Early-Life Exposure to Lipopolysaccharide Induces Persistent Changes in Gene Expression Profiles in the Liver and Spleen of Female FVB/N Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Euthanasia
2.3. Total RNA Isolation and First Strand cDNA Synthesis
2.4. Quantitative PCR (qPCR) Assay
2.5. Statistical Analysis
3. Results
3.1. Weight and Gene Expression Profiling in the Liver and Spleen Tissues
3.2. Functional Annotation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikaido, H. Outer membrane. In Escherichia Coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Jr., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E., Eds.; American Society for Microbiology: Washington, DC, USA, 1992; pp. 29–47. [Google Scholar]
- Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zahringer, U.; Seydel, U.; Di Padova, F. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J. 1994, 8, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Rietschel, E.T.; Brade, H. Bacterial endotoxins. Sci. Am. 1992, 267, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Galanos, C.; Freudenberg, M.A.; Katschinski, T.; Salomao, R.; Mossmann, H.; Kumazawa, Y. Tumor necrosis factor and host response to endotoxin. In Bacterial Endoxic Lipopolysaccharides, Immunopharmacology and Pathophysiology; Ryan, J.L., Morrison, D.C., Eds.; CRC Press: Boca Raton; FL, USA, 1992; Volume 2, pp. 75–102. [Google Scholar]
- Galanos, C.; Freudenberg, M.A. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 1993, 187, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Pattern recognition receptors. Doubling up for the innate immune response. Cell 2002, 111, 927–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeway, C.A.; Madzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.B.; Mark, M.R.; Gray, A.; Huang, A.; Hong, X.M.; Zhang, M.; Goddard, A.; Wood, W.I.; Gurney, A.L.; Godowski, P.J. Toll like receptor-2 mediates lipopolysaccharide—Induced cellular signaling. Nature 1998, 395, 284–288. [Google Scholar] [CrossRef]
- Chow, J.C.; Young, D.W.; Golenbock, D.T.; Christ, W.J.; Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999, 274, 10689–10692. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S.N.; Hogan, M.M. The role of cytokines in endotoxin- mediated host responses. In Immunopharmacology. The role of Cells and Cytokines in Immunity and Inflammation; Oppenheim, J.J., Shevack, E.M., Eds.; Oxford University Press: New York, NY, USA, 1990; pp. 238–258. [Google Scholar]
- Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Folsom, A.R.; Heiss, G. Low grade systemic inflammation and the development of type 2 diabetes. The atherosclerosis risk in communities study. Diabetes 2003, 52, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Amar, J.; Iglesias, M.G.; Poggi, M.; Knauf, C.; Bastelica, D.; Myrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 7, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Nakarai, H.; Yamashita, A.; Nagayasu, S.; Iwashita, M.; Kumamoto, S.; Ohyama, H.; Hata, M.; Soga, Y.; Kushiyama, A.; Asano, T.; et al. Adipocyte- macrophage interaction may mediate LPS- induced low-grade inflammation: Potential link with metabolic complications. Innate Immun. 2012, 18, 164–170. [Google Scholar] [CrossRef]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Trancey, R.P.; Hennekens, C.H. Inflamation, aspirin and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.H.; Shah, P.K.; Faure, E.; Equils, O.; Thomas, L.; Fishbein, M.C.; Luthringer, D.; Xu, X.P.; Rajavashisth, T.B.; Yano, J.; et al. Toll like receptor 4 is expressed by macrophages in murine and human lipid- rich atherosclerotic plaques and up-regulated by oxidezed LDL. Circulation 2001, 104, 3103–3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edfeld, K.; Swedenborg, J.; Hansson, G.K.; Yan, Q.K. Expression of Toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 2002, 105, 1158–1161. [Google Scholar] [CrossRef] [Green Version]
