Economic Impacts of Ultrasonographic Fetal Sex Determination on Hanwoo Cattle Profitability and Market Dynamics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Ultrasound Scanner Examination
2.3. Fetal Sex Determination
2.4. Economic Analysis
2.4.1. Farm Management Scenarios
2.4.2. Variables and Fixed Assumptions in Economic Analysis
2.5. Calculation of Economic Metrics
2.6. Statistical Analysis
3. Results
3.1. Overall Detection Rate
3.2. Accuracy of Sex Determination Across Gestational Periods
3.3. Economic Impact of Fetal Sex Determination in Pregnant Hanwoo Cows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koo, Y.; Alkhoder, H.; Choi, T.J.; Liu, Z.; Reents, R. Genomic evaluation of carcass traits of Korean beef cattle Hanwoo using a single-step marker effect model. J. Anim. Sci. 2023, 101, skad104. [Google Scholar] [CrossRef] [PubMed]
- Moda, H.M.; Filho, W.L.; Minhas, A. Impacts of Climate Change on Outdoor Workers and their Safety: Some Research Priorities. Int. J. Environ. Res. Public Health 2019, 16, 3458. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Choi, T.; Kim, S.; Oh, S.H. National genetic evaluation (system) of hanwoo (korean native cattle). Asian Australas. J. Anim. Sci. 2013, 26, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Stratonovitch, P.; Semenov, M.A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 2015, 66, 3599–3609. [Google Scholar] [CrossRef]
- Peippo, J.; Huhtinen, M.; Kotilainen, T. Sex diagnosis of equine preimplantation embryos using the polymerase chain reaction. Theriogenology 1995, 44, 619–627. [Google Scholar] [CrossRef]
- Fricke, P.M. Scanning the future--ultrasonography as a reproductive management tool for dairy cattle. J. Dairy Sci. 2002, 85, 1918–1926. [Google Scholar] [CrossRef]
- Kadivar, A.; Hassanpour, H.; Mirshokraei, P.; Azari, M.; Gholamhosseini, K.; Karami, A. Detection and quantification of cell-free fetal DNA in ovine maternal plasma; use it to predict fetal sex. Theriogenology 2013, 79, 995–1000. [Google Scholar] [CrossRef]
- Schroeder, T.C.; Mark, D.R. How can the beef industry recapture lost consumer demand? J. Anim. Sci. 2000, 77, 1–13. [Google Scholar] [CrossRef]
- Lucy, M.C. Reproductive loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef]
- Pu, X.; Wu, W.; Yang, D.; Zhang, Q.; Fan, X.; Du, Y.; Zu, L.; Xu, Y.; Sun, C.; Zhao, K. Rapid, visual and highly sensitive sexing of bovine embryos by recombinase polymerase amplification with CFI staining. Heliyon 2023, 9, e14116. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Z.; Wu, Z.; Hong, L. Sex Manipulation Technologies Progress in Livestock: A Review. Front. Vet. Sci. 2020, 7, 481. [Google Scholar] [CrossRef]
- Ericsson, R.J.; Langevin, C.N.; Nishino, M. Isolation of fractions rich in human Y sperm. Nature 1973, 246, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Douglas, T.A.; Renton, J.P. An attempt to separate fractions rich in human Y sperm. Nature 1975, 253, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Kohsaka, T.; Sasada, H.; Umezu, M.; Sato, E. Fluorescence in situ hybridization with Y chromosome-specific probe in decondensed bovine spermatozoa. Theriogenology 1999, 52, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Parrilla, I.; Vazquez, J.M.; Oliver-Bonet, M.; Navarro, J.; Yelamos, J.; Roca, J.; Martinez, E.A. Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reproduction 2003, 126, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Mara, L.; Pilichi, S.; Sanna, A.; Accardo, C.; Chessa, B.; Chessa, F.; Dattena, M.; Bomboi, G.; Cappai, P. Sexing of in vitro produced ovine embryos by duplex PCR. Mol. Reprod. Dev. 2004, 69, 35–42. [Google Scholar] [CrossRef]
