Chemical Composition and Nutritive Value of Almond Hulls from Two Almond Varieties and Influence of Including Almond Hulls in the Diet on In Vitro Ruminal Fermentation and Methane Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Almond Hull Samples and In Vitro Incubations
2.2. Experimental Diets and In Vitro Incubations
2.3. Chemical Analyses
2.4. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Influence of Almond Variety on Nutritive Value of Almond Hulls
3.2. Effects of Including Almond Hulls on In Vitro Ruminal Fermentation of Dairy Sheep Diets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafari, S.; Alizadeh, A.; Imani, A.; Meng, G.Y.; Rajion, M.A.; Ebrahimi, M. In situ degradation of almond (Prunus dulcis L.) hulls, a potential feed material for ruminants. Turk. J. Vet. Anim. Sci. 2015, 39, 676–681. [Google Scholar] [CrossRef]
- Barral-Martinez, M.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Godini, A. Hull, shell and kernel relationships in almond fresh fruits. Options Méditerr. Série Etudes 1984, 1984-II, 53–56. [Google Scholar]
- Reed, B.A.; Brown, D.L. Almond hulls in diets for lactating goats: Effects on yield and composition of milk, feed intake and digestibility. J. Dairy Sci. 1988, 71, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Rad, M.I.; Rouzbehan, Y.; Rezaei, J. Effect of dietary replacement of alfalfa with ureatreated almond hulls on intake, growth, digestibility, microbial nitrogen, nitrogen retention, ruminal fermentation, and blood parameters in fattening lambs. J. Anim. Sci. 2016, 94, 349–358. [Google Scholar] [CrossRef] [PubMed]
- DePeters, E.J.; Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M. Nutritional composition of almond hulls. Appl. Anim. Sci. 2020, 36, 761–770. [Google Scholar] [CrossRef]
- Aguilar, A.A.; Smith, N.E.; Baldwin, R.L. Nutritional Value of Almond Hulls for Dairy Cows. J. Dairy Sci. 1984, 67, 97–103. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Deigthon, M.H.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Almond hulls and citrus pulp can be used as supplementary feeds for dairy cows, but neither has any methane mitigation potential. Dairy Sci. Symp. 2014, 5, 273–275. [Google Scholar]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). In Agricultural Handbook; Agriculture Handbook No. 379; Agricultural Research Services: Washington, DC, USA, 1970. [Google Scholar]
- De Evan, T.; Marcos, C.N.; Ranilla, M.J.; Carro, M.D. In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants. Animals 2020, 10, 1989. [Google Scholar] [CrossRef]
- Sauvant, D.; Delaby, L.; Noziere, P. INRA Feeding System for Ruminants; Noziere, P., Sauvant, D., Delaby, L., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- Kamel, C.; Greathead, H.M.R.; Tejido, M.L.; Ranilla, M.J.; Carro, M.D. Effect of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Sci. Feed Technol. 2008, 145, 351–363. [Google Scholar] [CrossRef]
- Mateos, I.; Ranilla, M.J.; Saro, C.; Ramos, M.; Carro, M.D. Influence of processing method of rumen contents on microbial populations in the inoculum and in vitro fermentation of substrates of variable composition. Anim. Sci. Feed Technol. 2016, 220, 109–120. [Google Scholar] [CrossRef]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber and Non Starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical 1954, 157, 508–514. [Google Scholar] [CrossRef] [PubMed]
- ISO 6889:2000; Animal Feedindstuffs. Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. Method Using Atomic Absorption Spectrometry. 2000. Available online: https://cdn.standards.iteh.ai/samples/33707/763bf8c082e54d7f9c491bce94e38aff/ISO-6869-2000.pdf (accessed on 18 March 2024).
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed (Text with EEA Relevance). Official Journal of the European Union. L54/1-L54/129. Available online: https://eur-lex.europa.eu/eli/reg/2009/152/oj (accessed on 18 March 2024).
