Clinical Trials of Cancer Immunogene Therapies in Companion Animals: An Update (2017–2024)
Simple Summary
Abstract
1. Introduction
2. Immunogene Therapy in Veterinary Oncology
3. Antigen Expression-Based Immunogene Therapy
3.1. Xenogeneic Tyrosinase
3.2. Xenogeneic Chondroitin Sulfate Proteoglycan-4
3.3. Other Antigens
4. Cytokine Expression-Based Immunogene Therapy
4.1. Interleukin-12 (IL-12)
4.2. Interleukin-2 (IL-2)
4.3. Interferon-β (IFN-β)
4.4. Granulocyte–Macrophage Colony-Stimulating Factor (GM–CSF)
5. Conclusions
# | Genes | Tumors | Vectors | Modes | Main Results | 1st Authors/Year/Main Country |
---|---|---|---|---|---|---|
1 | htyr | MEL | Plasmid | t.d. jet-injection + SX ± RX ± CHT | Retrospective study stages I–III OMM (n = 56): MST = 455 d; DFI = 222 d. | Verganti et al., 2017, UK [15] |
2 | htyr | MEL (feline) | Plasmid | t.d. jet-injection + SX ± RX ± CHT | Retrospective study (n = 24). Manageable post-vaccination AEs: 11%. Safety verified. 42% died of unrelated causes or still alive. | Sarbu et al., 2017, USA [22] |
3 | htyr | MEL | Plasmid | i.d. micro-seeding njection + SX | Pilot study stages I–IV (n = 6): 3 NED (2 oral, 1 dermal MEL; survival > 1 year), 3 PD (2 oral, 1 dermal MEL). No significant AEs. | Zuleger et al., 2017, USA [20] |
4 | hIL-12 | MCT | Plasmid | p.t. GET + i.t. cisplatin or i.t. bleomycin ECT | Prospective study. Stages I–III (n = 18): 13 CR, 2 PR, 1 SD, 2 PD. No major AEs. | Cemazar et al., 2017, Slovenia [49] |
5 | hIL-12 | ADC, FSA, MEL, OSA, SCH | Plasmid | i.t. GET + metronomic p.o. cyclophosphamide CHT | Pilot study (n = 6): Combined therapy slowed down tumor progression and improved QoL. No significant unwanted side effects. | Cicchelero et al., 2017, Belgium [47] |
6 | hIL12 | FSA, MAC, MCT, OSA, SCC, SCH | Plasmid | i,t, injection | Pilot study (n = 9): No significant clinical benefits. Safety studies and demonstration of immunogenic and anti-angiogenic effects. | Cicchelero et al., 2017, Belgium [46] |
7 | hCSPG4 | MEL | Plasmid | SX and i.m. GET | Prospective controlled study. Surgically resected Stage II/III, LN (-) OMM, VAX (n = 23)/CTR (n = 19): MST: VAX 684 d/CTR 220 d DFI: VAX 477 d/CTR 180 d Safety and immunogenicity confirmed. | Piras et al., 2017, Italy [27] |
8 | cIFNβ + NIS or hIFNβ + NIS | ADC, MMA, LYP, MEL, OSA | Recombinant oncolytic vesicular stomatitis virus: VSV-IFNβ-NIS | i.v. injection | Pilot study. (n = 10): 2 PR, 5 SD, 3PD. Low or mild/transient AEs. Safety and preliminary evidence of efficacy. | Naik et al., 2018, USA [64] |
9 | HSV-tk + cIFN-β hIL-2 + hGM-CSF | MAC | Plasmid lipoplexes | SX and i.t. (SG+ GCV+IFN-β) and s.c. [(hIL-2+ hGM-CSF)+(TV)] | Prospective study Stages II to IV: Combined treatment (n = 36). Complete surgery arm (n = 26): Local disease-free patients: 92%. Metastasis-free patients: 89%. MST = 876 d; metastasis-free MST > 1498 d. Partial surgery arm (n = 10). MST = 241 d. | Finocchiaro et al., 2018, Argentina [67] |
10 | cTERT | LYP | Recombinant adenovirus and plasmid | i.m virus. injection and i.m. plasmid GET+CHOP-CHT | Prospective study (n = 17): No significant AEs. Improved MST = 452 d as compared with previous historical (n = 21) COP-CHT controls MST = 205 d. | Impellizieri et al., 2018, Italy [35] |
