Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Dogs: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of GAMS
2.2. Experimental Animals
2.3. Dental Procedure and Mouth Spray Administration
2.4. Assessment of Plaque, Calculus, and Gingivitis Indexes
2.5. Next-Generation Sequencing (NGS)
2.6. Statistical Analysis
3. Results
3.1. Demographic Data and Changes in GI, PI, and CI
3.2. Oral Microbiome Analysis
3.2.1. Alpha Diversity
3.2.2. Beta-Diversity
3.2.3. Taxonomical Assignment
Phylum
Genera
Species
4. Discussion
4.1. Clinical Parameters
4.2. The Changes in the Oral Microbiome
4.2.1. Changes in the Bacterial Phylum
4.2.2. Changes in Bacterial Genera
4.2.3. Changes in Bacterial Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruparell, A.; Inui, T.; Staunton, R.; Wallis, C.; Deusch, O.; Holcombe, L.J. The canine oral microbiome: Variation in bacterial populations across different niches. BMC Microbiol. 2020, 20, 42. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, C.O.T.; Gomes-Filho, I.S.; Naves, R.C.; da Rocha Nogueira Filho, G.; da Cruz, S.S.; de Souza Teles Santos, C.A.; Dunningham, L.; de Miranda, L.F.; da Silva Barbosa, M.D. Influence of periodontal therapy on C-reactive protein level: A systematic review and meta-analysis. J. Appl. Oral Sci. 2012, 20, 1–8. [Google Scholar] [CrossRef]
- Di Bello, A.; Buonavoglia, A.; Franchini, D.; Valastro, C.; Ventrella, G.; Greco, M.F.; Corrente, M. Periodontal disease associated with red complex bacteria in dogs. J. Small Anim. Pract. 2014, 55, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.D.; Wallis, C.V.; Milella, L.; Colyer, A.; Tweedie, A.D.; Harris, S. A longitudinal assessment of periodontal disease in 52 miniature schnauzers. BMC Vet. Res. 2014, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Stella, J.L.; Bauer, A.E.; Croney, C.C. A cross-sectional study to estimate prevalence of periodontal disease in a population of dogs (Canis familiaris) in commercial breeding facilities in Indiana and Illinois. PLoS ONE 2018, 13, e0191395. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Holcombe, L.J. A review of the frequency and impact of periodontal disease in dogs. J. Small Anim. Pract. 2020, 61, 529–540. [Google Scholar] [CrossRef]
- Santibáñez, R.; Rodríguez-Salas, C.; Flores-Yáñez, C.; Garrido, D.; Thomson, P. Assessment of changes in the oral microbiome that occur in dogs with periodontal disease. Vet. Sci. 2021, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Niemiec, B.A. Periodontal therapy. Top. Companion Anim. Med. 2008, 23, 81–90. [Google Scholar] [CrossRef]
- Olsén, L.; Brissman, A.; Wiman, S.; Eriksson, F.; Kaj, C.; Brunius Enlund, K. Improved oral health and adaptation to treatment in dogs using manual or ultrasonic toothbrush or textile of nylon or microfiber for active dental home care. Animals 2021, 11, 2481. [Google Scholar] [CrossRef]
- Enlund, K.B.; Pettersson, A.; Eldh, A.C. Dog owners’ ideas and strategies regarding dental health in their dogs-thematic analysis of free text survey responses. Front. Vet Sci. 2022, 9, 878162. [Google Scholar] [CrossRef]
