters 1 | Weight of Single Lambs (kg) | Weight of Twin Lambs (kg) | ||||||
---|---|---|---|---|---|---|---|---|
CTR | SUP | SEM 2 | p Value | CTR | SUP | SEM | p Value | |
ALW1, kg | 3.86 | 3.7 | 0.17 | 0.439 | 3.56 | 3.46 | 0.11 | 0.723 |
ALW21, kg | 10.65 | 10.18 | 0.275 | 0.447 | 8.05 | 9.15 | 0.415 | 0.542 |
ALW42, kg | 19.89 | 21.45 | 0.393 | 0.071 | 15.43 | 21.13 | 0.898 | 0.002 |
ADWG (1–21 days), g/day | 323.21 | 308.47 | 0.015 | 0.668 | 235.71 | 270.83 | 0.019 | 0.47 |
ADWG (1–42 days), g/day | 381.55 | 422.75 | 0.011 | 0.076 | 283.94 | 420.54 | 0.162 | 0.001 |
Parameters 1 | CTR | SUP | SEM 2 | p Value |
---|---|---|---|---|
ALW1, kg | 27.1 | 26.8 | 0.378 | 0.423 |
ALW28, kg | 32.8 | 33.2 | 0.495 | 0.659 |
ADWG (1–28 days), g/day | 191.1 | 229.5 | 0.011 | 0.097 |
Fecal egg count on day 1 | 2058 | 1549 | 416.4 | 0.555 |
Fecal egg count on day 28 | 1190 | 480 | 155.2 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Visi, É.; Nagy, G.; Csivincsik, Á.; Tóth, T. Evaluation of a Phytogenic Feed Supplement Containing Carvacrol and Limonene on Sheep Performance and Parasitological Status on a Hungarian Milking Sheep Farm. Vet. Sci. 2023, 10, 369. https://doi.org/10.3390/vetsci10060369
Varga-Visi É, Nagy G, Csivincsik Á, Tóth T. Evaluation of a Phytogenic Feed Supplement Containing Carvacrol and Limonene on Sheep Performance and Parasitological Status on a Hungarian Milking Sheep Farm. Veterinary Sciences. 2023; 10(6):369. https://doi.org/10.3390/vetsci10060369
Chicago/Turabian StyleVarga-Visi, Éva, Gábor Nagy, Ágnes Csivincsik, and Tamás Tóth. 2023. "Evaluation of a Phytogenic Feed Supplement Containing Carvacrol and Limonene on Sheep Performance and Parasitological Status on a Hungarian Milking Sheep Farm" Veterinary Sciences 10, no. 6: 369. https://doi.org/10.3390/vetsci10060369
APA StyleVarga-Visi, É., Nagy, G., Csivincsik, Á., & Tóth, T. (2023). Evaluation of a Phytogenic Feed Supplement Containing Carvacrol and Limonene on Sheep Performance and Parasitological Status on a Hungarian Milking Sheep Farm. Veterinary Sciences, 10(6), 369. https://doi.org/10.3390/vetsci10060369