11 | cIL-12 | MEL | Plasmid | PSX/p.t. GET + i.v. bleomycin ECT | Prospective study. Stages I--III OMM (n = 9): 4 CR, 2 PR, 3 PD. MST = 180 d. No major AEs. | Milevoj et al., 2019, Slovenia [54] |
12 | hIL-2 + hGM-CSF cIFN-β + HSV-tk | MEL | Plasmid lipoplexes | SX and i.t. injection (SG+ GCV+IFN-β+ bleomycin) and s.c. [(hIL-2+hGM-CSF)+(TV)] | Prospective controlled study. Stages I–IV: Combined treatment (n = 210)/Surgery controls (n = 173). Complete surgery arms: Local disease-free patients: 89%/20%. Metastasis-free patients: 89%/45%. MST > 1896 d/99 d. Metastasis-free MST > 1896 d/120 d. No significant AEs. | Finocchiaro et al., 2019, Argentina [68] |
13 | hp62 | MAC | Plasmid | i.m. injection followed by mastectomy | Pilot study. (n = 6: 3 solid and 3 tubo-papillary mammary carcinomas): 5 PR, 1 SD. Good QoL > 4 years after surgery. | Venanzi et al., 2019, Italy [41] |
14 | htyr | MEL | Plasmid | t.d. jet-injection + SX ± RX | Retrospective study, stages I–III (n = 131): MEL-MST = 510 d/All causes MST 442 d. | Turek et al., 2020, USA [18] |
15 | hIL-12 | ODG, ACT, GBM | Recombinant oncolytic HSV-1 virus: M032 | i.c inoculation. | Prospective study (n = 21): MST = 151 d. No significant AEs and dose-limiting toxicities. | Omar et al., 2021, USA [57] |
16 | hCSPG4 | MEL | Plasmid | en bloc SX + i.m. GET | Retrospective controlled study Stages I–IV: En bloc SX (n = 51): MST = 1333 d; DFI = 324 Marginal SX (n = 31): MST = 470 d; DFI = 184. | Giacobino et al., 2021, Italy [28] |
17 | cIL-12 | MCT | Plasmid | i.t. GET + i.t. cisplatin or i.v. bleomycin ECT | Pilot study (n = 8) 12 tumors (11 MCT, 1 NFS): 7 CR,2 PR, 3 PD. Differences in DCE-US parameters between tumors with CR and non-CR tumors were found. | Brloznik et al., 2021, Slovenia [51] |
18 | CD40L | MEL | Recombinant adenovirus: AdCD40L | i.t. injection ± SX | Pilot study (n = 32): MTS = 285 d MTS (+SX) = 448 d MTS (-SX) = 80 d, 7 CR, 5 PR, 5 SD, 2 PD, 13 MR. Transient mild AEs. Low toxicity. | Saellstrom et al., 2021, Sweden [43] |
19 | BPV E6/E7 | SAR (equine) | Recombinant influenza virus: iNSA/E6E7equ and iNSB/E6E7equ | i.t. injection | Prospective study (n = 29): 10 CR, 10 PR, 9 PD. Efficacy and safety were proven. | Jindra et al., 2021, Austria [37] |
20 | fIL-2 | SAR (equine) | Recombinant canary pox virus. ALVAC-fIL2 | i.t. injection | Pilot study (n = 14): 7 CR (50%), 5 PR (35%), 1 SD (7%), and 1 PD (7%) median time to best response = 211 d. Minimal AEs. | Saba et al., 2022, USA [61] |
21 | HuDo-CSPG4 | MEL | Plasmid | en bloc SX + i.m. GET | Prospective controlled study. Stages II--IV: VAX Treated (n = 52): MST = 653 d Control (n = 28) MST = 310 d. Safe and effective. | Riccardo et al., 2022 Italy [31] |
22 | cIL-2 + cIL-12 | MEL | Plasmid | i.t cIL-2 GET i.m.cIL-12 GET + bleomycin ECT | Retrospective controlled study. Stages III–IV GET + ECT (n = 10): MST = 165 d/PFS = 165 d. ECT (n = 20): MST = 180 d PFS = 120 d. | Tellado et al., 2023, Argentina [62] |
23 | cIL-12 | MCT | Plasmid | i.t or p.t. GET+ i.t. cisplatin or i.v. bleomycin-ECT | Prospective controlled study: ECT (n = 18): CR = 69%; ECT + GETp.t. (n = 29): CR = 88%; ECT + GETi.t. (n = 30): CR = 94%. DFI and PFS: ECT + GETi.t. > ECT + GETp.t. ≈ ECT. | Lampreht et al., 2023, Slovenia [52] |