- Tavares, K.C.; Carneiro, I.S.; Rios, D.B.; Feltrin, C.; Ribeiro, A.K.; Gaudencio-Neto, S.; Martins, L.T.; Aguiar, L.H.; Lazzarotto, C.R.; Calderon, C.E.; et al. A fast and simple method for the polymerase chain reaction-based sexing of livestock embryos. Genet. Mol. Res. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Wachtel, S.; Nakamura, D.; Wachtel, G.; Felton, W.; Kent, M.; Jaswaney, V. Sex selection with monoclonal H-Y antibody. Fertil. Steril. 1988, 50, 355–360. [Google Scholar] [CrossRef]
- Ormstad, S.S.; Stoinska-Schneider, A.; Solberg, B.; Fure, B.; Juvet, L.K. Non-Invasive Prenatal Testing (NIPT) for Fetal Sex Determination. In Health Technology Assessment; NIPH Systematic Reviews: Executive Summaries; Norwegian Institute of Public Health: Oslo, Norway, 2016. [Google Scholar]
- Schmickel, R. Determination of sex by amniocentesis for the purpose of sex selection. Prog. Clin. Biol. Res. 1980, 38, 95–101. [Google Scholar]
- DesCoteaux, L.; Gnemmi, G.; Colloton, J. Ultrasonography of the bovine female genital tract. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 733–752, Table of Contents. [Google Scholar] [CrossRef]
- Meagher, S.; Davison, G. Early second-trimester determination of fetal gender by ultrasound. Ultrasound Obstet. Gynecol. 1996, 8, 322–324. [Google Scholar] [CrossRef]
- Quintela, L.A.; Becerra, J.J.; Perez-Marin, C.C.; Barrio, M.; Cainzos, J.; Prieto, A.; Diaz, C.; Herradon, P.G. Fetal gender determination by first-trimester ultrasound in dairy cows under routine herd management in Northwest Spain. Anim. Reprod. Sci. 2011, 125, 13–19. [Google Scholar] [CrossRef]
- Stroud, B. Clinical applications of bovine reproductive ultrasonography. Compend. Contin. Educ. Vet. 1994, 16, 1085–1097. [Google Scholar]
- Inomata, T.; Eguchi, Y.; Yamamoto, M.; Asari, M.; Kano, Y.; Mochizuki, K. Development of the external genitalia in bovine fetuses. Nihon Juigaku Zasshi 1982, 44, 489–496. [Google Scholar] [CrossRef]
- Curran, S. Ultrasonographic appearance of the bovine conceptus from days 20 through 60. J. Am. Vet. Med. Assoc. 1986, 189, 1295–1302. [Google Scholar]
- Curran, S.; Ginther, O.J. Ultrasonic determination of fetal gender in horses and cattle under farm conditions. Theriogenology 1991, 36, 809–814. [Google Scholar] [CrossRef]
- Muller, E.; Wittkowski, G. Visualization of male and female characteristics of bovine fetuses by real-time ultrasonics. Theriogenology 1986, 25, 571–574. [Google Scholar] [CrossRef]
- Ali, A. Effect of gestational age and fetal position on the possibility and accuracy of ultrasonographic fetal gender determination in dairy cattle. Reprod. Domest. Anim. 2004, 39, 190–194. [Google Scholar] [CrossRef]
- Beal, W.E.; Perry, R.C.; Corah, L.R. The use of ultrasound in monitoring reproductive physiology of beef cattle. J. Anim. Sci. 1992, 70, 924–929. [Google Scholar] [CrossRef]
- Viana, G.; Marx, D. Sex determination of bovine fetuses by ultrasonography. Tierarztl. Umschan 1994, 49, 484–486. [Google Scholar]
- Nowicki, A.; Baranski, W.; Baryczka, A.; Janowski, T. OvSynch Protocol and its Modifications in the Reproduction Management of Dairy Cattle Herds—An Update. J. Vet. Res. 2017, 61, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, J.; Do, C. Genetic relationship of age at first calving with conformation traits and calving interval in Hanwoo cows. J. Anim. Sci. Technol. 2021, 63, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.; Martin, W.; Stryhn, H. Veterinary Epidemiologic Research, 2nd ed.; VER Inc.: Glendale, CA, USA, 2010. [Google Scholar]