- Ray, J.; Eubanks, D. Dental homecare: Teaching your clients to care for their pet’s teeth. J. Vet. Dent. 2009, 26, 57–60. [Google Scholar] [CrossRef]
- Pieri, F.A.; Daibert, A.P.; Bourguignon, E.; Moreira, M.A.S. Periodontal disease in dogs. In A Bird’s-Eye View of Veterinary Medicine, 1st ed.; Perez-Marin, C.C., Ed.; IntechOpen: Zagreb, Croatia, 2012; pp. 129–132. [Google Scholar]
- Shimizu, H.; Nakagami, H.; Morita, S.; Tsukamoto, I.; Osako, M.K.; Nakagami, F.; Shimosato, T.; Minobe, N.; Morishita, R. New treatment of periodontal diseases by using NF-kappaB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing. Antioxid. Redox Signal. 2009, 11, 2065–2075. [Google Scholar] [CrossRef]
- Eapen, A.K.; de Cock, P.; Crincoli, C.M.; Means, C.; Wismer, T.; Pappas, C. Acute and sub-chronic oral toxicity studies of erythritol in Beagle dogs. Food Chem. Toxicol. 2017, 105, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Dunayer, E.K. New findings on the effects of xylitol ingestion in dogs. Vet. Med. 2006, 12, 791–796. [Google Scholar]
- Dunayer, E.K.; Qwaltney-Brant, S.M. Acute hepatic failure and coagulopathy associated with xylitol ingestion in eight dogs. J. Am. Vet. Med. Assoc. 2006, 229, 1113–1117. [Google Scholar] [CrossRef] [Green Version]
- Howell, T.H.; Fiorellini, J.P.; Blackburn, P.; Projan, S.J.; de la Harpe, J.; Williams, R.C. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J. Clin. Periodontol. 1993, 20, 335–339. [Google Scholar] [CrossRef]
- Cunha, E.; Valente, S.; Nascimento, M.; Pereira, M.; Tavares, L.; Dias, R.; Oliveira, M. Influence of the dental topical application of a nisin-biogel in the oral microbiome of dogs: A pilot study. PeerJ 2021, 9, e11626. [Google Scholar] [CrossRef]
- Adams, S.E.; Arnold, D.; Murphy, B.; Carroll, P.; Green, A.K.; Smith, A.M.; Marsh, P.D.; Chen, T.; Marriott, R.E.; Brading, M.G. A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology. Sci. Rep. 2017, 7, 43344. [Google Scholar] [CrossRef]
- Pleszczyńska, M.; Wiater, A.; Bachanek, T.; Szczodrak, J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol. Appl. Biochem. 2017, 64, 337–346. [Google Scholar] [CrossRef]
- Gawor, J.; Jodkowska, K.; Klim, E.; Jank, M.; Nicolas, C.S. Comparison of a vegetable-based dental chew to 2 other chews for oral health prevention. J. Vet. Dent. 2021, 38, 131–138. [Google Scholar] [CrossRef]
- Pinto, C.F.D.; Lehr, W.; Pignone, V.N.; Chain, C.P.; Trevizan, L. Evaluation of teeth injuries in Beagle dogs caused by autoclaved beef bones used as a chewing item to remove dental calculus. PLoS ONE 2020, 15, e0228146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar]
- Kang, M.; Oh, J.; Kang, I.; Hong, S.; Choi, C. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 2008, 46, 744–750. [Google Scholar] [CrossRef]
- Borges, A.; Saavedra, M.J.; Simoes, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [Google Scholar] [CrossRef]
- Shao, D.; Li, J.; Li, J.; Tang, R.; Liu, L.; Shi, J.; Huang, Q.; Yang, H. Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J. Food Sci. 2015, 80, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Guazelli, C.F.S.; Fattori, V.; Ferraz, C.R.; Borghi, S.M.; Casagrande, R.; Baracat, M.M.; Verri, W.A., Jr. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem. Biol. Interact. 2021, 333, 109315. [Google Scholar] [CrossRef]