24 | HuDo-CSPG4 | OSA | Plasmid | i.m.HuDo-CSPG4 + limb amputation + i.v. carboplatin-CHT | Pilot study: VAX + CHT treated (n = 12): MST = 484 d DFI = 242 d; historical CHT controls (n = 13): MST = 202 d; DFI = 160 d. | Tarone et al., 2023, Italy [33] |
25 | cIFNβ + NIS | OSA | Recombinant oncolytic vesicular stomatitis virus: VSV-cIFNβ-NIS | i.v. rec virus + i.v. carboplatin CHT | Prospective study (n = 28): 35% survival > 479 d. Safety documented. | Makielski et al., 2023, USA [65] |
26 | cIL-12 | MCT | Plasmid | i.t GET + i.t./i.v. bleomycin ± i.t. cisplatin ECT | Prospective study (n = 48): after 1 month: CR = 43%; PR = 41%; PD = 0. After 6 months: CR = 77%; PR = 12%; PD = 6%. Two possible efficacy markers were defined. | Vilfan et al., 2024, Slovenia [53] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quintin-Colonna, F.; Devauchelle, P.; Fradelizi, D.; Mourot, B.; Faure, T.; Kourilsky, P.; Roth, C.; Mehtali, M. Gene therapy of spontaneous canine melanoma and feline fibrosarcoma by intratumoral administration of histoincompatible cells expressing human interleukin-2. Gene Ther. 1996, 3, 1104–1112. [Google Scholar] [PubMed]
- Glikin, G.C.; Finocchiaro, L.M. Clinical trials of immunogene therapy for spontaneous tumors in companion animals. Sci. World J. 2014, 2014, 718520. [Google Scholar] [CrossRef]
- Finocchiaro, L.M.E.; Glikin, G.C. Recent clinical trials of cancer immunogene therapy in companion animals. World J. Exp. Med. 2017, 7, 42–48. [Google Scholar] [CrossRef]
- Ruzzi, F.; Riccardo, F.; Conti, L.; Tarone, L.; Semprini, M.S.; Bolli, E.; Barutello, G.; Quaglino, E.; Lollini, P.L.; Cavallo, F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol. Aspects Med. 2025, 101, 101324. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Tian, X.; Wei, X. Cancer vaccines: Current status and future directions. J. Hematol. Oncol. 2025, 18, 18. [Google Scholar] [CrossRef]
- Jacob, J.A. Researchers Turn to Canine Clinical Trials to Advance Cancer Therapies. JAMA 2016, 315, 1550–1552. [Google Scholar] [CrossRef]
- Garden, O.A.; Volk, S.W.; Mason, N.J.; Perry, J.A. Companion animals in comparative oncology: One Medicine in action. Vet. J. 2018, 240, 6–13. [Google Scholar] [CrossRef]
- Oh, J.H.; Cho, J.Y. Comparative oncology: Overcoming human cancer through companion animal studies. Exp. Mol. Med. 2023, 55, 725–734. [Google Scholar] [CrossRef]
- Konduri, V.; Halpert, M.M.; Baig, Y.C.; Coronado, R.; Rodgers, J.R.; Levitt, J.M.; Cerroni, B.; Piscoya, S.; Wilson, N.; DiBernardi, L.; et al. Dendritic cell vaccination plus low-dose doxorubicin for the treatment of spontaneous canine hemangiosarcoma. Cancer Gene Ther. 2019, 26, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Panjwani, M.K.; Atherton, M.J.; MaloneyHuss, M.A.; Haran, K.P.; Xiong, A.; Gupta, M.; Kulikovsaya, I.; Lacey, S.F.; Mason, N.J. Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma. Oncoimmunology 2019, 9, 1676615. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, E.M.V.; Riise, R.; Saellström, S.; Karlsson, J.; Alsén, S.; Bucher, V.; Hemminki, A.E.; Olofsson Bagge, R.; Ny, L.; Nilsson, L.M.; et al. Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs. Cancers 2023, 15, 648. [Google Scholar] [CrossRef]
- Pazzi, P.; Steenkamp, G.; Rixon, A.J. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet. Sci. 2022, 9, 196. [Google Scholar] [CrossRef]