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Tejido, M.L.; Ranilla, M.J.; García-Martínez, R.; Carro, M.D. In vitro Microbial Growth and Rumen Fermentation of Different Diets as Affected by the Addition of Disodium Malate. Anim. Sci. 2005, 81, 31–38. [Google Scholar] [CrossRef]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 2010, 158, 126–135. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A Comparative Study on Rumen Fermentation of Energy Supplements In Vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT®Users Guide, version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the Extent of Degradation of Ruminant Feeds from a Description of their Gas Production Profiles observed In Vitro: Derivation of Models and other Mathematical Considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Demeyer, D. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. [Google Scholar]
- Jafari, S.; Alizadeh, A.; Imani, A. Nutritive value of different varieties of almond (Prunus dulcis) hulls. J. Res. Opin. Anim. Vet Sci. 2011, 11, 734–738. [Google Scholar]
- Feedipedia. Almond Hulls. 2020. Available online: https://www.feedipedia.org/node/11756 (accessed on 18 March 2024).
- NRC Nutrient Requirements of Dairy Cattle, 8th revised ed.; Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture and Natural Resources, National Research Council; National Academies Press: Washington, DC, USA, 2021.
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Marcos, C.N.; De Evan, T.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Influence of storage time and processing on chemical composition and in vitro ruminal fermentation of olive cake. Anim. Physiol. Anim. Nutr. 2019, 103, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, J.L.; González, J.; Alvir, M.R.; Carro, M.D. Influence of malic acid-heat treatment for protecting sunflower protein against ruminal degradation on in vitro methane production: A comparison with the use of malic acid as an additive. Anim. Feed. Sci. Technol. 2017, 228, 123–131. [Google Scholar] [CrossRef]
- Dehority, B.A.; Johnson, R.R.; Bentley, O.G.; Moxon, A.L. Studies on the metabolism of valine, proline, leucine and isoleucine by rumen microorganisms in vitro. Arch. Biochem. Bioph. 1958, 78, 15–27. [Google Scholar] [CrossRef]
Item | HP0 | HP8 | HP16 | HP24 |
---|---|---|---|---|
Ingredients (% fresh matter) | ||||
Alfalfa hay | 40.0 | 40.0 | 40.0 | 40.0 |
Almond hulls | - | 8.0 | 16.0 | 24.0 |
Corn | 14.0 | 10.2 | 6.28 | 2.41 |
Wheat | 6.00 | 6.00 | 6.00 | 6.00 |
Barley | 10.5 | 10.5 | 10.50 | 10.50 |