- Bussmann, A.J.C.; Zaninelli, T.H.; Saraiva-Santos, T.; Fattori, V.; Guazelli, C.F.S.; Bertozzi, M.M.; Andrade, K.C.; Ferraz, C.R.; Camilios-Neto, D.; Casella, A.M.B.; et al. The flavonoid hesperidin methyl chalcone targets cytokines and oxidative stress to reduce diclofenac-induced acute renal injury: Contribution of the Nrf2 redox-sensitive pathway. Antioxidants 2022, 11, 1261. [Google Scholar] [CrossRef]
- Ding, W.; Lin, H.; Hong, X.; Ji, D.; Wu, F. Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease. Toxicology 2020, 436, 152437. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Yang, X.; Peng, M.; Ge, S.; Tan, S.; Wen, Z.; Wang, Y.; Wu, S.; Liang, Y.; et al. An oral “Super probiotics” with versatile self-assembly adventitia for enhanced intestinal colonization by autonomous regulating the pathological microenvironment. Chem. Eng. J. 2022, 446, 137204. [Google Scholar] [CrossRef]
- Irwin, S.V.; Deardorff, L.M.; Deng, Y.; Fisher, P.; Gould, M.; June, J.; Kent, R.S.; Qin, Y.; Yadao, F. Sulfite preservatives effects on the mouth microbiome: Changes in viability, diversity and composition of microbiota. PLoS ONE 2022, 17, e0265249. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Sivamaruthi, B.S.; Bharathi, M.; Tansrisook, C.; Peerajan, S.; Chaiyasut, K.; Khongtan, S.; Tanongpitchayes, K.; Thongma, N.; Chawnan, N.; et al. Influence of gallic acid-containing mouth spray on dental health and oral microbiota of healthy cats—A pilot study. Vet. Sci. 2022, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Özavci, V.; Erbas, G.; Parin, U.; Yüksel, H.T.; Kirkan, Ş. Molecular detection of feline and canine periodontal pathogens. Vet. Anim. Sci. 2019, 8, 100069. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasut, C.; Sirilun, S.; Juntarachot, N.; Tongpong, P.; Ouparee, W.; Sivamaruthi, B.S.; Peerajan, S.; Waditee-Sirisattha, R.; Prombutara, P.; Klankeo, P.; et al. Effect of dextranase and dextranase-and-nisin-containing mouthwashes on oral microbial community of healthy adults—A pilot study. Appl. Sci. 2022, 12, 1650. [Google Scholar] [CrossRef]
- Hennet, P.; Servet, E.; Salesse, H.; Soulard, Y. Evaluation of the Logan & Boyce plaque index for the study of dental plaque accumulation in dogs. Res. Vet. Sci. 2006, 80, 175–180. [Google Scholar] [PubMed]
- Gorrel, C.; Warrick, J.; Bierer, T.L. Effect of a New Dental Hygiene Chew on Periodontal Health in Dogs. J. Vet. Dent. 1999, 16, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Mateo, A.; Torre, C.; Crusafont, J.; Sallas, A.; Jeusette, I.C. Evaluation of Efficacy of a Dental Chew to Reduce Gingivitis, Dental Plaque, Calculus, and Halitosis in Toy Breed Dogs. J. Vet. Dent. 2020, 37, 22–28. [Google Scholar] [CrossRef]
- Cunha, E.; Tavares, L.; Oliveira, M. Revisiting Periodontal Disease in Dogs: How to Manage This New Old Problem? Antibiotics 2022, 11, 1729. [Google Scholar] [CrossRef]
