Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses and Clinical Study Design
2.2. eIL-5-CuMV-TT Vaccine Manufacturing
2.3. Blood Collection
2.4. Granulocyte Isolation
2.5. Eosinophil Identification and Phenotyping by Flow Cytometry
2.6. Statistics
3. Results
3.1. Eosinophil Cell Percentage and Counts in the Blood of Healthy, IBH, IBH-Placebo, and IBH-Vaccinated Horses
3.2. Eosinophil Size and Granularity in the Blood of Healthy, IBH, IBH-Placebo, and IBH-Vaccinated Horses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McEwen, B.J. Eosinophils: A review. Vet. Res. Commun. 1992, 16, 11–44. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.D.; Prussin, C.; Metcalfe, D.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010, 125, S73–S80. [Google Scholar] [CrossRef] [PubMed]
- Kita, H. Eosinophils: Multifaceted biological properties and roles in health and disease. Immunol. Rev. 2011, 242, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.A.; Friend, D.; Matsumoto, R.; Austen, K.F.; Owen, W.F. Differentiation in vitro of hybrid eosinophil/basophil granulocytes: Autocrine function of an eosinophil developmental intermediate. J. Exp. Med. 1995, 182, 49–57. [Google Scholar] [CrossRef]
- Sanderson, C. Interleukin-5, eosinophils, and disease. Blood 1992, 79, 3101–3109. [Google Scholar] [CrossRef]
- Kopf, M.; Brombacher, F.; Hodgkin, P.D.; Ramsay, A.J.; Milbourne, E.A.; Dai, W.J.; Ovington, K.S.; Behm, C.A.; Köhler, G.; Young, I.G.; et al. IL-5-Deficient Mice Have a Developmental Defect in CD5+ B-1 Cells and Lack Eosinophilia but Have Normal Antibody and Cytotoxic T Cell Responses. Immunity 1996, 4, 15–24. [Google Scholar] [CrossRef]
- Park, Y.M.; Bochner, B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010, 2, 87–101. [Google Scholar] [CrossRef]
- Marichal, T.; Mesnil, C.; Bureau, F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017, 4, 101. [Google Scholar] [CrossRef]
- Brosnahan, M.M. Eosinophils of the horse: Part II: Eosinophils in clinical diseases. Equine Vet. Educ. 2020, 32, 590–602. [Google Scholar] [CrossRef]
- Collins, P.D.; Marleau, S.; Griffiths-Johnson, D.A.; Jose, P.J.; Williams, T.J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 1995, 182, 1169–1174. [Google Scholar] [CrossRef]
- Rosenberg, H.F.; Phipps, S.; Foster, P.S. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol. 2007, 119, 1303–1310, quiz 1311-1302. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.J.; Baker, K.P.; Morrow, A.N. Sweet itch: Responses of clinically normal and affected horses to intradermal challenge with extracts of biting insects. Equine Vet. J. 1983, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Schaffartzik, A.; Hamza, E.; Janda, J.; Crameri, R.; Marti, E.; Rhyner, C. Equine insect bite hypersensitivity: What do we know? Vet. Immunol. Immunopathol. 2012, 147, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Fettelschoss-Gabriel, A.; Fettelschoss, V.; Thoms, F.; Giese, C.; Daniel, M.; Olomski, F.; Kamarachev, J.; Birkmann, K.; Buhler, M.; Kummer, M.; et al. Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. J. Allergy Clin. Immunol. 2018, 142, 1194–1205 e1193. [Google Scholar] [CrossRef] [PubMed]
- McKelvie, J.; Foster, A.P.; Cunningham, F.M.; Hamblin, A.S. Characterisation of lymphocyte subpopulations in the skin and circulation of horses with sweet itch (Culicoides hypersensitivity). Equine Vet. J. 1999, 31, 466–472. [Google Scholar] [CrossRef]
- Pilsworth, R.C.; Knottenbelt, D.C. Equine insect hypersensitivity. Equine Vet. Educ. 2010, 16, 324–325. [Google Scholar] [CrossRef]
- Wilson, A.D.; Harwood, L.J.; Bjornsdottir, S.; Marti, E.; Day, M.J. Detection of IgG and IgE serum antibodies to Culicoides salivary gland antigens in horses with insect dermal hypersensitivity (sweet itch). Equine Vet. J. 2001, 33, 707–713. [Google Scholar] [CrossRef]