Soybean meal 46.5 | 7.00 | 7.00 | 7.00 | 7.00 |
Rapeseed meal 00 | 5.50 | 5.50 | 5.50 | 5.50 |
Wheat bran | 5.00 | 3.62 | 2.24 | 0.86 |
Sugar beet pulp | 10.0 | 7.24 | 4.48 | 1.72 |
Calcium soap | 1.00 | 1.00 | 1.00 | 1.00 |
Calcium carbonate | 0.50 | 0.50 | 0.50 | 0.50 |
Mineral/vitamin premix | 0.50 | 0.50 | 0.50 | 0.50 |
Chemical composition 1 | ||||
Dry matter (DM; %) | 91.3 | 91.3 | 91.2 | 91.3 |
Organic matter (% DM) | 92.6 | 92.3 | 91.9 | 91.6 |
Crude protein (% DM) | 16.6 | 16.6 | 16.5 | 16.4 |
Neutral detergent fiber (% DM) | 36.5 | 37.1 | 37.7 | 38.3 |
Acid detergent fiber (% DM) | 21.1 | 22.3 | 23.5 | 24.7 |
Lignin (% DM) | 4.26 | 5.25 | 6.18 | 7.15 |
Ether extract (% DM) | 3.44 | 3.79 | 4.13 | 4.48 |
Item | MP0 | MP8 | MP16 | MP24 |
---|---|---|---|---|
Ingredients (% fresh matter) | ||||
Alfalfa hay | 60.0 | 53.4 | 46.9 | 40.3 |
Almond hulls | - | 8.0 | 16.0 | 24.0 |
Urea | - | 0.18 | 0.35 | 0.55 |
Corn | 15.0 | 13.4 | 11.8 | 10.2 |
Barley | 8.5 | 8.5 | 8.5 | 8.5 |
Soybean meal 46.5 | 3.0 | 3.0 | 3.0 | 3.0 |
Wheat bran | 2.5 | 2.5 | 2.5 | 2.5 |
Sugar beet pulp | 9.0 | 9.0 | 9.0 | 9.0 |
Calcium soap | 1.00 | 1.00 | 1.00 | 1.00 |
Calcium carbonate | 0.50 | 0.50 | 0.50 | 0.50 |
Mineral/vitamin premix | 0.50 | 0.50 | 0.50 | 0.50 |
Chemical composition 1 | ||||
Dry matter (DM; %) | 91.8 | 91.8 | 90.9 | 90.5 |
Organic matter (% DM) | 91.4 | 91.5 | 91.5 | 91.6 |
Crude protein (% DM) | 14.7 | 14.7 | 14.7 | 14.8 |
Neutral detergent fiber (% DM) | 40.9 | 40.9 | 40.5 | 40.1 |
Acid detergent fiber (% DM) | 26.1 | 26.1 | 26.0 | 25.8 |
Lignin (% DM) | 5.18 | 5.84 | 6.46 | 7.11 |
Ether extract (% DM) | 3.22 | 3.58 | 3.94 | 4.30 |
Harvesting Year | 2020 | 2021 | p= | |||||
---|---|---|---|---|---|---|---|---|
Almond Variety | Guara | Soleta | Guara | Soleta | SEM | VAR | HY | VAR*HY |
Chemical composition | ||||||||
Dry matter (DM) | 75.4 | 69.6 | 67.2 | 60.6 | 2.41 | 0.015 | 0.007 | 0.885 |
Ash | 10.9 | 7.57 | 9.92 | 7.15 | 0.292 | <0.001 | 0.005 | 0.200 |
Crude protein | 10.1 | 7.25 | 7.04 | 6.45 | 0.596 | <0.001 | 0.029 | 0.176 |
Neutral detergent fiber (NDF) | 29.9 | 34.6 | 37.9 | 39.8 | 0.669 | <0.001 | <0.001 | 0.069 |
Acid detergent fiber | 20.9 | 25.6 | 27.3 | 30.0 | 0.414 | <0.001 | <0.001 | 0.071 |
Lignin | 8.40 | 12.8 | 10.7 | 14.4 | 0.316 | <0.001 | <0.001 | 0.277 |
Lignin/NDF (%) | 28.2 | 36.9 | 28.4 | 36.1 | 0.718 | <0.001 | 0.636 | 0.323 |
Crude fiber | 15.1 | 14.5 | 18.9 | 15.5 | 0.652 | 0.009 | 0.003 | 0.097 |
Total sugars | 23.1 | 23.2 | 23.1 | 24.9 | 1.331 | 0.527 | 0.487 | 0.487 |