- McCracken, B.A.; Nathalia Garcia, M. Phylum Synergistetes in the oral cavity: A possible contributor to periodontal disease. Anaerobe 2021, 68, 102250. [Google Scholar] [CrossRef]
- Abdelbary, M.M.H.; Hatting, M.; Bott, A.; Dahlhausen, A.; Keller, D.; Trautwein, C.; Conrads, G. The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 1010853. [Google Scholar] [CrossRef]
- Xia, K.; Gao, R.; Wu, X.; Sun, J.; Wan, J.; Wu, T.; Fichna, J.; Yin, L.; Chen, C. Characterization of Specific Signatures of the Oral Cavity, Sputum, and Ileum Microbiota in Patients with Crohn’s Disease. Front. Cell. Infect. Microbiol. 2022, 12, 864944. [Google Scholar] [CrossRef]
- Oh, C.; Lee, K.; Cheong, Y.; Lee, S.W.; Park, S.Y.; Song, C.S.; Choi, I.S.; Lee, J.B. Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing. PLoS ONE 2015, 10, e0131468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Kačírová, J.; Maďari, A.; Mucha, R.; Fecskeová, L.K.; Mujakic, I.; Koblížek, M.; Nemcová, R.; Maďar, M. Study of microbiocenosis of canine dental biofilms. Sci. Rep. 2021, 11, 19776. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Klein, E.A.; Thompson, E.C.; Blanton, J.M.; Chen, T.; Milella, L.; Buckley, C.M.; Davis, I.J.; Bennett, M.L.; Marshall-Jones, Z.V. The canine oral microbiome. PLoS ONE 2012, 7, e36067. [Google Scholar] [CrossRef]
- Yousefi, L.; Leylabadlo, H.E.; Pourlak, T.; Eslami, H.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Kafil, H.S. Oral spirochetes: Pathogenic mechanisms in periodontal disease. Microb. Pathog. 2020, 144, 104193. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.X.; Bicalho, R.C.; Fiani, N.; Lima, S.F.; Peralta, S. The subgingival microbial community of feline periodontitis and gingivostomatitis: Characterization and comparison between diseased and healthy cats. Sci. Rep. 2019, 9, 12340. [Google Scholar] [CrossRef] [Green Version]
- Juhász-Kaszanyitzky, E.; Jánosi, S.; Somogyi, P.; Dán, A.; van der Graaf-van Bloois, L.; van Duijkeren, E.; Wagenaar, J.A. MRSA transmission between cows and humans. Emerg. Infect Dis. 2007, 13, 630–632. [Google Scholar] [CrossRef]
- Shida, K. The distribution of genus Staphylococcus in the oral cavities of cats. Int. J. Oral-Med. Sci. 2009, 8, 83–89. [Google Scholar] [CrossRef]
- Oba, P.M.; Carroll, M.Q.; Alexander, C.; Valentine, H.; Somrak, A.J.; Keating, S.C.J.; Sage, A.M.; Swanson, K.S. Microbiota populations in supragingival plaque, subgingival plaque, and saliva habitats of adult dogs. Anim. Microbiome 2021, 3, 38, Erratum in Anim. Microbiome 2021, 3, 40. [Google Scholar] [CrossRef]
- Bell, S.E.; Nash, A.K.; Zanghi, B.M.; Otto, C.M.; Perry, E.B. An assessment of the stability of the canine oral microbiota after probiotic administration in healthy dogs over time. Front. Vet. Sci. 2020, 7, 616. [Google Scholar] [CrossRef] [PubMed]