- Hellberg, W.; Wilson, A.D.; Mellor, P.; Doherr, M.G.; Torsteinsdottir, S.; Zurbriggen, A.; Jungi, T.; Marti, E. Equine insect bite hypersensitivity: Immunoblot analysis of IgE and IgG subclass responses to Culicoides nubeculosus salivary gland extract. Vet. Immunol. Immunopathol. 2006, 113, 99–112. [Google Scholar] [CrossRef]
- Kaplan, A.P.; Kuna, P. Chemokines and the late-phase reaction. Allergy 1998, 53, 27–32. [Google Scholar] [CrossRef]
- Olivry, T.; Dunston, S.M.; Murphy, K.M.; Moore, P.F. Characterization of the inflammatory infiltrate during IgE-mediated late phase reactions in the skin of normal and atopic dogs. Vet. Dermatol. 2001, 12, 49–58. [Google Scholar] [CrossRef]
- Woodward, M.C.; Andrews, F.M.; Kearney, M.T.; Del Piero, F.; Hammerberg, B.; Pucheu-Haston, C.M. Characterization of IgE-mediated cutaneous immediate and late-phase reactions in nonallergic horses. Am. J. Vet. Res. 2014, 75, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Kurotaki, T.; Narayama, K.; Oyamada, T.; Yoshikawa, H.; Yoshikawa, T. Immunopathological study on equine insect hypersensitivity (“kasen”) in Japan. J. Comp. Pathol. 1994, 110, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Fettelschoss, V.; Olomski, F.; Rhiner, T.; Birkmann, K.; Kündig, T.M.; Fettelschoss Gabriel, A. Chronic allergen exposure might shift allergic mechanisms in horses with insect bite hypersensitivity. J. Clin. Immunol. 2020, 6, 017. [Google Scholar] [CrossRef]
- Fettelschoss-Gabriel, A.; Birkmann, K.; Pantelyushin, S.; Kundig, T.M. Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Vet. J. 2021, 276, 105741. [Google Scholar] [CrossRef] [PubMed]
- Mitson-Salazar, A.; Prussin, C. Pathogenic Effector Th2 Cells in Allergic Eosinophilic Inflammatory Disease. Front. Med. 2017, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Mesnil, C.; Raulier, S.; Paulissen, G.; Xiao, X.; Birrell, M.A.; Pirottin, D.; Janss, T.; Starkl, P.; Ramery, E.; Henket, M.; et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 2016, 126, 3279–3295. [Google Scholar] [CrossRef]
- Pantelyushin, S.; Rhiner, T.; Jebbawi, F.; Sella, F.; Waldern, N.; Lam, J.; Chemnitzer, A.; Fricker, A.; Schoster, A.; Birkmann, K.; et al. Interleukin 5-dependent inflammatory eosinophil subtype involved in allergic insect bite hypersensitivity of horses. Allergy 2023, 78, 3020–3023. [Google Scholar] [CrossRef]
- Fettelschoss-Gabriel, A.; Fettelschoss, V.; Olomski, F.; Birkmann, K.; Thoms, F.; Buhler, M.; Kummer, M.; Zeltins, A.; Kundig, T.M.; Bachmann, M.F. Active vaccination against interleukin-5 as long-term treatment for insect-bite hypersensitivity in horses. Allergy 2019, 74, 572–582. [Google Scholar] [CrossRef]
- Gigon, L.; Fettrelet, T.; Yousefi, S.; Simon, D.; Simon, H.U. Eosinophils from A to Z. Allergy 2023, 78, 1810–1846. [Google Scholar] [CrossRef]
- Gurtner, A.; Borrelli, C.; Gonzalez-Perez, I.; Bach, K.; Acar, I.E.; Nunez, N.G.; Crepaz, D.; Handler, K.; Vu, V.P.; Lafzi, A.; et al. Active eosinophils regulate host defence and immune responses in colitis. Nature 2023, 615, 151–157. [Google Scholar] [CrossRef]
- Van Hulst, G.; Bureau, F.; Desmet, C.J. Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int. J. Mol. Sci. 2021, 22, 150. [Google Scholar] [CrossRef] [PubMed]
- Van Hulst, G.; Batugedara, H.M.; Jorssen, J.; Louis, R.; Bureau, F.; Desmet, C.J. Eosinophil diversity in asthma. Biochem. Pharmacol. 2020, 179, 113963. [Google Scholar] [CrossRef] [PubMed]
- Dolitzky, A.; Grisaru-Tal, S.; Avlas, S.; Hazut, I.; Gordon, Y.; Itan, M.; Munitz, A. Mouse resident lung eosinophils are dependent on IL-5. Allergy 2022, 77, 2822–2825. [Google Scholar] [CrossRef] [PubMed]
- Hassani, M.; Tak, T.; van Aalst, C.; van Nederveen, S.; Tesselaar, K.; Vrisekoop, N.; Koenderman, L. Differential effects of short- and long-term treatment with mepolizumab on eosinophil kinetics in blood and sputum in eosinophilic asthma. iScience 2021, 24, 102913. [Google Scholar] [CrossRef]