Ether extract | 3.26 | 5.00 | 5.01 | 3.80 | 0.330 | 0.502 | 0.332 | <0.001 |
Energy content (kcal/kg DM) | ||||||||
ME (kcal/kg DM) 1 | 2275 | 2115 | 2088 | 1907 | 21.3 | <0.001 | <0.001 | 0.678 |
UFL (per kg DM) 2 | 0.82 | 0.74 | 0.73 | 0.65 | 0.009 | <0.001 | <0.001 | 0.921 |
UFV (per kg DM) 2 | 0.76 | 0.66 | 0.65 | 0.56 | 0.010 | <0.001 | <0.001 | 0.629 |
Minerals | ||||||||
Calcium (g/kg DM) | 4.44 | 2.36 | 5.15 | 2.34 | 0.241 | <0.001 | 0.025 | 0.021 |
Phosphorus (g/kg DM) | 1.58 | 1.74 | 1.13 | 1.44 | 0.107 | 0.010 | 0.015 | 0.600 |
Magnesium (g/kg DM) | 2.04 | 1.19 | 2.11 | 1.18 | 0.055 | <0.001 | 0.529 | 0.378 |
Potassium (g/kg DM) | 45.7 | 33.0 | 36.0 | 27.9 | 1.58 | <0.001 | <0.001 | 0.108 |
Sodium (g/kg DM) | 0.56 | 0.55 | 0.53 | 0.54 | 0.002 | 0.539 | <0.001 | 0.054 |
Copper (mg/kg DM) | 5.55 | 5.51 | 6.19 | 5.68 | 0.258 | 0.300 | 0.145 | 0.394 |
Harvesting Year | 2020 | 2021 | p= | |||||
---|---|---|---|---|---|---|---|---|
Almond Variety | Guara | Soleta | Guara | Soleta | SEM 2 | VAR | HY | VAR*HY |
Gas production parameters 1 | ||||||||
PGP (mL/g dry matter (DM)) | 219 | 198 | 223 | 214 | 3.2 | <0.001 | 0.301 | 0.051 |
Lag (h) | 0.234 | 0.000 | 0.108 | 0.004 | 0.0337 | <0.001 | 0.074 | 0.059 |
c (%/h) | 5.54 | 5.13 | 4.39 | 4.38 | 0.020 | 0.306 | <0.001 | 0.338 |
AGPR (mL/h) | 8.42 | 7.27 | 6.98 | 6.73 | 0.241 | 0.005 | <0.001 | 0.067 |
Fermentation parameters (6 h) | ||||||||
Total volatile fatty acids (VFA; µmol/g DM) | 3.21 | 2.80 | 3.54 | 3.14 | 0.087 | <0.001 | <0.001 | 0.964 |
Molar proportion of VFA (mol/100 mol) | ||||||||
Acetate (Ac) | 61.5 | 57.5 | 61.0 | 56.4 | 0.82 | <0.001 | 0.338 | 0.710 |
Propionate (Pr) | 30.9 | 32.3 | 31.2 | 34.5 | 0.83 | 0.007 | 0.138 | 0.254 |
Butyrate | 6.38 | 8.56 | 6.25 | 7.27 | 0.306 | <0.001 | 0.024 | 0.062 |
Isobutyrate | 0.367 | 0.458 | 0.969 | 1.179 | 0.1963 | 0.445 | 0.001 | 0.762 |
Isovalerate | 0.128 | 0.622 | 0.052 | 0.111 | 0.0340 | <0.001 | <0.001 | <0.001 |
Valerate | 0.673 | 0.589 | 0.469 | 0.554 | 0.0563 | 0.993 | 0.038 | 0.138 |
Ac/Pr (mol/mol) | 2.01 | 1.80 | 2.01 | 1.68 | 0.075 | <0.001 | 0.413 | 0.464 |
NH3-N (mg/L) | 68.4 | 55.7 | 73.3 | 71.3 | 7.36 | 0.324 | 0.166 | 0.472 |
Fermentation parameters (24 h) | ||||||||
pH | 6.81 | 6.86 | 6.74 | 6.75 | 0.008 | <0.001 | <0.001 | 0.025 |
Total VFA (µmol/g DM) | 6.40 | 5.20 | 7.47 | 6.97 | 0.150 | <0.001 | 0.007 | 0.022 |
Molar proportion of VFA (mol/100 mol) | ||||||||
Acetate (Ac) | 62.7 | 61.1 | 62.2 | 59.6 | 0.45 | <0.001 | 0.033 | 0.264 |
Propionate (Pr) | 28.7 | 26.7 | 26.8 | 27.7 | 0.46 | 0.226 | 0.383 | 0.003 |