- Nises, J.; Rosander, A.; Pettersson, A.; Backhans, A. The occurrence of Treponema spp. in gingival plaque from dogs with varying degree of periodontal disease. PLoS ONE 2018, 13, e0201888. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hemme, C.; Beleno, J.; Shi, Z.J.; Ning, D.; Qin, Y.; Tu, Q.; Jorgensen, M.; He, Z.; Wu, L.; et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 2018, 12, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Khemwong, T.; Kobayashi, H.; Ikeda, Y.; Matsuura, T.; Sudo, T.; Kano, C.; Mikami, R.; Izumi, Y. Fretibacterium sp. human oral taxon 360 is a novel biomarker for periodontitis screening in the Japanese population. PLoS ONE 2019, 14, e0218266. [Google Scholar] [CrossRef]
- Kawamoto, D.; Borges, R.; Ribeiro, R.A.; de Souza, R.F.; Amado, P.P.P.; Saraiva, L.; Horliana, A.C.R.T.; Faveri, M.; Mayer, M.P.A. Oral dysbiosis in severe forms of periodontitis is associated with gut dysbiosis and correlated with salivary inflammatory mediators: A preliminary study. Front. Oral Health 2021, 2, 722495. [Google Scholar] [CrossRef] [PubMed]
- Riggio, M.P.; Lennon, A.; Taylor, D.J.; Bennett, D. Molecular identification of bacteria associated with canine periodontal disease. Vet. Microbiol. 2011, 150, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, I.J.; Wallis, C.; Deusch, O.; Colyer, A.; Milella, L.; Loman, N.; Harris, S. A cross-sectional survey of bacterial species in plaque from client owned dogs with healthy gingiva, gingivitis or mild periodontitis. PLoS ONE 2013, 8, e83158. [Google Scholar] [CrossRef]
- Funke, G.; Englert, R.; Frodl, R.; Bernard, K.A.; Stenger, S. Corynebacterium canis sp. nov., isolated from a wound infection caused by a dog bite. Int. J. Syst. Evol. Microbiol. 2010, 60, 2544–2547. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Bhatia, S.; Sodhi, A.S.; Batra, N. Oral microbiome and health. AIMS Microbiol. 2018, 4, 42–66. [Google Scholar] [CrossRef]
- Cobiella, D.; Gram, D.; Santoro, D. Isolation of Neisseria dumasiana from a deep bite wound infection in a dog. Vet. Dermatol. 2019, 30, 556-e168. [Google Scholar] [CrossRef]
- Langendijk, P.S.; Kulik, E.M.; Sandmeier, H.; Meyer, J.; van der Hoeven, J.S. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int. J. Syst. Evol. Microbiol. 2001, 51, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Becher, S.; Fritsch, T.; Vukovic, M.A.; Grimm, W.D. Taqman real-time PCR assay for Desulfomicrobium orale in chronic periodontal lesions. Online J. Dent. Oral Health 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Muramatsu, Y.; Haraya, N.; Horie, K.; Uchida, L.; Kooriyama, T.; Suzuki, A.; Horiuchi, M. Bergeyella zoohelcum isolated from oral cavities of therapy dogs. Zoonoses Public Health 2019, 66, 936–942. [Google Scholar] [CrossRef]
Characters | Control | Treatment | p-Value |
---|---|---|---|
Male | 9 | 6 | 0.508 |
Female | 10 | 13 | |
Weight (Mean ± SD) | 15.29 ± 7.99 | 12.76 ± 5.14 | 0.175 |
Parameters | Tooth Code | Position | Median (IQ Range: Q3–Q1) | |||||
---|---|---|---|---|---|---|---|---|
Control | Treatment | |||||||
Pre | Post | Comparison * (p-Value) | Pre | Post | Comparison * (p-Value) | |||
Gingivitis index | 104 | 1 | 0 (1) | 0 (2) | 0.414 | 0 (1) | 0 (0) | 0.256 |
2 | 0 (1) | 0 (1) | 0.217 | 0.5 (1) | 0 (1) | 0.053 | ||
3 | 0 (1) | 0 (4) | 0.705 | 0.5 (1) | 0 (0) | 0.014 | ||
108 | 1 | 3 (7) | 4 (6) | 0.131 | 2 (3) | 1 (4) | 0.014 | |