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management, 1st ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Hardaker, J.B.; Lien, G.; Anderson, J.R.; Huirne, R.B.M. Coping with Risk in Agriculture: Applied Decision Analysis, 3rd ed.; CABI: Allen, TX, USA, 2015; p. 276. [Google Scholar]
- Doll, J.P.; Orazem, F. Production Economics: Theory with Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Castle, E.N.; Becker, M.H.; Nelson, A.G. Farm Business Management: The Decision Making Process, 3rd ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1987. [Google Scholar]
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis: Concepts and Practice, 1st ed.; Cambridge University Press: Cambridge, UK, 2018; p. 604. [Google Scholar]
- Petrie, A.; Watson, P. Statistics for Veterinary and Animal Science, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 77–82. [Google Scholar]
- Bekana, M.; Ekman, T.; Kindahl, H. Ultrasonography of the bovine postpartum uterus with retained fetal membranes. J. Vet. Med. Ser. A 1994, 41, 653–662. [Google Scholar] [CrossRef]
Examination Stage | No. of Animals (n) | Males (n) | Females (n) | Correct Diagnoses (%) |
---|---|---|---|---|
1st diagnoses (55–70 days) | 104 | 52 | 52 | 98.0 |
2nd diagnoses (71–85 days) | 53 | 51 | 100 | |
3rd diagnoses (86–100 days) | 52 | 52 | 98.0 | |
Post-birth | 53 | 51 | - |
Breeding Farm | Breeding Cow Value (USD) | Calf Value (USD) | Total Asset Value (USD) |
---|---|---|---|
Female calf | 2340 | 1610 | 3960 a |
Male calf | 2370 | 4720 b | |
Current market case (Average) | 2000 | 4340 ab |
Breeding Cow Value (USD) | Calf Value (USD) | Total Asset Value (USD) | ||
---|---|---|---|---|
Breeding Farm | Female Calf | 2330 | 1617 | 3955 |
Male calf | 2380 | 4718 * | ||
Purchasing Farm | Female Calf | 1617 | 3850 | |
Male calf | 2380 | 4610 * | ||
Price Difference | Male–Female | - | 760 | 760 |
Breeding Cow Value (USD) | Calf Value (USD) | Total Asset Value (USD) | ||
---|---|---|---|---|
Breeding Farm | Female Calf | 2330 | 1617 | 3955 |
Male calf | 2380 | 4718 * | ||
Purchasing Farm | Female Calf | 1617 | 3087 | |
Male calf | 2380 | 3850 * | ||
Price Difference | Male–Female | - | 760 | 760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Son, M.; Jung, D.; Heo, S.; Kim, M.; Yi, J. Economic Impacts of Ultrasonographic Fetal Sex Determination on Hanwoo Cattle Profitability and Market Dynamics. Vet. Sci. 2025, 12, 201. https://doi.org/10.3390/vetsci12030201
Kim D, Son M, Jung D, Heo S, Kim M, Yi J. Economic Impacts of Ultrasonographic Fetal Sex Determination on Hanwoo Cattle Profitability and Market Dynamics. Veterinary Sciences. 2025; 12(3):201. https://doi.org/10.3390/vetsci12030201
Chicago/Turabian StyleKim, Doyoon, Miyeon Son, Daejin Jung, Seongeun Heo, Myoungok Kim, and Junkoo Yi. 2025. "Economic Impacts of Ultrasonographic Fetal Sex Determination on Hanwoo Cattle Profitability and Market Dynamics" Veterinary Sciences 12, no. 3: 201. https://doi.org/10.3390/vetsci12030201
APA StyleKim, D., Son, M., Jung, D., Heo, S., Kim, M., & Yi, J. (2025). Economic Impacts of Ultrasonographic Fetal Sex Determination on Hanwoo Cattle Profitability and Market Dynamics. Veterinary Sciences, 12(3), 201. https://doi.org/10.3390/vetsci12030201