- Rhiner, T.; Fettelschoss, V.; Schoster, A.; Birkmann, K.; Fettelschoss-Gabriel, A. Targeting eosinophils by active vaccination against interleukin-5 reduces basophil counts in horses with insect bite hypersensitivity in the 2nd year of vaccination. Vet. J. 2022, 288, 105896. [Google Scholar] [CrossRef]
- Jonsdottir, S.; Fettelschoss, V.; Olomski, F.; Talker, S.C.; Mirkovitch, J.; Rhiner, T.; Birkmann, K.; Thoms, F.; Wagner, B.; Bachmann, M.F.; et al. Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines 2020, 8, 213. [Google Scholar] [CrossRef]
- Steven Eck, M.C.; Sinibaldi, D.; White, W.; Folliot, K.; Gossage, D.; Wu, Y.; Raible, D.; Roskos, L.; Kolbeck, R.; Ward, C. Benralizumab effect on blood basophil counts in adults with uncontrolled asthma. Eur. Respir. J. 2014, 44, P297. [Google Scholar]
- Lommatzsch, M.; Marchewski, H.; Schwefel, G.; Stoll, P.; Virchow, J.C.; Bratke, K. Benralizumab strongly reduces blood basophils in severe eosinophilic asthma. Clin. Exp. Allergy 2020, 50, 1267–1269. [Google Scholar] [CrossRef]
- Kolbeck, R.; Kozhich, A.; Koike, M.; Peng, L.; Andersson, C.K.; Damschroder, M.M.; Reed, J.L.; Woods, R.; Dall’acqua, W.W.; Stephens, G.L.; et al. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 2010, 125, 1344–1353 e1342. [Google Scholar] [CrossRef]
- Takatsu, K. Interleukin-5 and IL-5 receptor in health and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 463–485. [Google Scholar] [CrossRef]
- Cheng, L.E.; Sullivan, B.M.; Retana, L.E.; Allen, C.D.; Liang, H.E.; Locksley, R.M. IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J. Exp. Med. 2015, 212, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, C.; Otsuka, A.; Kitoh, A.; Honda, T.; Egawa, G.; Nakajima, S.; Nakamizo, S.; Arita, M.; Kubo, M.; Miyachi, Y.; et al. Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. J. Allergy Clin. Immunol. 2014, 134, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Iype, J.; Fux, M. Basophils Orchestrating Eosinophils’ Chemotaxis and Function in Allergic Inflammation. Cells 2021, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Eberle, J.U.; Radtke, D.; Nimmerjahn, F.; Voehringer, D. Eosinophils Mediate Basophil-Dependent Allergic Skin Inflammation in Mice. J. Investig. Dermatol. 2019, 139, 1957–1965. [Google Scholar] [CrossRef]
- Arnold, I.C.; Artola-Boran, M.; Tallon de Lara, P.; Kyburz, A.; Taube, C.; Ottemann, K.; van den Broek, M.; Yousefi, S.; Simon, H.U.; Muller, A. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J. Exp. Med. 2018, 215, 2055–2072. [Google Scholar] [CrossRef]
- Abdala-Valencia, H.; Coden, M.E.; Chiarella, S.E.; Jacobsen, E.A.; Bochner, B.S.; Lee, J.J.; Berdnikovs, S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 2018, 104, 95–108. [Google Scholar] [CrossRef]
- Gurtner, A.; Crepaz, D.; Arnold, I.C. Emerging functions of tissue-resident eosinophils. J. Exp. Med. 2023, 220, e20221435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, E.; Jebbawi, F.; Keller, G.; Rhiner, T.; Fricker, A.; Waldern, N.; Canonica, F.; Schoster, A.; Fettelschoss-Gabriel, A. Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Vet. Sci. 2024, 11, 476. https://doi.org/10.3390/vetsci11100476
Schwarz E, Jebbawi F, Keller G, Rhiner T, Fricker A, Waldern N, Canonica F, Schoster A, Fettelschoss-Gabriel A. Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Veterinary Sciences. 2024; 11(10):476. https://doi.org/10.3390/vetsci11100476
Chicago/Turabian StyleSchwarz, Elio, Fadi Jebbawi, Giulia Keller, Tanya Rhiner, Anna Fricker, Nina Waldern, Fabia Canonica, Angelika Schoster, and Antonia Fettelschoss-Gabriel. 2024. "Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity" Veterinary Sciences 11, no. 10: 476. https://doi.org/10.3390/vetsci11100476
APA StyleSchwarz, E., Jebbawi, F., Keller, G., Rhiner, T., Fricker, A., Waldern, N., Canonica, F., Schoster, A., & Fettelschoss-Gabriel, A. (2024). Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Veterinary Sciences, 11(10), 476. https://doi.org/10.3390/vetsci11100476