Bacterial Contamination and Antimicrobial Resistance in Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Cricket Rearing and Harvesting Processes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cricket Rearing and Management
2.2. Sample Collection
2.3. Microbiological Isolation and Analysis
2.4. Antimicrobial Susceptibility Test of E. coli and Salmonella spp.
2.5. Statistical Analysis
3. Results
3.1. Bacterial Isolation
3.2. Contamination Levels of E. coli and Salmonella spp.
3.3. Antimicrobial Resistance of E. coli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Abdulmawjood, A.; Acheuk, F.; Barragán Fonseca, K.; Chhay, T.; Costa Neto, E.M.; Ferri, M.; Franco Olivas, J.; González Aguilar, D.G.; Keo, S. Insects—A source of safe and sustainable food?—“Jein” (Yes and No). Front. Sustain. Food Syst. 2022, 5, 701797. [Google Scholar] [CrossRef]
- Traynor, A.; Burns, D.T.; Wu, D.; Karoonuthaisiri, N.; Petchkongkaew, A.; Elliott, C. An analysis of emerging food safety and fraud risks of novel insect proteins within complex supply chains. npj Sci. Food 2024, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The house cricket (Acheta domesticus) as a novel food: A risk profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Mitchaothai, J.; Grabowski, N.T.; Lertpatarakomol, R.; Trairatapiwan, T.; Chhay, T.; Keo, S.; Lukkananukool, A. Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals 2022, 12, 2263. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Söderqvist, K.; Bakeeva, A.; Vaga, M.; Dicksved, J.; Vagsholm, I.; Jansson, A.; Boqvist, S. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. J. Insects Food Feed 2020, 6, 429–440. [Google Scholar] [CrossRef]
- Roncolini, A.; Cardinali, F.; Aquilanti, L.; Milanović, V.; Garofalo, C.; Sabbatini, R.; Abaker, M.S.S.; Pandolfi, M.; Pasquini, M.; Tavoletti, S. Investigating antibiotic resistance genes in marketed ready-to-eat small crickets (Acheta domesticus). J. Food Sci. 2019, 84, 3222–3232. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Pasquini, M.; Aquilanti, L.; Garofalo, C.; Taccari, M.; Cardinali, F.; Riolo, P.; Clementi, F. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects. Int. J. Food Microbiol. 2016, 227, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Osbaldiston, G.W. Laboratory Procedures in Clinical Veterinary Bacteriology; University Park Press: Baltimore, MD, USA, 1973. [Google Scholar]
- Jackson, G.J.; Merker, R.I.; Bandler, R. Bacteriological Analytical Manual (BAM) online January 2001. Available online: http://files.foodmate.com/2013/files_875.html (accessed on 18 May 2024).
- International-Organization-for-Standardization-(ISO). Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.—Amendment 1: Broader Range of Incubation Temperatures, Amendment to the Status of Annex D, and Correction of the Composition of MSRV and SC. Available online: https://www.iso.org/standard/76671.html (accessed on 18 May 2024).
- Thailand-Ministry-of-Public-Health. Thailand’s One Health Report on Antimicrobial Consumption and Antimicrobial Resistance in 2019. Available online: https://amrthailand.net/uploads/strategy/104/24_Thailand_s_One_Health_Report_on_AMC_and_AMR_2019-2020.pdf (accessed on 12 May 2024).
- Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel foods: A risk profile for the house cricket (Acheta domesticus). EFSA J. 2018, 16, e16082. [Google Scholar] [CrossRef]
- Food-and-Agriculture-Organization-of-the-United-Nations-(FAO). Looking at Edible Insects from a Food Safety Perspective: Challenges and Opportunities for the Sector; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Muisa-Zikali, N.; Teta, C.; Musvuugwa, T.; Rzymski, P.; Abia, A.L.K. Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance. Antibiotics 2021, 10, 68. [Google Scholar] [CrossRef]
- Clinical-and-Laboratory-Standards-Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 24th Informational Supplement. M100-S24; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- Gatheru, J.W. Analysis of Microbial Load and Diversity in Crickets (Gryllus bimaculatus and Scapsipedus icipe) Used as a Source of Protein for Food. Master’s Thesis, Kenyatta University, Nairobi, Kenya, 2019. [Google Scholar]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. J. Insect Sci. 2020, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.T.; Kiddell, K. Temperature and the energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol. 2007, 53, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Magara, H.J.; Tanga, C.M.; Fisher, B.L.; Azrag, A.G.; Niassy, S.; Egonyu, J.P.; Hugel, S.; Roos, N.; Ayieko, M.A.; Sevgan, S. Impact of temperature on the bionomics and geographical range margins of the two-spotted field cricket Gryllus bimaculatus in the world: Implications for its mass farming. PLoS ONE 2024, 19, e0300438. [Google Scholar] [CrossRef] [PubMed]
- Sanz-García, F.; Gil-Gil, T.; Laborda, P.; Ochoa-Sánchez, L.E.; Martínez, J.L.; Hernando-Amado, S. Coming from the wild: Multidrug resistant opportunistic pathogens presenting a primary, not human-linked, environmental habitat. Int. J. Mol. Sci. 2021, 22, 8080. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Sánchez, A.D.J.; Salgado-Cruz, M.d.l.P.; Diaz-Ramírez, M.; Torres-Ochoa, E.; Espinosa-Chaurand, L.D. A Review on Food Safety: The Case of Citrobacter sp., Fish and Fish Products. Appl. Sci. 2023, 13, 6907. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Lavigne, J.P.; Pagès, J.M. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019, 32, e00002-19. [Google Scholar] [CrossRef]
- Podschun, R.; Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Ahmad, A.; Mehboob, R. Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 2015, 5, 509–514. [Google Scholar] [CrossRef]
- Kuhnert, P.; Heyberger-Meyer, B.n.d.; Nicolet, J.; Frey, J. Characterization of PaxA and its operon: A cohemolytic RTX toxin determinant from pathogenic Pasteurella aerogenes. Infect. Immun. 2000, 68, 6–12. [Google Scholar] [CrossRef]
- Drzewiecka, D. Significance and roles of Proteus spp. bacteria in natural environments. Microb. Ecol. 2016, 72, 741–758. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Yang, Y.; Zhang, J.-R. Molecular basis of host specificity in human pathogenic bacteria. Emerg. Microbes Infect. 2014, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.B. Sociomicrobiology and Pathogenic Bacteria. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.; Buthala, D.; Klug, M. Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domestica. Appl. Environ. Microbiol. 1981, 41, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Praeg, N.; Klammsteiner, T. Primary study on frass fertilizers from mass-reared insects: Species variation, heat treatment effects, and implications for soil application at laboratory scale. J. Environ. Manag. 2024, 356, 120622. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-Y. Potential for House Cricket, Acheta Domesticus, to Acquire, Harbor and Transmit Human Pathogens. Master’s Thesis, Emporia State University, Emporia, KS, USA, 2012. [Google Scholar]
- Marzoli, F.; Bertola, M.; Fazion, J.P.; Cento, G.; Antonelli, P.; Dolzan, B.; Barco, L.; Belluco, S. A systematic review on the occurrence of Salmonella in farmed Tenebrio molitor and Acheta domesticus or their derived products. Int. J. Food Microbiol. 2023, 410, 110464. [Google Scholar] [CrossRef] [PubMed]
- Walia, K.; Kapoor, A.; Farber, J. Qualitative risk assessment of cricket powder to be used to treat undernutrition in infants and children in Cambodia. Food Control 2018, 92, 169–182. [Google Scholar] [CrossRef]
- Grabowski, N.; Klein, G. Microbiological analysis of raw edible insects. J. Insects Food Feed 2017, 3, 7–14. [Google Scholar] [CrossRef]
- Klunder, H.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef]
- Aleknavičius, D.; Lukša, J.; Strazdaitė-Žielienė, Ž.; Servienė, E. The Bacterial Microbiota of Edible Insects Acheta domesticus and Gryllus assimilis Revealed by High Content Analysis. Foods 2022, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, D.; Wynants, E.; Crauwels, S.; Verreth, C.; Viaene, N.; Claes, J.; Lievens, B.; Van Campenhout, L. Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets (Gryllodes sigillatus) for human consumption. Appl. Environ. Microbiol. 2018, 84, e00255-18. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mohamadou, B.; Saidou, C.; Aoudou, Y.; Tchiegang, C. Physico-chemical properties and safety of grasshoppers, important contributors to food security in the far North Region of Cameroon. Res. J. Anim. Sci 2010, 4, 108–111. [Google Scholar] [CrossRef]
- Adámek, M.; Mlček, J.; Adámková, A.; Suchánková, J.; Janalíková, M.; Borkovcová, M.; Bednářová, M. Effect of different storage conditions on the microbiological characteristics of insect. Potravin. Slovak J. Food Sci. 2018, 12, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Ter Beek, A.; Brul, S. To kill or not to kill Bacilli: Opportunities for food biotechnology. Curr. Opin. Biotechnol. 2010, 21, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Frentzel, H.; Kelner-Burgos, Y.; Fischer, J.; Heise, J.; Göhler, A.; Wichmann-Schauer, H. Occurrence of selected bacterial pathogens in insect-based food products and in-depth characterisation of detected Bacillus cereus group isolates. Int. J. Food Microbiol. 2022, 379, 109860. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.; Nadeau, E. Escherichia coli: On-farm contamination of animals. Rev Sci Tech 2006, 25, 555–569. [Google Scholar] [CrossRef]
- Sikora, A.; Zahra, F. Nosocomial Infections. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559312/ (accessed on 12 May 2024).