- Hansson, G.K.; Libby, P.; Schonbeck, U.; Yan, Z.Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circulation 2002, 91, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ikebe, M.; Kitaura, Y.; Nakmura, M.; Tanaka, H.; Yamaski, A.; Nagai, S.; Wada, J.; Yanai, K.; Koga, K.; Sato, N.; et al. Liposaccharide (LPS) increases the invasive ability of pancreatic cancer cell through the TLR4/ MyD88 signaling pathway. J. Surgical Onc. 2009, 100, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.Y.; Chan, C.H.; Spicer, J.D.; Rousseau, M.C.; Giannias, B.; Rousseau, S.; Ferri, L.E. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res. 2011, 71, 1989–1998. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.L.; Ruan, X.Z.; Powis, S.H.; Chen, Y.; Moorhead, J.F.; Varghese, Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 2008, 48, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Schaffert, C.S.; Duryee, M.J.; Thiele, G.M. Alcohol metabolites and lipopolysaccharide: Role in the development and/or progression of alcoholic liver disease. World J. Gastroenterol. 2009, 15, 1209–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, R.H. Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol. Sci. 2004, 25, 640–646. [Google Scholar] [CrossRef]
- Lewis, S.M.; Williams, A.; Eisenbarth, S.C. Structure and function of the immune system in the spleen. Sci. Immunol. 2019, 4, eaau6085. [Google Scholar] [CrossRef] [PubMed]
- Ehlting, C.; Wolf, S.D.; Bode, J.G. Acute-phase protein synthesis: A key feature of innate immune functions of the liver. Biol. Chem. 2021, 402, 1129–1145. [Google Scholar] [CrossRef] [PubMed]
- Olfert, E.D.; Cross, B.M.; McWilliam, A.A. The Guide to the care and use of experimental Animals. Can. Counc. Anim. Care 1993, 1, 19–22. [Google Scholar]
- Hailemariam, D.; Goldansaz, S.A.; Daude, N.; Wishart, D.S.; Ametaj, B.N. Mice treated subcutaneously with mouse LPS-converted PrPres or LPS alone showed brain gene expression profiles characteristic of prion disease. Vet Sci. 2021, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. Metaboanalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Prot. 2008, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 15, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Warner, A.E.; Brain, J.D. Intravascular pulmonary macro-phages: A novel cell removes particles from blood. Am. J. Physiol. Reg. Integr. Comp. Physiol. 1986, l250, R728–R732. [Google Scholar] [CrossRef]
- Mathison, J.C.; Ulevitch, R.J. The clearance, tissue distribution, and cellular localization of intravenously injected lipo-polysaccharide in rabbits. J. Immunol. 1979, 123, 2133–2143. [Google Scholar] [CrossRef]
- Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nature Ned. 2004, 10, 355–361. [Google Scholar]
- Su, C.G.; Wen, X.; Bailey, S.T.; Jiang, W.; Rangwala, S.M.; Keilbaugh, S.A.; Flanigan, A.; Murthy, S.; Lazar, M.A.; Wu, G.D. A novel therapy for colitis utilizing PPAR-γ ligands to inhibitedd the epithelial inflammatory response. J. Clin. Investig. 1999, 104, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Zingarelli, B.; Sheehan, M.; Hake, P.W.; O’Connor, M.; Denenberg, A.; Cook, J.A. Peroxisome proliferator activator receptor-γ ligands 15-deoxy- 12, 14- prostaglandine J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J. Immunol. 2003, 171, 6827–6837. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.; Collin, M.; Thiemermann, C. The peroxisome proliferator- activated receptor- γ ligand 15- deoy-12,14 prostaglandine J2, reduces the organ injury in hemorrhagic shock. Shock 2004, 22, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.M.; Cui, X.; Wu, R.; Dong, W.; Zhow, M.; Hu, M.; Simms, H.H.; Wang, P. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up- regulation of peroxisome proliferator activated receptor- γ. Crit. Car. Med. 2006, 34, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wu, R.; Dong, W.; Jacob, A.; Wang, P. Endotoxin down- regulates peroxisome proliferator- activated gamma via the increase in TNF- alpha release. Am. J. Physiol. 2008, 294, 84–92. [Google Scholar]