Butyrate | 6.94 | 9.62 | 7.39 | 8.87 | 0.304 | <0.001 | 0.624 | 0.051 |
Isobutyrate | 0.331 | 0.720 | 2.565 | 2.618 | 0.1551 | 0.162 | <0.001 | 0.285 |
Isovalerate | 0.536 | 0.981 | 0.248 | 0.394 | 0.0612 | <0.001 | <0.001 | 0.018 |
Valerate | 0.832 | 0.914 | 0.716 | 0.858 | 0.0875 | 0.207 | 0.331 | 0.733 |
Ac/Pr (mol/mol) | 2.20 | 2.31 | 2.33 | 2.16 | 0.046 | 0.527 | 0.752 | 0.004 |
NH3-N (mg/L) | 124 | 114 | 105 | 109 | 8.0 | 0.693 | 0.155 | 0.398 |
Gas Production Parameters 1 | Fermentation Parameters 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | PGP | Lag | c | AGPR | VFA 6 h | VFA 24 h | NH3-N 6 | NH3-N 24 | pH 24 |
Dry matter | 0.579 (0.008) | 0.598 (0.005) | 0.684 (<0.001) | ||||||
Ash | 0.761 (<0.001) | 0.498 (0.025) | 0.508 (0.022) | ||||||
Crude protein | 0.449 (0.047) | 0.536 (0.015) | 0.502 (0.024) | 0.831 (<0.001) | |||||
Neutral detergent fiber (NDF) | −0.581 (0.007) | −0.804 (<0.001) | −0.854 (<0.001) | −0.449 (0.047) | |||||
Acid detergent fiber | −0.670 (0.001) | −0.807 (<0.001) | −0.885 (<0.001) | ||||||
Lignin | −0.487 (0.029) | −0.796 (<0.001) | −0.582 (0.007) | −0.812 (<0.001) | |||||
Lignin/NDF | −0.607 (0.005) | −0.736 (<0.001) | −0.529 (0.016) | −0.578 (0.008) | −0.523 (0.018) | ||||
Crude fiber | −0.542 (0.014) | −0.521 (0.018) | |||||||
Total sugars | −0.640 (0.002) | ||||||||
Ether extract | −0.456 (0.043) |
Item | HP0 | HP8 | HP16 | HP24 | SEM 2 | p= | |
---|---|---|---|---|---|---|---|
Lineal | Quadratic | ||||||
Gas production parameters 1 | |||||||
PGP (mL/g dry matter (DM)) | 267 | 259 | 256 | 248 | 6.1 | 0.066 | 0.976 |
Lag (h) | 0.060 | 0.057 | 0.056 | 0.056 | 0.003 | 0.367 | 0.621 |
c (%/h) | 2.07 | 1.62 | 1.28 | 0.86 | 0.12 | <0.001 | 0.904 |
AGPR (mL/h) | 9.71 | 9.34 | 9.44 | 9.43 | 0.42 | 0.702 | 0.679 |
DMED (%) | 38.0 c | 36.3 b | 34.3 a | 35.3 a | 0.31 | <0.001 | 0.002 |
Fermentation parameters (9 h) | |||||||
Total volatile fatty acids (VFA; mmol/g DM) | 3.95 | 3.94 | 3.85 | 3.82 | 0.087 | 0.266 | 0.889 |
Molar proportion of VFA (mol/100 mol) | |||||||
Acetate (Ac) | 63.0 | 62.8 | 62.2 | 62.5 | 0.27 | 0.141 | 0.608 |
Propionate (Pr) | 22.2 a | 22.2 ab | 23.3 ab | 23.5 b | 0.42 | 0.027 | 0.867 |
Butyrate | 10.8 | 10.6 | 10.5 | 10.4 | 0.15 | 0.055 | 0.921 |
Isobutyrate | 0.605 | 0.697 | 0.733 | 0.465 | 0.0968 | 0.470 | 0.170 |
Isovalerate | 2.04 | 2.35 | 2.04 | 1.93 | 0.046 | 0.151 | 0.318 |
Valerate | 1.33 b | 1.30 ab | 1.21 a | 1.22 a | 0.021 | 0.003 | 0.311 |
Ac/Pr (mol/mol) | 2.85 b | 2.84 ab | 2.68 ab | 2.66 a | 0.061 | 0.028 | 0.969 |
NH3-N (mg/L) | 143 | 139 | 141 | 143 | 2.5 | 0.720 | 0.219 |