- Inweregbu, K.; Dave, J.; Pittard, A. Nosocomial infections. Contin. Educ. Anaesth. Crit. Care Pain 2005, 5, 14–17. [Google Scholar] [CrossRef]
- Bereket, W.; Hemalatha, K.; Getenet, B.; Wondwossen, T.; Solomon, A.; Zeynudin, A.; Kannan, S. Update on bacterial nosocomial infections. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1039–1044. [Google Scholar]
- Idrees, H.; Khan, S.T.; Aftab, M.; Imtiaz, A. Nosocomial Infections-A Review. LGU J. Life Sci. 2021, 5, 44–62. [Google Scholar]
- Smith, B.P.; House, J.K.; Magdesian, K.G.; Jang, S.S.; Cabral, R.L.; Madigan, J.E.; Herthel, W.F. Principles of an infectious disease control program for preventing nosocomial gastrointestinal and respiratory tract diseases in large animal veterinary hospitals. J. Am. Vet. Med. Assoc. 2004, 225, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A. Nosocomial infections. Vet. Clin. Small Anim. Pract. 2002, 32, 1101–1126. [Google Scholar] [CrossRef]
- Cummings, K.J.; Rodriguez-Rivera, L.D.; Mitchell, K.J.; Hoelzer, K.; Wiedmann, M.; McDonough, P.L.; Altier, C.; Warnick, L.D.; Perkins, G.A. Salmonella enterica serovar Oranienburg outbreak in a veterinary medical teaching hospital with evidence of nosocomial and on-farm transmission. Vector-Borne Zoonotic Dis. 2014, 14, 496–502. [Google Scholar] [CrossRef] [PubMed]
- National-Bureau-of-Agricultural-Commodity-and-Food-Standards. Thai Agricultural Standard (TAS 8202-2017): Good Agricultural Practices for Cricket Farm. Available online: https://www.acfs.go.th/standard/download/eng/GAP_CRICKET_FARM-ENG.pdf (accessed on 18 May 2024).
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. RAP Publ. 2013, 3, 10–20. [Google Scholar]
- Thailand-Ministry-of-Public-Health. Highligh; Thailand’s One Health Report on Antimicrobial Consumption and Antimicrobial Resistance in 2020. Available online: https://www.thaiamrwatch.net/Highlight%20One%20Health%20Report%202020.pdf (accessed on 12 May 2024).
- Murase, T.; Phuektes, P.; Ozaki, H.; Angkititrakul, S. Prevalence of qnrS-positive Escherichia coli from chicken in Thailand and possible co-selection of isolates with plasmids carrying qnrS and trimethoprim-resistance genes under farm use of trimethoprim. Poult. Sci. 2022, 101, 101538. [Google Scholar] [CrossRef] [PubMed]
- Tongkamsai, S.; Nakbubpa, K. Extended-spectrum beta-lactamase (ESBL) production and virulence genes profile of avian pathogenic Escherichia coli (APEC) isolated from broiler chickens in eastern Thailand. Vet. Integr. Sci. 2024, 22, 207–218. [Google Scholar] [CrossRef]
- Vidic, J.; Manzano, M.; Raj, V.S.; Pandey, R.P.; Chang, C.-M. Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2023, 16, 100477. [Google Scholar]
- Chen, J.; Michel, F.C.; Sreevatsan, S.; Morrison, M.; Yu, Z. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microb. Ecol. 2010, 60, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Grace, D. Review of evidence on antimicrobial resistance and animal agriculture in developing countries. Evid. Demand 2015. [Google Scholar] [CrossRef]
- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 2002, 34, S93–S106. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One health approach. Vet. World 2022, 15, 743. [Google Scholar] [CrossRef] [PubMed]