- Bergman, P.J. Cancer Immunotherapies. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 881–902. [Google Scholar] [CrossRef]
- Bergman, P.J.; McKnight, J.; Novosad, A.; Charney, S.; Farrelly, J.; Craft, D.; Wulderk, M.; Jeffers, Y.; Sadelain, M.; Hohenhaus, A.E.; et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: A phase I trial. Clin. Cancer Res. 2003, 9, 1284–1290. [Google Scholar] [PubMed]
- Verganti, S.; Berlato, D.; Blackwood, L.; Amores-Fuster, I.; Polton, G.A.; Elders, R.; Doyle, R.; Taylor, A.; Murphy, S. Use of Oncept melanoma vaccine in 69 canine oral malignant melanomas in the UK. J. Small Anim. Pract. 2017, 58, 10–16. [Google Scholar] [CrossRef]
- McLean, J.L.; Lobetti, R.G. Use of the melanoma vaccine in 38 dogs: The South African experience. J. S. Afr. Vet. Assoc. 2015, 86, 1246. [Google Scholar] [CrossRef]
- Treggiari, E.; Grant, J.P.; North, S.M. A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma. J. Vet. Med. Sci. 2016, 78, 845–850. [Google Scholar] [CrossRef]
- Turek, M.; LaDue, T.; Looper, J.; Nagata, K.; Shiomitsu, K.; Keyerleber, M.; Buchholz, J.; Gieger, T.; Hetzel, S. Multimodality treatment including ONCEPT for canine oral melanoma: A retrospective analysis of 131 dogs. Vet. Radiol. Ultrasound. 2020, 61, 471–480. [Google Scholar] [CrossRef]
- Jeon, M.D.; Leeper, H.J.; Cook, M.R.; McMillan, S.K.; Bennett, T.; Murray, C.A.; Tripp, C.D.; Curran, K.M. Multi-institutional retrospective study of canine foot pad malignant melanomas: 20 cases. Vet. Comp. Oncol. 2022, 20, 854–861. [Google Scholar] [CrossRef]
- Zuleger, C.L.; Kang, C.; Ranheim, E.A.; Kurzman, I.D.; Macklin, M.D.; Newton, M.A.; Wolchok, J.D.; Vail, D.M.; Eriksson, E.; Albertini, M.R. Pilot study of safety and feasibility of DNA microseeding for treatment of spontaneous canine melanoma. Vet. Med. Sci. 2017, 3, 134–145. [Google Scholar] [CrossRef]
- Grosenbaugh, D.A.; Leard, A.T.; Bergman, P.J.; Klein, M.K.; Meleo, K.; Susaneck, S.; Hess, P.R.; Jankowski, M.K.; Jones, P.D.; Leibman, N.F.; et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am. J. Vet. Res. 2011, 72, 1631–1638. [Google Scholar] [CrossRef]
- Sarbu, L.; Kitchell, B.E.; Bergman, P.J. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma—A retrospective study. J. Feline Med. Surg. 2017, 19, 224–230. [Google Scholar] [CrossRef]
- Polton, G.; Borrego, J.F.; Clemente-Vicario, F.; Clifford, C.A.; Jagielski, D.; Kessler, M.; Kobayashi, T.; Lanore, D.; Queiroga, F.L.; Rowe, A.T.; et al. Melanoma of the dog and cat: Consensus and guidelines. Front. Vet. Sci. 2024, 11, 1359426. [Google Scholar] [CrossRef]
- Pellin, M.A. The Use of Oncept Melanoma Vaccine in Veterinary Patients: A Review of the Literature. Vet. Sci. 2022, 9, 597. [Google Scholar] [CrossRef]
- Chen, X.; Habib, S.; Alexandru, M.; Chauhan, J.; Evan, T.; Troka, J.M.; Rahimi, A.; Esapa, B.; Tull, T.J.; Ng, W.Z.; et al. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers 2024, 16, 3260. [Google Scholar] [CrossRef]
- Riccardo, F.; Iussich, S.; Maniscalco, L.; Lorda Mayayo, S.; La Rosa, G.; Arigoni, M.; De Maria, R.; Gattino, F.; Lanzardo, S.; Lardone, E.; et al. CSPG4-specific immunity and survival prolongation in dogs with oral malignant melanoma immunized with human CSPG4 DNA. Clin. Cancer Res. 2014, 20, 3753–3762. [Google Scholar] [CrossRef]