2 | 4 (3) | 5 (2) | 0.073 | 3 (7) | 1.5 (4) | 0.045 | ||
3 | 4 (6) | 4 (5) | 0.243 | 4 (0) | 0.5 (1) | 0.397 | ||
204 | 1 | 1 (1) | 1 (2) | 0.083 | 0 (1) | 0 (1) | 0.414 | |
2 | 1 (1) | 1 (0) | 0.290 | 1 (2) | 0 (2) | 0.689 | ||
3 | 1 (1) | 1 (1) | 0.123 | 0 (0) | 0 (0) | 0.000 | ||
208 | 1 | 4 (8) | 3 (7) | 0.179 | 1 (3) | 1 (4) | 0.315 | |
2 | 4 (4) | 5 (2) | 0.256 | 1 (8) | 1 (7) | 0.121 | ||
3 | 4 (6) | 4 (5) | 0.288 | 2 (0) | 0 (0) | 0.005 | ||
304 | 1 | 0 (0) | 0 (0) | 0.954 | 0 (0) | 0 (0) | 0.951 | |
2 | 0 (0) | 0 (0) | 0.093 | 0 (1) | 0 (0) | 0.348 | ||
3 | 0 (1) | 0 (0) | 0.387 | 0 (0) | 0 (0) | 0.563 | ||
309 | 1 | 0 (1) | 0 (1) | 0.654 | 1 (1) | 0 (0) | 0.219 | |
2 | 0 (1) | 0 (1) | 0.102 | 0 (0) | 0 (0) | 0.967 | ||
3 | 0 (0) | 0 (1) | 0.317 | 0 (0) | 0 (0) | 0.317 | ||
404 | 1 | 0 (0) | 0 (0) | 0.617 | 0 (0) | 0 (0) | 0.157 | |
2 | 0 (0) | 0 (0) | 0.479 | 0 (1) | 0 (1) | 0.317 | ||
3 | 0 (1) | 0 (0) | 0.824 | 0 (1) | 0 (1) | 0.654 | ||
409 | 1 | 0 (1) | 0 (1) | 0.705 | 1 (0) | 0 (0) | 0.615 | |
2 | 0 (1) | 0 (1) | 0.713 | 0 (0) | 0 (0) | 0.000 | ||
3 | 0 (1) | 0 (0) | 0.291 | 0 (0) | 0 (0) | 0.000 | ||
Plaque index | 104 | 1 | 4 (11) | 3 (7) | 0.118 | 4 (6) | 4 (4) | 0.584 |
2 | 0 (3) | 0 (1) | 0.280 | 0 (2) | 1 (2) | 0.645 | ||
108 | 1 | 4 (3) | 4 (6) | 0.755 | 2 (3) | 3 (2) | 0.107 | |
2 | 4 (3) | 4 (7) | 0.534 | 3.5 (2) | 4 (3) | 0.089 | ||
204 | 1 | 6 (11) | 4 (6) | 0.128 | 8 (9) | 5 (5) | 0.029 | |
2 | 0 (1) | 0 (1) | 1.000 | 1 (3) | 1.5 (3) | 0.253 | ||
208 | 1 | 4 (5) | 4 (4) | 0.180 | 2 (7) | 4 (5) | 0.162 | |
2 | 4 (4) | 4 (3) | 0.214 | 2 (7) | 4 (5) | 0.161 | ||
304 | 1 | 2 (3) | 1 (4) | 0.085 | 2.5 (5) | 3.5 (5) | 0.965 | |
2 | 0 (1) | 0 (1) | 0.260 | 1 (2) | 0 (2) | 0.980 | ||
309 | 1 | 3 (2) | 2 (2) | 0.058 | 2.5 (2) | 2.5 (3) | 0.508 | |
2 | 0 (2) | 1 (2) | 0.918 | 1 (1) | 1 (1) | 0.212 | ||
404 | 1 | 2 (5) | 2 (4) | 0.304 | 2 (3) | 2 (6) | 0.562 | |
2 | 0 (0) | 0 (0) | 0.655 | 0 (0) | 0 (0) | 0.210 | ||
409 | 1 | 2 (3) | 2 (3) | 0.596 | 2 (2) | 2.5 (3) | 0.321 | |
2 | 0 (1) | 1 (1) | 0.949 | 0 (1) | 1 (1) | 0.212 | ||
Calculus index | 104 | 1 | 0 (1) | 0 (2) | 0.882 | 0 (1) | 0 (0) | 0.115 |
2 | 0 (1) | 0 (1) | 0.605 | 0.5 (1) | 0 (1) | 0.066 | ||
3 | 0 (1) | 0 (4) | 0.089 | 0.5 (1) | 0 (0) | 0.021 | ||
108 | 1 | 3 (7) | 4 (6) | 0.028 | 2 (3) | 1 (4) | 0.013 | |
2 | 4 (3) | 5 (2) | 0.004 | 3 (7) | 1.5 (4) | 0.049 | ||
3 | 4 (6) | 4 (5) | 0.015 | 4 (4) | 0.5 (4) | 0.025 | ||
204 | 1 | 1 (1) | 1 (2) | 0.361 | 0 (1) | 0 (1) | 0.000 | |
2 | 1 (1) | 1 (0) | 0.401 | 1 (2) | 0 (2) | 0.000 | ||
3 | 1 (1) | 1 (1) | 0.008 | 0 (1) | 0 (0) | 0.003 | ||
208 | 1 | 4 (8) | 3 (7) | 0.034 | 1 (3) | 1 (4) | 0.014 | |
2 | 4 (4) | 5 (2) | 0.008 | 1 (8) | 1 (7) | 0.007 | ||
3 | 4 (6) | 4 (5) | 0.027 | 2 (4) | 0 (4) | 0.028 | ||
304 | 1 | 0 (0) | 0 (0) | 0.157 | 0 (0) | 0 (0) | 0.157 | |
2 | 0 (0) | 0 (0) | 0.093 | 0 (1) | 0 (0) | 0.045 | ||
3 | 0 (1) | 0 (0) | 0.204 | 0 (0) | 0 (0) | 0.083 | ||
309 | 1 | 0 (1) | 0 (1) | 0.980 | 1 (1) | 0 (0) | 0.032 | |
2 | 0 (1) | 0 (1) | 0.693 | 0 (0) | 0 (0) | 0.045 | ||
3 | 0 (0) | 0 (1) | 0.317 | 0 (0) | 0 (0) | 0.157 | ||