Sampling Site | Bacterial Isolations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summited Sample | No Isolation of Bacteria | Achromobacter spp. | Citrobacter spp. | Enterobacter spp. | Klebsiella spp. | Pasteurella aerogenes | Proteus spp. | Pseudonomas aeruginosa | Escherichia coli | Salmonella spp. | Total Isolation | |
Input factor | ||||||||||||
Cricket feed | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Drinking water | 10 | 4 | 1 | 0 | 2 | 5 | 1 | 0 | 0 | 0 | 0 | 9 |
Staff hands (before working) | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Staff hands (after working) | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Total | 30 | 23 | 2 | 0 | 2 | 5 | 1 | 0 | 0 | 0 | 0 | 10 |
% of submitted samples | 76.7 | 6.7 | 0.0 | 6.7 | 16.7 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 33.30 | |
% of bacterial isolates | 20.0 ab | 0.0 a | 20.0 ab | 50.0 b | 10.0 ab | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 100.0 | ||
Two-spotted crickets: | ||||||||||||
Rearing environment | ||||||||||||
D1 | 40 | 32 | 0 | 1 | 5 | 8 | 0 | 0 | 0 | 2 | 0 | 16 |
D14 | 40 | 12 | 0 | 0 | 6 | 27 | 0 | 0 | 0 | 2 | 0 | 35 |
D28 | 40 | 6 | 0 | 0 | 9 | 32 | 1 | 0 | 2 | 3 | 0 | 47 |
D35 | 40 | 0 | 1 | 0 | 8 | 39 | 0 | 0 | 0 | 0 | 0 | 48 |
Total | 160 | 50 | 1 | 1 | 28 | 106 | 1 | 0 | 2 | 7 | 0 | 146 |
% of submitted samples | 31.3 | 0.6 | 0.6 | 17.5 | 66.3 | 0.6 | 0.0 | 1.3 | 4.4 | 0.0 | 91.3 | |
% of bacterial isolates | 0.7 abA | 0.7 ab | 19.2 c | 72.6 d | 0.7 ab | 0.0 a | 1.4 a | 4.8 a | 0.0 a | 100.0 | ||
House crickets: | ||||||||||||
Rearing environment | ||||||||||||
D1 | 40 | 32 | 0 | 0 | 6 | 8 | 1 | 0 | 0 | 0 | 0 | 15 |
D14 | 40 | 16 | 0 | 0 | 2 | 21 | 1 | 0 | 0 | 3 | 0 | 27 |
D28 | 40 | 13 | 0 | 0 | 6 | 25 | 0 | 0 | 4 | 2 | 0 | 37 |
D35 | 40 | 2 | 4 | 1 | 7 | 35 | 0 | 0 | 0 | 2 | 0 | 49 |
D42 | 35 | 1 | 10 | 4 | 9 | 30 | 0 | 2 | 2 | 1 | 0 | 59 |
Total | 195 | 64 | 14 | 5 | 30 | 119 | 2 | 2 | 6 | 8 | 0 | 186 |
% of submitted samples | 32.8 | 7.2 | 2.6 | 15.4 | 61.0 | 1.0 | 1.0 | 3.1 | 4.1 | 0.0 | 95.4 | |
% of bacterial isolates | 7.5 cB | 2.7 bc | 16.1 d | 64.0 e | 1.1 ab | 1.1 ab | 3.2 bc | 4.3 bc | 0.0 a | 100.0 | ||
Two-spotted crickets: | ||||||||||||
Harvesting crickets | ||||||||||||
Harvested crickets | 8 | 0 | 0 | 0 | 2 | 8 | 0 | 0 | 0 | 0 | 0 | 10 |
Rinsed crickets | 8 | 0 | 0 | 0 | 2 | 8 | 0 | 0 | 0 | 0 | 0 | 10 |
Boiled crickets | 8 | 3 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 5 |
Total | 24 | 3 | 0 | 0 | 4 | 21 | 0 | 0 | 0 | 0 | 0 | 25 |
% of submitted samples | 12.5 | 0.0 | 0.0 | 16.7 | 87.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 104.2 | |
% of bacterial isolates | 0.0 a | 0.0 a | 16.0 a | 84.0 bB | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 100.0 | ||
House crickets: | ||||||||||||
Harvesting crickets | ||||||||||||
Harvested crickets | 7 | 0 | 2 | 2 | 4 | 7 | 0 | 1 | 1 | 0 | 0 | 15 |
Rinsed crickets | 7 | 0 | 0 | 2 | 4 | 7 | 0 | 1 | 1 | 0 | 0 | 14 |
Boiled crickets | 7 | 3 | 0 | 1 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 10 |
Total | 21 | 3 | 2 | 5 | 10 | 18 | 0 | 2 | 2 | 0 | 0 | 39 |
% of submitted samples | 14.3 | 9.5 | 23.8 | 47.6 | 85.7 | 0.0 | 9.5 | 9.5 | 0.0 | 0.0 | 185.7 | |
% of bacterial isolates | 5.1 a | 12.8 ab | 25.6 bc | 46.2 cA | 0.0 a | 5.1 a | 5.1 a | 0.0 a | 0.0 a | 100.0 |