- Piras, L.A.; Riccardo, F.; Iussich, S.; Maniscalco, L.; Gattino, F.; Martano, M.; Morello, E.; Lorda Mayayo, S.; Rolih, V.; Garavaglia, F.; et al. Prolongation of survival of dogs with oral malignant melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen electrovaccination. Vet. Comp. Oncol. 2017, 15, 996–1013. [Google Scholar] [CrossRef]
- Giacobino, D.; Camerino, M.; Riccardo, F.; Cavallo, F.; Tarone, L.; Martano, M.; Dentini, A.; Iussich, S.; Lardone, E.; Franci, P.; et al. Difference in outcome between curative intent vs marginal excision as a first treatment in dogs with oral malignant melanoma and the impact of adjuvant CSPG4-DNA electrovaccination: A retrospective study on 155 cases. Vet. Comp. Oncol. 2021, 19, 651–660. [Google Scholar] [CrossRef]
- Camerino, M.; Giacobino, D.; Iussich, S.; Ala, U.; Riccardo, F.; Cavallo, F.; Martano, M.; Morello, E.; Buracco, P. Evaluation of prognostic impact of pre-treatment neutrophil to lymphocyte and lymphocyte to monocyte ratios in dogs with oral malignant melanoma treated with surgery and adjuvant CSPG4-antigen electrovaccination: An explorative study. Vet. Comp. Oncol. 2021, 19, 353–361. [Google Scholar] [CrossRef]
- Mayayo, S.L.; Prestigio, S.; Maniscalco, L.; Rosa, G.; Aricò, A.; Maria, R.; Cavallo, F.; Ferrone, S.; Buracco, P.; Iussich, S. Chondroitin sulfate proteoglycan-4: A biomarker and a potential immunotherapeutic target for canine malignant melanoma. Vet. J. 2011, 190, e26–e30. [Google Scholar] [CrossRef]
- Riccardo, F.; Tarone, L.; Camerino, M.; Giacobino, D.; Iussich, S.; Barutello, G.; Arigoni, M.; Conti, L.; Bolli, E.; Quaglino, E.; et al. Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: A veterinary trial. J. Immunother. Cancer. 2022, 10, e004007. [Google Scholar] [CrossRef]
- Poon, A.C.; Matsuyama, A.; Mutsaers, A.J. Recent and current clinical trials in canine appendicular osteosarcoma. Can. Vet. J. 2020, 61, 301–308. [Google Scholar] [PubMed]
- Tarone, L.; Giacobino, D.; Camerino, M.; Maniscalco, L.; Iussich, S.; Parisi, L.; Giovannini, G.; Dentini, A.; Bolli, E.; Quaglino, E.; et al. A chimeric human/dog-DNA vaccine against CSPG4 induces immunity with therapeutic potential in comparative preclinical models of osteosarcoma. Mol. Ther. 2023, 31, 2342–2359. [Google Scholar] [CrossRef]
- Bennett, P.; Williamson, P.; Taylor, R. Review of Canine Lymphoma Treated with Chemotherapy-Outcomes and Prognostic Factors. Vet. Sci. 2023, 10, 342. [Google Scholar] [CrossRef]
- Impellizeri, J.A.; Gavazza, A.; Greissworth, E.; Crispo, A.; Montella, M.; Ciliberto, G.; Lubas, G.; Aurisicchio, L. Tel-eVax: A genetic vaccine targeting telomerase for treatment of canine lymphoma. J. Transl. Med. 2018, 16, 349. [Google Scholar] [CrossRef]
- Gavazza, A.; Lubas, G.; Fridman, A.; Peruzzi, D.; Impellizeri, J.A.; Luberto, L.; Marra, E.; Roscilli, G.; Ciliberto, G.; Aurisicchio, L. Safety and efficacy of a genetic vaccine targeting telomerase plus chemotherapy for the therapy of canine B-cell lymphoma. Hum. Gene Ther. 2013, 24, 728–738. [Google Scholar] [CrossRef]
- Jindra, C.; Hainisch, E.K.; Brandt, S. Immunotherapy of Equine Sarcoids-From Early Approaches to Innovative Vaccines. Vaccines 2023, 11, 769. [Google Scholar] [CrossRef]