- Memon, R.A.; Tecott, L.H.; Nonogaki, K.; Beigneux, A.; Moser, A.H.; Grunfeld, C.; Feingold, K.R. Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: Troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 2000, 141, 4021–4031. [Google Scholar] [PubMed]
- Bedoucha, M.; Atzpodien, E.; Boelsterli, U.A. Diabetic KKAy mice exhibit increase hepatic PPARg1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J. Hepat. 2001, 35, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Horton, J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004, 114, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, E.F.; Ametaj, B.N. Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J. Dairy. Sci. 2016, 99, 5967–5990. [Google Scholar] [CrossRef]
- Neuschwander-Tetri, B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52, 774–788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenne, C.N.; Kubes, P. Immune surveillance by the liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.A. Fewer and fewer oncogenes. Cell 1982, 30, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, O. The KRAS oncogene: Past, present, and future. Biochim. Biophys. Acta 2005, 1756, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Mercer, K.; Greenbaum, D.; Roderick, T.; Bronson, R.T.; Crowley, D.; Tuveson, A.D.; Jacks, T. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001, 410, 1111–1116. [Google Scholar] [CrossRef]
- Feig, L.; Bast, R.C.; Knapp, R.C.; Cooper, G.M. Somatic activation of ras K gene in human ovarian carcinoma. Science 1984, 223, 698–701. [Google Scholar] [CrossRef]
- Poliseno, L.; Salmena, L.; Zhang, J.; Carve, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independen function of gene and pseudogene mRNA regulates tumor biology. Nature 2010, 465, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.M.; Miki, T.; Meyers, K.A.; Aaronson, S.A. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 1994, 91, 7558–7562. [Google Scholar] [CrossRef]
- Hortal, A.M.; Oeste, C.L.; Cifuentes, C.; Alcoceba, M.; Fernández-Pisonero, I.; Clavaín, L.; Tercero, R.; Mendoza, P.; Domínguez, V.; García-Flores, M.; et al. Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia. Mol Cancer 2022, 21, 35. [Google Scholar] [CrossRef]
- Bonner, T.; O’Brien, S.J.; Nash, W.G.; Rapp, U.R.; Morton, C.C.; Leder, P. The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 1984, 223, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Nakatsu, Y.; Sekiguchi, M.; Hokamura, K.; Tanaka, K.; Terada, M.; Sugimura, T. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc. Natl. Acad. Sci. USA 1985, 82, 5641–5645. [Google Scholar] [CrossRef] [PubMed]
- Teyssier, J.R.; Henry, I.; Dozier, C.; Ferre, D.; Adnet, J.J.; Pluot, M. Recurrent deletion of eh short arm of chromosome 3 in human cell carcinoma: Shit of the c-raf1 locus. J. Nat. Cancer Inst. 1986, 77, 1187–1191. [Google Scholar] [PubMed]
- Jiang, N.; Song, X.; Peng, Y.M.; Wang, W.N.; Song, Z. Association of disease condition with changes in intestinal flora, and plasma endotoxin and vascular endothelial growth factor levels in patients with liver cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3605–3613. [Google Scholar]
- Liu, W.T.; Jing, Y.Y.; Gao, L.; Li, R.; Yang, X.; Pan, X.R.; Yang, Y.; Meng, Y.; Hou, X.J.; Zhao, Q.D.; et al. Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment. Cell Death Differ. 2020, 27, 85–101. [Google Scholar] [CrossRef]
- Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005, 6, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, P.T.; Stephens, L.R. PI3K signalling in inflammation. Biochem. Biophys. Acta. 2015, 51, 882–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, A.; Agnihotri, S.; Micallef, J.; Mukherjee, J.; Sabha, N.; Cairns, R.; Hawkins, C.; Guha, A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 2011, 208, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Suh, D.H.; Kim, M.A.; Kim, H.; Kim, M.K.; Kim, H.S.; Chung, H.H.; Kim, Y.B.; Song, Y.S. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin. Exp. Med. 2014, 14, 345–353. [Google Scholar] [CrossRef]
- Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24, 213–228, Erratum in Cancer Cell 2013, 24, 399. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Ezzell, R.M.; Clark, B.D.; Loiselle, P.M.; Amato, S.F.; Warren, H.S. Relationship of tissue and cellular interleukin-1and lipopolysaccharide after endotoxemia and bacteremia. J. Infect. Dis. 1997, 176, 1313–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeneveld, P.H.; van Rooijen, N. Localization of intravenously injected lipopolysaccharide (LPS) in the spleen of the mouse. An immunoperoxidase and histochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1985, 48, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, M.; Nakajima, T.; Imai, T.; Harada, S.; Combadiere, C.; Tiffany, H.L.; Murphy, P.M.; Yoshie, O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J. Biol. Chem. 1996, 271, 7725–7730. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Kohli, L.L.; Stone, M.J. Characterization of binding between the chemokine eotaxin and peptides derived from the chemokine receptor CCR3. J. Biol. Chem. 2000, 275, 27250–27257. [Google Scholar] [CrossRef] [PubMed]
- Elsner, J.; Hochstetter, R.; Kimmig, D.; Kapp, A. Human eotaxin represents a potent activator of the respiratory burst of human eosinophils. Eur. J. Immunol. 1996, 26, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Uguccioni, M.; Mackay, C.R.; Ochensberger, B.; Loetscher, P.; Rhis, S.; LaRosa, G.J.; Rao, P.; Ponath, P.D.; Baggiolini, M.; Dahinden, C.A. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 1997, 100, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peled, A.; Gonzalo, J.A.; Lloyd, C.; Gutierrez-Ramos, J.C. The chemotactic cytokine eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood 1998, 91, 1909–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzies-Gow, A.; Ying, S.; Sabroe, I.; Stubbs, V.L.; Soler, D.; Williams, T.J.; Kay, A.B. Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J. Immunol. 2002, 169, 2712–2718. [Google Scholar] [CrossRef]
- Lilly, C.M.; Nakamura, H.; Kesselman, H.; Nagler-Anderson, C.; Asano, K.; Garcia-Zepeda, E.A.; Rothenberg, M.E.; Drazen, J.M.; Luster, A.D. Expression of eotaxin by human lung epithelial cells: Induction by cytokines and inhibition by glucocorticoids. J. Clin. Investig. 1997, 99, 1767–1773. [Google Scholar] [CrossRef]
- Bartels, J.; Schlüter, C.; Richter, E.; Noso, N.; Kulke, R.; Christophers, E.; Schröder, J.M. Human dermal fibroblasts express eotaxin: Molecular cloning, mRNA expression, and identification of eotaxin sequence variants. Biochem. Biophys. Res. Commun. 1996, 225, 1045–1051. [Google Scholar] [CrossRef]
- Miyamasu, M.; Nakajima, T.; Misaki, Y.; Izumi, S.; Tsuno, N.; Kasahara, T.; Yamamoto, K.; Morita, Y.; Hirai, K. Dermal fibroblasts represent a potent major source of human eotaxin: In vitro production and cytokine-mediated regulation. Cytokine 1999, 11, 751–758. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Y.; Wen, Y.; Jeong, J.M.; Emontzpohl, C.; Atkins, C.L.; Sun, Z.; Poulsen, K.L.; Hall, D.R.; Steve Bynon, J.; et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J. Hepatol. 2022, 77, 344–352. [Google Scholar] [CrossRef]