Item | Presence of Bacterial Isolate for Two-Spotted Crickets | Item | Presence of Bacterial Isolate for House Crickets | ||||
---|---|---|---|---|---|---|---|
Uncontaminated Crates (n) | Contaminated Crates (n) | Percentage *,** (%) | Uncontaminated Crates (n) | Contaminated Crates (n) | Percentage *,** (%) | ||
Water pipe | Water pipe | ||||||
D1 | 0 | 8 | 100.0 | D1 | 0 | 8 | 100.0 |
D14 | 0 | 8 | 100.0 | D14 | 0 | 8 | 100.0 |
D28 | 0 | 8 | 100.0 | D28 | 0 | 8 | 100.0 |
D35 | 0 | 8 | 100.0 | D35 | 0 | 8 | 100.0 |
D42 | 0 | 7 | 100.0 | ||||
Crate wall | Crate wall | ||||||
D1 | 8 | 0 | 0.0 a | D1 | 8 | 0 | 0.0 a |
D14 | 8 | 0 | 0.0 a | D14 | 7 | 1 | 12.5 ab |
D28 | 3 | 5 | 62.5 b | D28 | 6 | 2 | 25.0 abc |
D35 | 0 | 8 | 100.0 b | D35 | 2 | 6 | 75.0 c |
D42 | 1 | 6 | 85.7 cd | ||||
Living cartons | Living cartons | ||||||
D1 | 8 | 0 | 0.0 a | D1 | 8 | 0 | 0.0 a |
D14 | 0 | 8 | 100.0 b | D14 | 5 | 3 | 37.5 ab |
D28 | 1 | 7 | 87.5 b | D28 | 3 | 5 | 62.5 bc |
D35 | 0 | 8 | 100.0 b | D35 | 0 | 8 | 100.0 c |
D42 | 0 | 7 | 100.0 c | ||||
Frass | Frass | ||||||
D1 | 8 | 0 | 0.0 a | D1 | 8 | 0 | 0.0 a |
D14 | 0 | 8 | 100.0 b | D14 | 0 | 8 | 100.0 b |
D28 | 0 | 8 | 100.0 b | D28 | 0 | 8 | 100.0 b |
D35 | 0 | 8 | 100.0 b | D35 | 0 | 8 | 100.0 b |
D42 | 0 | 7 | 100.0 b | ||||
Cricket surface | Cricket surface | ||||||
D1 | 8 | 0 | 0.0 a | D1 | 8 | 0 | 0.0 a |
D14 | 4 | 4 | 50.0 ab | D14 | 4 | 4 | 50.0 ab |
D28 | 2 | 6 | 75.0 b | D28 | 4 | 4 | 50.0 ab |
D35 | 0 | 8 | 100.0 b | D35 | 0 | 8 | 100.0 b |
D42 | 0 | 7 | 100.0 b | ||||
Harvesting crickets | Harvesting crickets | ||||||
Harvested | 0 | 8 | 100.0 | Harvested | 0 | 7 | 100.0 |
Rinsed | 0 | 8 | 100.0 | Rinsed | 0 | 7 | 100.0 |
Boiled | 3 | 5 | 62.5 | Boiled | 3 | 4 | 57.1 |
Sampling Site | Number of E. coli Isolations | Proportion of Positive E. coli Isolates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Two-Spotted Cricket | House Cricket | Total | |||||||||
D1 | D14 | D28 | D35 | D1 | D14 | D28 | D35 | D42 | |||
Water pipe | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 8 | 53.3 B |
Crate wall | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6.7 A |
Living cartons | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 13.3 AB |
Frass | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 6.7 A |
Cricket surface | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 20.0 AB |
Total | 0 | 4 | 3 | 0 | 0 | 3 | 2 | 2 | 1 | 15 | 100.0 |
Item | Bacterial Contamination Level β | |
---|---|---|
E. coli | Salmonella spp. | |
Cricket feed | <20 CFU/cm2 (n = 2) | <20 CFU/cm2 (n = 2) |
Drinking water | <20 CFU/cm2 (n = 2) | <20 CFU/cm2 (n = 2) |
Hands (before working) | <20 CFU/cm2 (n = 1) | <20 CFU/cm2 (n = 1) |
Hands (after working) | <20 CFU/cm2 (n = 1) | <20 CFU/cm2 (n = 1) |
Two-spotted crickets | ||
Rearing environment | ||
Water pipe | <20 CFU/cm2 (n = 7), 40 CFU/cm2 (n = 1), | <20 CFU/cm2 (n = 8) |
Crate wall | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Living cartons | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Frass | <20 CFU/cm2 (n = 6), 120 CFU/cm2 (n = 1), 20 CFU/cm2 (n = 1) | <20 CFU/cm2 (n = 8) |
Cricket surface | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Harvesting crickets | ||
Harvested crickets | <10 CFU/g (n = 8) | <10 CFU/g (n = 8) |
Rinsed crickets | <10 CFU/g (n = 8) | <10 CFU/g (n = 8) |