- Jindra, C.; Hainisch, E.K.; Rümmele, A.; Wolschek, M.; Muster, T.; Brandt, S. Influenza virus vector iNS1 expressing bovine papillomavirus 1 (BPV1) antigens efficiently induces tumour regression in equine sarcoid patients. PLoS ONE 2021, 16, e0260155. [Google Scholar] [CrossRef]
- Nosalova, N.; Huniadi, M.; Horňáková, Ľ.; Valenčáková, A.; Horňák, S.; Nagoos, K.; Vozar, J.; Cizkova, D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int. J. Mol. Sci. 2024, 25, 2891. [Google Scholar] [CrossRef]
- Sabbieti, M.G.; Marchegiani, A.; Sufianov, A.A.; Gabai, V.L.; Shneider, A.; Agas, D. P62/SQSTM1 beyond Autophagy: Physiological Role and Therapeutic Applications in Laboratory and Domestic Animals. Life 2022, 12, 539. [Google Scholar] [CrossRef]
- Venanzi, F.M.; Gabai, V.; Mariotti, F.; Magi, G.E.; Vullo, C.; Sufianov, A.A.; Kolesnikov, S.I.; Shneider, A. p62-DNA-encoding plasmid reverts tumor grade, changes tumor stroma, and enhances anticancer immunity. Aging 2019, 11, 10711–10722. [Google Scholar] [CrossRef]
- Irenaeus, S.; Hellström, V.; Wenthe, J.; Krause, J.; Sundin, A.; Ahlström, H.; Tufveson, G.; Tötterman, T.H.; Loskog, A.; Ullenhag, G.J. Intratumoral immunostimulatory AdCD40L gene therapy in patients with advanced solid tumors. Cancer Gene Ther. 2021, 28, 1188–1197. [Google Scholar] [CrossRef]
- Saellstrom, S.; Sadeghi, A.; Eriksson, E.; Segall, T.; Dimopoulou, M.; Korsgren, O.; Loskog, A.S.; Tötterman, T.H.; Hemminki, A.; Ronnberg, H. Adenoviral CD40 Ligand Immunotherapy in 32 Canine Malignant Melanomas-Long-Term Follow Up. Front. Vet. Sci. 2021, 8, 695222. [Google Scholar] [CrossRef]
- Dong, C.; Tan, D.; Sun, H.; Li, Z.; Zhang, L.; Zheng, Y.; Liu, S.; Zhang, Y.; He, Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr. Issues Mol. Biol. 2024, 46, 11548–11579. [Google Scholar] [CrossRef]
- Geils, C.; Kathrein, K.L. Augmentation of Solid Tumor Immunotherapy with IL-12. J. Gene Med. 2024, 26, e70000. [Google Scholar] [CrossRef]
- Cicchelero, L.; Denies, S.; Haers, H.; Vanderperren, K.; Stock, E.; Van Brantegem, L.; de Rooster, H.; Sanders, N.N. Intratumoural interleukin 12 gene therapy stimulates the immune system and decreases angiogenesis in dogs with spontaneous cancer. Vet. Comp. Oncol. 2017, 15, 1187–1205. [Google Scholar] [CrossRef]
- Cicchelero, L.; Denies, S.; Vanderperren, K.; Stock, E.; Van Brantegem, L.; de Rooster, H.; Sanders, N.N. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study. Cancer Lett. 2017, 400, 205–218. [Google Scholar] [CrossRef]
- Bellamy, E.; Berlato, D. Canine cutaneous and subcutaneous mast cell tumours: A narrative review. J. Small Anim. Pract. 2022, 63, 497–511. [Google Scholar] [CrossRef]
- Cemazar, M.; Ambrozic Avgustin, J.; Pavlin, D.; Sersa, G.; Poli, A.; Krhac Levacic, A.; Tesic, N.; Lampreht Tratar, U.; Rak, M.; Tozon, N. Efficacy and safety of electrochemotherapy combined with peritumoral IL-12 gene electrotransfer of canine mast cell tumours. Vet. Comp. Oncol. 2017, 15, 641–654. [Google Scholar] [CrossRef]
- Salvadori, C.; Svara, T.; Rocchigiani, G.; Millanta, F.; Pavlin, D.; Cemazar, M.; Lampreht Tratar, U.; Sersa, G.; Tozon, N.; Poli, A. Effects of Electrochemotherapy with Cisplatin and Peritumoral IL-12 Gene Electrotransfer on Canine Mast Cell Tumors: A Histopathologic and Immunohistochemical Study. Radiol. Oncol. 2017, 51, 286–294. [Google Scholar] [CrossRef]