404 | 1 | 0 (0) | 0 (0) | 0.157 | 0 (0) | 0 (0) | 0.317 | |
2 | 0 (0) | 0 (0) | 0.025 | 0 (1) | 0 (1) | 0.083 | ||
3 | 0 (1) | 0 (0) | 0.098 | 0 (1) | 0 (0) | 0.014 | ||
409 | 1 | 0 (1) | 0 (1) | 0.164 | 1 (0) | 0 (0) | 0.031 | |
2 | 0 (1) | 0 (1) | 0.053 | 0 (0) | 0 (0) | 0.519 | ||
3 | 0 (1) | 0 (0) | 0.317 | 0 (0) | 0 (0) | 0.000 |
Control (Pre- vs. Post-Samples) | Treatment (Pre- vs. Post-Samples) | ||
---|---|---|---|
Taxonomy | p-Value * | Taxonomy | p-Value * |
Phylum | |||
Synergistota | 0.018 | Spirochaetota | 0.022 |
Patescibacteria | 0.000 | Patescibacteria | 0.004 |
Desulfobacterota | 0.003 | Desulfobacterota | 0.001 |
Planctomycetota | 0.022 | Actinobacteriota | 0.043 |
Chloroflexi | 0.043 | ||
Genera | |||
Fretibacterium | 0.018 | Candidatus | 0.018 |
Candidatus moranbacteria | 0.028 | Frederiksenia | 0.028 |
Brachymonas | 0.007 | Flexilinea | 0.043 |
Desulfovibrio | 0.009 | Desulfovibrio | 0.003 |
Desulfobulbus | 0.004 | Desulfobulbus | 0.010 |
Candidatus Pacebacteria | 0.028 | Bergeyella | 0.043 |
Streptococcus | 0.028 | Streptococcus | 0.028 |
Desulfomicrobium | 0.043 | Candidatus | 0.018 |
AD3011 | 0.028 | AD3011 | 0.018 |
R7 group | 0.018 | Staphylococcus | 0.018 |
H1 | 0.043 | Conchiformibius | 0.043 |
Treponema | 0.022 | ||
Species | |||
C. canis | 0.018 | C. canis | 0.018 |
G. coleocanis | 0.028 | B. hordeovulneris | 0.018 |
Brachymonas sp. | 0.007 | B. zoohelcum | 0.043 |
Desulfobulbus sp. | 0.005 | Desulfobulbus sp. | 0.018 |
P. cangingivalis | 0.022 | Petrimonas sp. | 0.018 |
S. minor | 0.042 | S. minor | 0.028 |
C. mustelae | 0.028 | C. mustelae | 0.028 |
Streptococcus sp. | 0.042 | Neisseria sp. | 0.043 |
D. orale | 0.042 | T. denticola | 0.022 |
Tissierella sp. | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongma, N.; Sivamaruthi, B.S.; Bharathi, M.; Tansrisook, C.; Peerajan, S.; Tanongpitchayes, K.; Chawnan, N.; Rashmi, S.; Thongkorn, K.; Chaiyasut, C. Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Dogs: A Pilot Study. Vet. Sci. 2023, 10, 424. https://doi.org/10.3390/vetsci10070424
Thongma N, Sivamaruthi BS, Bharathi M, Tansrisook C, Peerajan S, Tanongpitchayes K, Chawnan N, Rashmi S, Thongkorn K, Chaiyasut C. Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Dogs: A Pilot Study. Veterinary Sciences. 2023; 10(7):424. https://doi.org/10.3390/vetsci10070424
Chicago/Turabian StyleThongma, Nichaphat, Bhagavathi Sundaram Sivamaruthi, Muruganantham Bharathi, Chawin Tansrisook, Sartjin Peerajan, Kittidaj Tanongpitchayes, Natcha Chawnan, Subramanian Rashmi, Kriangkrai Thongkorn, and Chaiyavat Chaiyasut. 2023. "Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Dogs: A Pilot Study" Veterinary Sciences 10, no. 7: 424. https://doi.org/10.3390/vetsci10070424
APA StyleThongma, N., Sivamaruthi, B. S., Bharathi, M., Tansrisook, C., Peerajan, S., Tanongpitchayes, K., Chawnan, N., Rashmi, S., Thongkorn, K., & Chaiyasut, C. (2023). Influence of Gallic Acid-Containing Mouth Spray on Dental Health and Oral Microbiota of Healthy Dogs: A Pilot Study. Veterinary Sciences, 10(7), 424. https://doi.org/10.3390/vetsci10070424