- Plötz, S.G.; Lentschat, A.; Behrendt, H.; Plötz, W.; Hamann, L.; Ring, J.; Rietschel, E.T.; Flad, H.D.; Ulmer, A.J. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood 2001, 97, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Perl, L.; Pasvolsky, O.; Lifshitz, L.; Mekori, Y.A.; Hershko, A.Y. Increased eosinophilic responses in splenectomized patients. Ann. Allergy Asthma Immunol. 2012, 108, 34–38. [Google Scholar] [CrossRef]
- Blanchard, C.; Rothenberg, M.E. Biology of the eosinophil. Adv. Immunol. 2007, 27, 357–375. [Google Scholar]
- Spencer, L.A.; Szela, C.T.; Perez, S.A.; Kirchhoffer, C.L.; Neves, J.S.; Radke, A.L.; Weller, P.F. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 2009, 85, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Ness, T.L.; Hogaboam, C.M.; Kunkel, S.L. Chemokines: TARC (CCL17). In Encyclopedia of Respiratory Medicine, 1st ed.; Laurent, G.J., Shapiro, S.D., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 380–384. [Google Scholar]
- Buckland, K.F.; Hogaboam, C.M. TECK (Ccl25). In Encyclopedia of Respiratory Medicine, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 385–389. [Google Scholar]
- Vicari, A.P.; Figueroa, D.J.; Hedrick, J.A.; Foster, J.S.; Singh, K.P.; Menon, S.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Bacon, K.B.; et al. TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 1997, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Wurbel, M.-A.; Philippe, J.M.; Nguyen, C.; Victorero, G.; Freeman, T.; Wooding, P.; Miazek, A.; Mattei, M.G.; Malissen, M.; Jordan, B.R.; et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 2000, 30, 262. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Agace, W.W. Role of CCL25/CCR9 in immune homeostasis and disease. Expert Rev. Clin. Immunol. 2006, 5, 759–773. [Google Scholar] [CrossRef]
- Eksteen, B.; Grant, A.J.; Miles, A.; Curbishley, S.M.; Lalor, P.F.; Hübscher, S.G.; Briskin, M.; Salmon, M.; Adams, D.H. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J. Exp. Med. 2004, 200, 1511–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyaseelan, S.; Chu, H.W.; Young, S.K.; Worthen, G.S. Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect Immun. 2004, 72, 7247–7256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahler, J.F.; Stokes, W.; Mann, P.C.; Takaoka, M.; Maronpot, R.R. Spontaneous lesions in aging FVB/N mice. Toxicol. Pathol. 1996, 24, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Jhamat, N.; Niazi, A.; Guo, Y.; Chanrot, M.; Ivanova, E.; Kelsey, G.; Bongcam-Rudloff, E.; Andersson, G.; Humblot, P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genom. 2020, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Y.; Sun, Y.; Dong, X.; Wang, Z.; Zhang, Z.; Xiao, Y.; Dong, G. Bacterial lipopolysaccharide induced alterations of Genome-Wide DNA methylation and promoter methylation of lactation-related genes in bovine mammary epithelial cells. Toxins 2019, 1, 298. [Google Scholar] [CrossRef] [Green Version]
Gene Symbol | Description of the Genes | Fold-Change | p-Value |
---|---|---|---|
Up-Regulated DE Genes in LPS vs. Saline | |||
Pparg | Peroxisome proliferator activated receptor gamma | 4.18 | 0.02 |
Frs3 | Fibroblast growth factor receptor substrate 3 | 2.65 | 0.0005 |
Kras | V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog | 2.08 | 0.0008 |
Raf1 | V-raf-leukemia viral oncogene 1 | 1.66 | 0.006 |
Gsk3b | Glycogen synthase kinase 3 beta | 1.66 | 0.007 |
Rras2 | Related RAS viral (r-ras) oncogene homolog 2 | 1.65 | 0.007 |
Hk2 | Hexokinase 2 | 2.09 | 0.08 |
Pik3r2 | Phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 2 (p85 beta) | 2.05 | 0.06 |
Down-Regulated DE genes in LPS vs. Saline | |||
Cxcl10 | Chemokine (C-X-C motif) ligand 10 | −3.57 | 0.01 |
Ptprf | Protein tyrosine phosphatase, receptor type, F | −2.41 | 0.07 |
Acaca | Acetyl-Coenzyme A carboxylase alpha | −2.41 | 0.08 |
Ccr5 | Chemokine (C-C motif) receptor 5 | −2.2 | 0.06 |
Irf3 | Interferon regulatory factor 3 | −1.7 | 0.06 |