- Brloznik, M.; Kranjc Brezar, S.; Boc, N.; Knific, T.; Cemazar, M.; Milevoj, N.; Sersa, G.; Tozon, N.; Pavlin, D. Results of Dynamic Contrast-Enhanced Ultrasound Correlate With Treatment Outcome in Canine Neoplasia Treated With Electrochemotherapy and Interleukin-12 Plasmid Electrotransfer. Front. Vet. Sci. 2021, 8, 679073. [Google Scholar] [CrossRef]
- Lampreht Tratar, U.; Milevoj, N.; Cemazar, M.; Znidar, K.; Ursic Valentinuzzi, K.; Brozic, A.; Tomsic, K.; Sersa, G.; Tozon, N. Treatment of spontaneous canine mast cell tumors by electrochemotherapy combined with IL-12 gene electrotransfer: Comparison of intratumoral and peritumoral application of IL-12. Int. Immunopharmacol. 2023, 120, 110274. [Google Scholar] [CrossRef]
- Vilfan, M.; Lampreht Tratar, U.; Milevoj, N.; Nemec Svete, A.; Čemažar, M.; Serša, G.; Tozon, N. Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs. Animals 2024, 14, 438. [Google Scholar] [CrossRef]
- Milevoj, N.; Tratar, U.L.; Nemec, A.; Brožič, A.; Žnidar, K.; Serša, G.; Čemažar, M.; Tozon, N. A combination of electrochemotherapy, gene electrotransfer of plasmid encoding canine IL-12 and cytoreductive surgery in the treatment of canine oral malignant melanoma. Res. Vet. Sci. 2019, 122, 40–49. [Google Scholar] [CrossRef]
- Nemec, A.; Milevoj, N.; Lampreht Tratar, U.; Serša, G.; Čemažar, M.; Tozon, N. Electroporation-Based Treatments in Small Animal Veterinary Oral and Maxillofacial Oncology. Front. Vet. Sci. 2020, 7, 575911. [Google Scholar] [CrossRef]
- Miller, A.D.; Miller, C.R.; Rossmeisl, J.H. Canine Primary Intracranial Cancer: A Clinicopathologic and Comparative Review of Glioma, Meningioma, and Choroid Plexus Tumors. Front. Oncol. 2019, 9, 1151. [Google Scholar] [CrossRef]
- Omar, N.B.; Bentley, R.T.; Crossman, D.K.; Foote, J.B.; Koehler, J.W.; Markert, J.M.; Platt, S.R.; Rissi, D.R.; Shores, A.; Sorjonen, D.; et al. Safety and interim survival data after intracranial administration of M032, a genetically engineered oncolytic HSV-1 expressing IL-12, in pet dogs with sporadic gliomas. Neurosurg. Focus. 2021, 50, E5. [Google Scholar] [CrossRef]
- Hu, H.; Barker, A.; Harcourt-Brown, T.; Jeffery, N. Systematic Review of Brain Tumor Treatment in Dogs. J. Vet. Intern. Med. 2015, 29, 1456–1463. [Google Scholar] [CrossRef]
- Chambers, M.R.; Foote, J.B.; Bentley, R.T.; Botta, D.; Crossman, D.K.; Della Manna, D.L.; Estevez-Ordonez, D.; Koehler, J.W.; Langford, C.P.; Miller, M.A.; et al. Evaluation of immunologic parameters in canine glioma patients treated with an oncolytic herpes virus. J. Transl. Genet. Genom. 2021, 5, 423–442. [Google Scholar] [CrossRef]
- Rokade, S.; Damani, A.M.; Oft, M.; Emmerich, J. IL-2 based cancer immunotherapies: An evolving paradigm. Front. Immunol. 2024, 15, 1433989. [Google Scholar] [CrossRef]
- Saba, C.; Eggleston, R.; Parks, A.; Peroni, J.; Sjoberg, E.; Rice, S.; Tyma, J.; Williams, J.; Grosenbaugh, D.; Leard, A.T. ALVAC-fIL2, a feline interleukin-2 immunomodulator, as a treatment for sarcoids in horses: A pilot study. J. Vet. Intern. Med. 2022, 36, 1179–1184. [Google Scholar] [CrossRef]
- Tellado, M.; De Robertis, M.; Montagna, D.; Giovannini, D.; Salgado, S.; Michinski, S.; Signori, E.; Maglietti, F. Electrochemotherapy Plus IL-2+IL-12 Gene Electrotransfer in Spontaneous Inoperable Stage III--IV Canine Oral Malignant Melanoma. Vaccines 2023, 11, 1033. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, B.; Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol. Life Sci. 2022, 79, 191. [Google Scholar] [CrossRef]