Boiled crickets | <10 CFU/g (n = 8) | <10 CFU/g (n = 8) |
House crickets | ||
Rearing environment | ||
Water pipe | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Crate wall | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Living cartons | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Frass | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Cricket surface | <20 CFU/cm2 (n = 8) | <20 CFU/cm2 (n = 8) |
Harvesting crickets | ||
Harvested crickets | <10 CFU/g (n = 7) | <10 CFU/g (n = 7) |
Rinsed crickets | <10 CFU/g (n = 7) | <10 CFU/g (n = 7) |
Boiled crickets | <10 CFU/g (n = 7) | <10 CFU/g (n = 7) |
Item | Numbers of Samples with Detected Antimicrobial Resistance to E. coli * | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PNG | AMC | AMX | AMP | CEF | COL | OTC | DOX | ENR | HAL | SXT | NEO | GEN | LIN | ERY | TIA | |
Two-spotted crickets | ||||||||||||||||
Water pipe | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 4 | 4 |
Crate wall | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Living cartons | 2 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 |
Cricket surface | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Sub-total | 8 | 0 | 8 | 8 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 8 | 8 | 8 |
House crickets | ||||||||||||||||
Water pipe | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 |
Frass | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Cricket surface | 2 | 0 | 2 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 |
Sub-total | 7 | 0 | 7 | 7 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 7 |
Total | 15 | 0 | 15 | 15 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 15 | 15 | 15 |
Pattern | Profile * | Number of Resistant Antimicrobial Agents | Number of Isolates | ||
---|---|---|---|---|---|
Two-Spotted Cricket | House Cricket | Total | |||
1 | PNG + AMX + AMP + LIN + ERY + TIA | 6 | 6 | 5 | 11 |
2 | PNG + AMX + AMP + LIN + ERY + TIA + OTC | 7 | 1 | 1 | 2 |
3 | PNG + AMX + AMP + LIN + ERY + TIA + CEF | 7 | 1 | 0 | 1 |
4 | PNG + AMX + AMP + LIN + ERY + TIA + HAL | 7 | 0 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchaothai, J.; Grabowski, N.T.; Lertpatarakomol, R.; Trairatapiwan, T.; Lukkananukool, A. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Cricket Rearing and Harvesting Processes. Vet. Sci. 2024, 11, 295. https://doi.org/10.3390/vetsci11070295
Mitchaothai J, Grabowski NT, Lertpatarakomol R, Trairatapiwan T, Lukkananukool A. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Cricket Rearing and Harvesting Processes. Veterinary Sciences. 2024; 11(7):295. https://doi.org/10.3390/vetsci11070295
Chicago/Turabian StyleMitchaothai, Jamlong, Nils T. Grabowski, Rachakris Lertpatarakomol, Tassanee Trairatapiwan, and Achara Lukkananukool. 2024. "Bacterial Contamination and Antimicrobial Resistance in Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Cricket Rearing and Harvesting Processes" Veterinary Sciences 11, no. 7: 295. https://doi.org/10.3390/vetsci11070295
APA StyleMitchaothai, J., Grabowski, N. T., Lertpatarakomol, R., Trairatapiwan, T., & Lukkananukool, A. (2024). Bacterial Contamination and Antimicrobial Resistance in Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Cricket Rearing and Harvesting Processes. Veterinary Sciences, 11(7), 295. https://doi.org/10.3390/vetsci11070295