Irf7 | Interferon regulatory factor 7 | −1.7 | 0.06 |
Lyz2 | Lysozyme 2 | −2.2 | 0.06 |
Mbl2 | Mannose-binding lectin (protein C) 2 | −1.7 | 0.06 |
Stat1 | Signal transducer and activator of transcription 1 | −3.5 | 0.08 |
Gene Symbol | Description of the Gene | Fold-Change | p-Value |
---|---|---|---|
Up-Regulated DE Genes in LPS vs. Saline | |||
Ccl25 | Chemokine (C-C motif) ligand 25 | 2.27 | 0.0002 |
Il6 | Interleukin 6 | 2.89 | 0.0007 |
Ccl17 | Chemokine (C-C motif) ligand 17 | 1.78 | 0.0009 |
Pparg | Peroxisome proliferating receptor gamma | 5.81 | 0.001 |
Ccl11 | Chemokine (C-C) ligand 11 | 2.29 | 0.001 |
Prnd | Prion protein 2 (dublet) | 2.9 | 0.002 |
Cxcl5 | Chemokine (C-X-C motif) ligand 5 | 1.77 | 0.006 |
Il1a | Interleukin 1a | 1.8 | 0.011 |
Cxcl11 | Chemokine (C-X-C motif) ligand 11 | 2.83 | 0.025 |
Nos2 | Nitric oxide synthase 2 | 1.11 | 0.035 |
Tlr4 | Toll like receptor 4 | 1.43 | 0.039 |
Fcgr3 | Fc fragment of Ig, low affinity Il1b, receptor | 18.23 | 0.045 |
Down-Regulated DE genes in LPS vs. Saline | |||
Fyn | Fyn oncogene related to SRC, FGR YES | −4.41 | 0.002 |
Grn | Granulin | −2.19 | 0.003 |
Lyz2 | Lysozyme 2 | −11.02 | 0.005 |
H2-k1 | Histocompatibility 2, K1, K region; similar to H-2K(d) antigen | −4.38 | 0.003 |
Fcgr2b | Fc receptor, IgG, low affinity IIb | −4.4 | 0.006 |
Egr1 | Early growth response 1 | −2.2 | 0.009 |
Notch1 | Notch1 | −2.21 | 0.010 |
Rtp4 | Receptor (chemosensory) transporter protein4 | −1.41 | 0.014 |
Ifi27i2a | Interferon, alpha-inducible protein 27 like 2A | −8.94 | 0.016 |
Ache | Acetylcholinesterase | −1.1 | 0.019 |
Apoe | Apolipoprotein E | −1.09 | 0.065 |
Gbp4 | Guanylate binding protein 4 | −2.2 | 0.072 |
Atp1b1 | ATPase, Na+/K+ transporting, beta 1 polypeptide | −2.74 | 0.090 |
Annotation Cluster 1: Enrichment Score: 2.67 | |||||
---|---|---|---|---|---|
Category | Term | Genes | Count | p-Value | Benjamini |
KEGG_PATHWAY | Hepatitis C | Kras, Cxcl10, Gsk3b, Raf1 | 4 | 5.90 × 10−5 | 5.60 × 10−3 |
KEGG_PATHWAY | Chemokine signaling pathway | Kras, Cxcl10, Gsk3b, Raf1 | 4 | 9.20 × 10−5 | 5.60 × 10−3 |
GOTERM_BP_DIRECT | Signal transduction | Kras, Gsk3b, Pparg, Rras2, Raf1 | 5 | 3.10 × 10−4 | 1.00 × 10−1 |
KEGG_PATHWAY | Endometrial cancer | Kras, Gsk3b, Raf1 | 3 | 4.00 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | Prolactin signaling pathway | Kras, Gsk3b, Raf1 | 3 | 6.50 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | EGFR tyrosine kinase inhibitor resistance | Kras, Gsk3b, Raf1 | 3 | 7.50 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | B-cell receptor signaling pathway | Kras, Gsk3b, Raf1 | 3 | 7.80 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | ErbB signaling pathway | Kras, Gsk3b, Raf1 | 3 | 8.40 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | Colorectal cancer | Kras, Gsk3b, Raf1 | 3 | 9.30 × 10−4 | 1.40 × 10−2 |
KEGG_PATHWAY | Prostate cancer | Kras, Gsk3b, Raf1 | 3 | 1.20 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Melanogenesis | Kras, Gsk3b, Raf1 | 3 | 1.20 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | T cell receptor signaling pathway | Kras, Gsk3b, Raf1 | 3 | 1.30 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Growth hormone synthesis, secretion and action | Kras, Gsk3b, Raf1 | 3 | 1.60 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Thyroid hormone signaling pathway | Kras, Gsk3b, Raf1 | 3 | 1.70 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Neurotrophin signaling pathway | Kras, Gsk3b, Raf1 | 3 | 1.70 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Pathways in cancer | Kras, Gsk3b, Pparg, Raf1 | 4 | 2.00 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Insulin signaling pathway | Kras, Gsk3b, Raf1 | 3 | 2.30 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Signaling pathways regulating pluripotency of stem cells | Kras, Gsk3b, Raf1 | 3 | 2.30 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Breast cancer | Kras, Gsk3b, Raf1 | 3 | 2.60 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | Gastric cancer | Kras, Gsk3b, Raf1 | 3 | 2.70 × 10−3 | 1.40 × 10−2 |