- Naik, S.; Galyon, G.D.; Jenks, N.J.; Steele, M.B.; Miller, A.C.; Allstadt, S.D.; Suksanpaisan, L.; Peng, K.W.; Federspiel, M.J.; Russell, S.J.; et al. Comparative Oncology Evaluation of Intravenous Recombinant Oncolytic Vesicular Stomatitis Virus Therapy in Spontaneous Canine Cancer. Mol. Cancer Ther. 2018, 17, 316–326. [Google Scholar] [CrossRef]
- Makielski, K.M.; Sarver, A.L.; Henson, M.S.; Stuebner, K.M.; Borgatti, A.; Suksanpaisan, L.; Preusser, C.; Tabaran, A.F.; Cornax, I.; O’Sullivan, M.G.; et al. Neoadjuvant systemic oncolytic vesicular stomatitis virus is safe and may enhance long-term survivorship in dogs with naturally occurring osteosarcoma. Mol. Ther. Oncolytics. 2023, 31, 100736. [Google Scholar] [CrossRef]
- Kumar, A.; Taghi Khani, A.; Sanchez Ortiz, A.; Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022, 13, 901277. [Google Scholar] [CrossRef]
- Finocchiaro, L.M.E.; Spector, A.I.M.; Agnetti, L.; Arbe, M.F.; Glikin, G.C. Combination of Suicide and Cytokine Gene Therapies as Surgery Adjuvant for Canine Mammary Carcinoma. Vet. Sci. 2018, 5, 70. [Google Scholar] [CrossRef]
- Finocchiaro, L.M.E.; Agnetti, L.; Fondello, C.; Glikin, G.C. Combination of cytokine-enhanced vaccine and chemo-gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther. 2019, 26, 418–431. [Google Scholar] [CrossRef]
- Finocchiaro, L.M.; Fondello, C.; Gil-Cardeza, M.L.; Rossi, Ú.A.; Villaverde, M.S.; Riveros, M.D.; Glikin, G.C. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma. Hum. Gene Ther. 2015, 26, 367–376. [Google Scholar] [CrossRef]
- Ginn, S.L.; Mandwie, M.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2023-an update. J Gene Med. 2024, 26, e3721. [Google Scholar] [CrossRef]
- Khanna, C.; London, C.; Vail, D.; Mazcko, C.; Hirschfeld, S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 2009, 15, 5671–5677. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Cesarman-Maus, G.; Amador-Molina, A.; Lizano, M. Oncolytic Viruses for Canine Cancer Treatment. Cancers 2018, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Gentschev, I.; Patil, S.S.; Petrov, I.; Cappello, J.; Adelfinger, M.; Szalay, A.A. Oncolytic virotherapy of canine and feline cancer. Viruses 2014, 6, 2122–2137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glikin, G.C.; Finocchiaro, L.M.E. Clinical Trials of Cancer Immunogene Therapies in Companion Animals: An Update (2017–2024). Vet. Sci. 2025, 12, 329. https://doi.org/10.3390/vetsci12040329
Glikin GC, Finocchiaro LME. Clinical Trials of Cancer Immunogene Therapies in Companion Animals: An Update (2017–2024). Veterinary Sciences. 2025; 12(4):329. https://doi.org/10.3390/vetsci12040329
Chicago/Turabian StyleGlikin, Gerardo C., and Liliana M. E. Finocchiaro. 2025. "Clinical Trials of Cancer Immunogene Therapies in Companion Animals: An Update (2017–2024)" Veterinary Sciences 12, no. 4: 329. https://doi.org/10.3390/vetsci12040329
APA StyleGlikin, G. C., & Finocchiaro, L. M. E. (2025). Clinical Trials of Cancer Immunogene Therapies in Companion Animals: An Update (2017–2024). Veterinary Sciences, 12(4), 329. https://doi.org/10.3390/vetsci12040329