CH4 (mL) | 18.3 | 18.6 | 18.4 | 18.0 | 0.39 | 0.662 | 0.401 |
CH4/VFA (mL/mol) | 4.65 | 4.75 | 4.81 | 4.74 | 0.111 | 0.528 | 0.449 |
AFOM (mg/g) 3 | 342 | 328 | 332 | 330 | 7.0 | 0.303 | 0.701 |
Fermentation parameters (24 h) | |||||||
pH | 6.84 a | 6.88 b | 6.89 bc | 6.91 c | 0.007 | <0.001 | 0.171 |
Total VFA (mmol/g DM) | 6.73 b | 6.30 ab | 6.35 ab | 5.98 a | 0.146 | 0.008 | 0.714 |
Molar proportion of VFA (mol/100 mol) | |||||||
Acetate (Ac) | 62.3 | 62.7 | 63.0 | 62.5 | 0.45 | 0.699 | 0.411 |
Propionate (Pr) | 20.1 | 19.9 | 20.1 | 20.8 | 0.24 | 0.087 | 0.116 |
Butyrate | 13.2 b | 13.2 b | 12.8 ab | 12.5 a | 0.25 | 0.042 | 0.610 |
Isobutyrate | 1.19 | 1.07 | 1.06 | 1.10 | 0.056 | 0.327 | 0.178 |
Isovalerate | 1.75 | 1.77 | 1.72 | 1.80 | 0.027 | 0.289 | 0.627 |
Valerate | 1.35 | 1.34 | 1.30 | 1.32 | 0.448 | 0.733 | 0.642 |
Ac/Pr (mol/mol) | 3.10 | 3.15 | 3.13 | 3.01 | 0.052 | 0.264 | 0.144 |
NH3-N (mg/L) | 222 b | 222 b | 210 ab | 206 a | 4.8 | 0.026 | 0.707 |
CH4 (mL) | 53.0 b | 50.8 ab | 51.4 b | 47.7 a | 1.12 | 0.013 | 0.527 |
CH4/VFA (mL/mol) | 7.89 | 8.07 | 8.11 | 7.99 | 0.158 | 0.642 | 0.376 |
AFOM (mg/g) 3 | 593 b | 557 ab | 559 ab | 523 a | 12.3 | 0.004 | 0.965 |
Item | MP0 | MP8 | MP16 | MP24 | SEM 2 | p= | |
---|---|---|---|---|---|---|---|
Lineal | Quadratic | ||||||
Gas production parameters 1 | |||||||
PGP (mL/g dry matter (DM)) | 259 | 257 | 257 | 264 | 4.9 | 0.664 | 0.447 |
Lag (h) | 0.058 b | 0.058 b | 0.057 b | 0.052 a | 0.001 | 0.008 | 0.060 |
c (%/h) | 1.75 b | 1.69 b | 1.66 b | 1.09 a | 0.10 | <0.001 | 0.028 |
AGPR (mL/h) | 9.49 | 9.40 | 9.33 | 9.16 | 0.21 | 0.294 | 0.851 |
DMED (%) | 34.6 ab | 35.2 b | 34.9 b | 33.6 a | 0.36 | 0.066 | 0.030 |
Fermentation parameters (9 h) | |||||||
Total volatile fatty acids (VFA; mmol/g DM) | 3.93 | 3.91 | 3.70 | 3.87 | 0.089 | 0.379 | 0.316 |
Molar proportion of VFA (mol/100 mol) | |||||||
Acetate (Ac) | 65.7 c | 65.2 bc | 64.3 b | 62.4 a | 0.36 | <0.001 | 0.078 |
Propionate (Pr) | 21.4 a | 22.2 ab | 22.8 b | 24.5 c | 0.39 | <0.001 | 0.298 |
Butyrate | 9.34 | 9.21 | 9.56 | 9.79 | 0.181 | 0.067 | 0.344 |
Isobutyrate | 0.658 | 0.370 | 0.675 | 0.668 | 0.1276 | 0.572 | 0.301 |
Isovalerate | 1.75 | 1.63 | 1.63 | 1.67 | 0.064 | 0.469 | 0.240 |
Valerate | 1.18 c | 1.36 b | 1.04 a | 0.96 a | 0.028 | <0.001 | 0.002 |
Ac/Pr (mol/mol) | 3.08 c | 2.94 bc | 2.83 b | 2.57 a | 0.015 | <0.001 | 0.285 |
NH3-N (mg/L) | 143 | 138 | 137 | 142 | 3.8 | 0.814 | 0.183 |
CH4 (mL) | 16.9 | 16.8 | 16.9 | 17.1 | 0.43 | 0.726 | 0.656 |
CH4/VFA (mL/mol) | 4.37 | 4.33 | 4.59 | 4.43 | 0.430 | 0.586 | 0.742 |