KEGG_PATHWAY | mTOR signaling pathway | Kras, Gsk3b, Raf1 | 3 | 2.90 × 10−3 | 1.50 × 10−2 |
KEGG_PATHWAY | Hepatocellular carcinoma | Kras, Gsk3b, Raf1 | 3 | 3.60 × 10−3 | 1.70 × 10−2 |
KEGG_PATHWAY | Axon guidance | Kras, Gsk3b, Raf1 | 3 | 3.90 × 10−3 | 1.80 × 10−2 |
KEGG_PATHWAY | Kaposi sarcoma-associated herpesvirus infection | Kras, Gsk3b, Raf1 | 3 | 5.90 × 10−3 | 2.40 × 10−2 |
KEGG_PATHWAY | Human cytomegalovirus infection | Kras, Gsk3b, Raf1 | 3 | 7.60 × 10−3 | 2.80 × 10−2 |
GOTERM_MF_DIRECT | nucleotide binding | Kras, Gsk3b, Rras2, Raf1 | 4 | 1.30 × 10−2 | 5.10 × 10−1 |
KEGG_PATHWAY | PI3K-Akt signaling pathway | Kras, Gsk3b, Raf1 | 3 | 1.50 × 10−2 | 5.00 × 10−2 |
KEGG_PATHWAY | Human papillomavirus infection | Kras, Gsk3b, Raf1 | 3 | 1.50 × 10−2 | 5.00 × 10−2 |
KEGG_PATHWAY | Alzheimer’s disease | Kras, Gsk3b, Raf1 | 3 | 1.70 × 10−2 | 5.50 × 10−2 |
KEGG_PATHWAY | Pathways of neurodegeneration—multiple diseases | Kras, Gsk3b, Raf1 | 3 | 2.50 × 10−2 | 7.50 × 10−2 |
GOTERM_MF_DIRECT | protein binding | Kras, Gsk3b, Pparg, Rras2, Raf1 | 5 | 6.30 × 10−2 | 8.70 × 10−1 |
Annotation Cluster 1: Enrichment Score: 4.25 | |||||
---|---|---|---|---|---|
Category | Term | Genes | Count | p-Value | Benjamini |
GOTERM_BP_DIRECT | Inflammatory response | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5, Il1a, Il6, Nos2, Pparg, Tlr4 | 10 | 5.80 × 10−11 | 4.20 × 10−8 |
GOTERM_BP_DIRECT | Neutrophil chemotaxis | Fgr, Ccl11, Ccl17, Ccl25, Cscl11, Cxcl5 | 6 | 1.40 × 10−8 | 5.20 × 10−6 |
GOTERM_BP_DIRECT | positive regulation of ERK1 and ERK2 cascade | Ccl11, Ccl17, Ccl25, Il1a, Il6, Notch1, Tlr4 | 7 | 9.50 × 10−8 | 2.30 × 10−5 |
GOTERM_MF_DIRECT | Cytokine activity | Ccl11, Ccl17, Ccl25, Cxcl5, Grn, Il1a, Il6 | 7 | 1.30 × 10−7 | 9.30 × 10−6 |
GOTERM_MF_DIRECT | Chemokine activity | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 1.30 × 10−7 | 9.30 × 10−6 |
GOTERM_BP_DIRECT | Chemokine-mediated signaling pathway | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 2.20 × 10−7 | 4.10 × 10−5 |
GOTERM_BP_DIRECT | Immune response | Ccl11, Ccl25, CxCl11, Cxcl5, Il1a, H2-k1, Tlr4 | 8 | 3.20 × 10−7 | 4.60 × 10−4 |
KEGG_PATHWAY | Viral protein interaction with cytokine and cytokine receptor | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5, Il6 | 6 | 6.60 × 10−7 | 7.30 × 10−4 |
REACTOME_PATHWAY | Chemokine receptors bind chemokines | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 2.40 × 10−6 | 3.30 × 10−4 |
GOTERM_BP_DIRECT | Cellular response to interferon-gamma | Ccl11, Ccl17, Ccl25, Nos2, Tlr4 | 5 | 4.10 × 10−6 | 4.90 × 10−4 |
GOTERM_BP_DIRECT | Chemotaxis | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 9.10 × 10−6 | 8.30 × 10−4 |
KEGG_PATHWAY | Cytokine–cytokine receptor interaction | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5, Il1a, Il6 | 7 | 1.00 × 10−5 | 4.00 × 10−4 |
GOTERM_BP_DIRECT | Antimicrobial humoral immune response mediated by antimicrobial peptide | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 1.10 × 10−5 | 8.50 × 10−4 |
GOTERM_BP_DIRECT | Killing of cells of other organisms | Ccl11, Ccl17, Ccl25, Lyz2 | 4 | 1.90 × 10−5 | 1.40 × 10−3 |
GOTERM_BP_DIRECT | Cellular response to interleukin-1 | Ccl11, Ccl17, Ccl25, Il6 | 4 | 7.20 × 10−5 | 4.80 × 10−3 |
REACTOME_PATHWAY | Peptide ligand-binding receptors | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 3.20 × 10−5 | 2.10 × 10−2 |
GOTERM_MF_DIRECT | CCR chemokine receptor binding | Ccl11, Ccl17, Ccl25 | 3 | 3.50 × 10−4 | 1.70 × 10−2 |
KEGG_PATHWAY | Chemokine signaling pathway | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 3.80 × 10−4 | 6.10 × 10−2 |
GOTERM_BP_DIRECT | Cellular response to tumor necrosis factor | Ccl11, Ccl17, Ccl25, Il6 | 4 | 4.00 × 10−4 | 1.60 × 10−2 |
GOTERM_BP_DIRECT | Lymphocyte chemotaxis | Ccl11, Ccl17, Ccl25 | 3 | 4.10 × 10−4 | 1.60 × 10−2 |
GOTERM_BP_DIRECT | Monocyte chemotaxis | Ccl11, Ccl17, Ccl25 | 3 | 6.20 × 10−4 | 2.20 × 10−2 |
KEGG_PATHWAY | IL-17 signaling pathway | Ccl11, Ccl17, Ccl25, Il6 | 4 | 6.50 × 10−4 | 8.10 × 10−3 |
REACTOME_PATHWAY | Class A/1 (Rhodopsin-like receptors) | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 2.10 × 10−3 | 9.30 × 10−2 |
GOTERM_BP_DIRECT | Cell chemotaxis | Ccl17, Ccl25, Cxcl11 | 3 | 3.50 × 10−3 | 7.50 × 10−2 |
REACTOME_PATHWAY | GPCR ligand binding | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 5.20 × 10−3 | 1.20 × 10−1 |
REACTOME_PATHWAY | G alpha (i) signaling events | Ccl11, Ccl25, Cxcl11, Cxcl5 | 4 | 1.30 × 10−2 | 2.50 × 10−1 |
GOTERM_BP_DIRECT | Positive regulation of GTPase activity | Ccl11, Ccl17, Ccl25 | 3 | 1.60 × 10−2 | 2.20 × 10−1 |
REACTOME_PATHWAY | Signaling by GPCR | Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5 | 5 | 2.20 × 10−2 | 3.60 × 10−1 |
REACTOME_PATHWAY | Signal transduction | Fyn, Ccl11, Ccl17, Ccl25, Cxcl11, Cxcl5, Il6, Notch1 | 8 | 8.20 × 10−2 | 8.90 × 10−1 |
REACTOME_PATHWAY | GPCR downstream signaling | Ccl11, Ccl25, Cxcl11, Cxcl5 | 4 | 8.50 × 10−2 | 8.90 × 10−1 |
GOTERM_BP_DIRECT | G-protein coupled receptor signaling pathway | Ccl11, Ccl17, Ccl25 | 3 | 5.20 × 10−1 | 1.00 × 10−1 |
Annotation Cluster 2: Enrichment Score: 3.07 | |||||
GOTERM_BP_DIRECT | Cellular response to lipopolysaccharide | Cxcl11, Cxcl5, Il1a, Il6, Nos2, Tlr4 | 6 | 8.90 × 10−6 | 8.30 × 10−4 |
KEGG_PATHWAY | Pertussis | Cxcl5, Il1a, Il6, Nos2, Tlr4 | 5 | 1.10 × 10−5 | 4.00 × 10−4 |
KEGG_PATHWAY | Tuberculosis | Fcgr3, Fcgr2b, Il1a, Nos2, Tlr4 | 6 | 1.50 × 10−5 | 4.30 × 10−4 |
GOTERM_BP_DIRECT | Positive regulation of interleukin-6 production | Il1a, Il6, Nos2, Tlr4 | 4 | 1.80 × 10−4 | 1.00 × 10−2 |
GOTERM_BP_DIRECT | Positive regulation of apoptotic process | Il6, Nos2, Notch1, Pparg, Tlr4 | 5 | 5.00 × 10−4 | 1.80 × 10−2 |
GOTERM_BP_DIRECT | Positive regulation of interleukin-8 production | Il6, Nos2, Tlr4 | 3 | 1.60 × 10−3 | 3.90 × 10−2 |
GOTERM_BP_DIRECT | Signal transduction | Ccl17, Cxcl11, Il6, Nos2, Pparg, Tlr4 | 6 | 1.00 × 10−2 | 1.60 × 10−1 |
KEGG_PATHWAY | Toll-like receptor signaling pathway | Cxcl11, Il6, Tlr4 | 3 | 1.50 × 10−2 | 1.00 × 10−1 |
KEGG_PATHWAY | Chagas disease | Il6, Nos2, Tlr4 | 3 | 1.60 × 10−2 | 1.00 × 10−1 |
KEGG_PATHWAY | Amoebiasis | Il6, Nos2, Tlr4 | 3 | 1.70 × 10−2 | 1.10 × 10−1 |
KEGG_PATHWAY | HIF-1 signaling pathway | Il6, Nos2, Tlr4 | 3 | 1.90 × 10−2 | 1.10 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dervishi, E.; Hailemariam, D.; Goldansaz, S.A.; Ametaj, B.N. Early-Life Exposure to Lipopolysaccharide Induces Persistent Changes in Gene Expression Profiles in the Liver and Spleen of Female FVB/N Mice. Vet. Sci. 2023, 10, 445. https://doi.org/10.3390/vetsci10070445
Dervishi E, Hailemariam D, Goldansaz SA, Ametaj BN. Early-Life Exposure to Lipopolysaccharide Induces Persistent Changes in Gene Expression Profiles in the Liver and Spleen of Female FVB/N Mice. Veterinary Sciences. 2023; 10(7):445. https://doi.org/10.3390/vetsci10070445
Chicago/Turabian StyleDervishi, Elda, Dagnachew Hailemariam, Seyed Ali Goldansaz, and Burim N. Ametaj. 2023. "Early-Life Exposure to Lipopolysaccharide Induces Persistent Changes in Gene Expression Profiles in the Liver and Spleen of Female FVB/N Mice" Veterinary Sciences 10, no. 7: 445. https://doi.org/10.3390/vetsci10070445
APA StyleDervishi, E., Hailemariam, D., Goldansaz, S. A., & Ametaj, B. N. (2023). Early-Life Exposure to Lipopolysaccharide Induces Persistent Changes in Gene Expression Profiles in the Liver and Spleen of Female FVB/N Mice. Veterinary Sciences, 10(7), 445. https://doi.org/10.3390/vetsci10070445