AFOM (mg/g) 3 | 336 | 335 | 318 | 334 | 0.3 | 0.472 | 0.279 |
Fermentation parameters (24 h) | |||||||
pH | 6.87 a | 6.86 a | 6.89 b | 6.90 b | 0.005 | <0.001 | 0.244 |
Total VFA (mmol/g DM) | 6.69 c | 6.40 b | 6.09 a | 6.11 a | 0.078 | <0.001 | 0.078 |
Molar proportion of VFA (mol/100 mol) | |||||||
Acetate (Ac) | 64.6 c | 64.1 bc | 63.3 ab | 62.6 a | 0.39 | 0.003 | 0.863 |
Propionate (Pr) | 19.2 a | 20.2 b | 20.6 b | 21.5 c | 0.18 | <0.001 | 0.843 |
Butyrate | 11.9 | 11.5 | 12.3 | 12.1 | 0.25 | 0.311 | 0.636 |
Isobutyrate | 1.20 | 1.06 | 1.08 | 1.07 | 0.095 | 0.395 | 0.496 |
Isovalerate | 1.78 | 1.65 | 1.67 | 1.65 | 0.041 | 0.076 | 0.204 |
Valerate | 1.26 b | 1.54 c | 1.12 a | 1.12 a | 0.024 | <0.001 | <0.001 |
Ac/Pr (mol/mol) | 3.36 c | 3.18 b | 3.07 ab | 2.91 a | 0.049 | <0.001 | 0.786 |
NH3-N (mg/L) | 223 b | 188 a | 183 a | 191 a | 3.6 | <0.001 | <0.001 |
CH4 (mL) | 50.2 | 46.7 | 46.1 | 47.2 | 1.55 | 0.204 | 0.176 |
CH4/VFA (mL/mol) | 7.50 | 7.28 | 7.57 | 7.76 | 0.315 | 0.471 | 0.530 |
AFOM (mg/g) 3 | 583 c | 556 b | 531 a | 536 a | 6.3 | <0.001 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recalde, A.; Evan, T.d.; Fernández, C.; Roldán, R.A.; López-Feria, S.; Carro, M.D. Chemical Composition and Nutritive Value of Almond Hulls from Two Almond Varieties and Influence of Including Almond Hulls in the Diet on In Vitro Ruminal Fermentation and Methane Production. Vet. Sci. 2024, 11, 242. https://doi.org/10.3390/vetsci11060242
Recalde A, Evan Td, Fernández C, Roldán RA, López-Feria S, Carro MD. Chemical Composition and Nutritive Value of Almond Hulls from Two Almond Varieties and Influence of Including Almond Hulls in the Diet on In Vitro Ruminal Fermentation and Methane Production. Veterinary Sciences. 2024; 11(6):242. https://doi.org/10.3390/vetsci11060242
Chicago/Turabian StyleRecalde, Adriana, Trinidad de Evan, Carlos Fernández, Rafael A. Roldán, Silvia López-Feria, and María Dolores Carro. 2024. "Chemical Composition and Nutritive Value of Almond Hulls from Two Almond Varieties and Influence of Including Almond Hulls in the Diet on In Vitro Ruminal Fermentation and Methane Production" Veterinary Sciences 11, no. 6: 242. https://doi.org/10.3390/vetsci11060242
APA StyleRecalde, A., Evan, T. d., Fernández, C., Roldán, R. A., López-Feria, S., & Carro, M. D. (2024). Chemical Composition and Nutritive Value of Almond Hulls from Two Almond Varieties and Influence of Including Almond Hulls in the Diet on In Vitro Ruminal Fermentation and Methane Production. Veterinary Sciences, 11(6), 242. https://doi.org/10.3390/vetsci11060242