Diagnostic and Prognostic Value of Blood Ratios in Canine Splenic Hemangiosarcoma: A Multicentric Observational Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Case Selection
2.2. Follow-Up
2.3. Statistical Analysis
3. Results
3.1. Epidemiological Data of the Totality of Animals and Splenic Lesions
3.2. Baseline Data of Hemangiosarcoma Cases
3.2.1. Comparison of CBC Values and Blood Ratios Between Hemangiosarcoma and Other Splenic Lesions
3.2.2. Univariate Survival Analysis of Hemangiosarcoma Cases
3.2.3. Multivariate Survival Analysis of Hemangiosarcoma Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAS | Basophil count |
CT | Computed tomography |
CBC | Complete blood count |
DFI | Disease-free interval |
EOS | Eosinophil count |
HCT | Hematocrit |
HGM | Histological grade |
HSA | Hemangiosarcoma |
IQR | Interquartile range |
LYM | Lymphocyte count |
MPV | Mean platelet volume |
MON | Monocyte count |
NEU | Neutrophil count |
NLR | Neutrophil-lymphocyte ratio |
NRR | Neutrophil-erythrocyte ratio |
OS | Overall survival |
PCT | Plateletocrit |
PDW | Platelet volume distribution range |
PLR | Platelet-lymphocyte ratio |
PLT | Platelet count |
RBC | Erythrocyte count |
RDW | Red cell distribution width |
RDW-CV | Coefficient of variation of the erythrocyte distribution count |
WBC | White blood cell count |
WHO | World Health Organization |
References
- Argyle, D.J.; O’Brien, R.T. Chapter 206—Nonneoplastic Diseases of the Spleen. In Textbook of Veterinary Internal Medicine, 8th ed.; Ettinger, S.J., Feldman, E.C., Côté, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 2187–2209. [Google Scholar]
- Hammer, A.S.; Couto, C.G.; Swardson, C.; Getzy, D. Hemostatic Abnormalities in Dogs with Hemangiosarcoma. J. Vet. Intern. Med. 1991, 5, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.A.; Mackin, A.J.; Henry, C.J. Treatment of canine hemangiosarcoma: 2000 and beyond. J. Vet. Intern. Med. 2000, 14, 479–485. [Google Scholar] [CrossRef]
- Batschinski, K.; Nobre, A.; Vargas-Mendez, E.; Tedardi, M.V.; Cirillo, J.; Cestari, G.; Ubukata, R.; Dagli, M.L.Z. Canine visceral hemangiosarcoma treated with surgery alone or surgery and doxorubicin: 37 cases (2005–2014). Can. Vet. J. 2018, 59, 967–972. [Google Scholar] [PubMed]
- Zwida, K.H.; Kutzler, M.A. Canine splenic hemangiosarcoma cells express and activate luteinizing hormone receptors in vitro. Am. J. Vet. Res. 2022, 83, ajvr.22.07.0120. [Google Scholar] [CrossRef]
- Ng, C.Y.; Mills, J.N. Clinical and haematological features of haemangiosarcoma in dogs. Aust. Vet. J. 1985, 62, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.A.; Culp, W.T.N.; Rebhun, R.B. Canine and feline haemangiosarcoma. Vet. Rec. 2021, 189, e585. [Google Scholar] [CrossRef]
- Mullin, C.; Clifford, C.A. Miscellaneous Tumors- Section A: Hemangiosarcoma. In Withrow and MacEwen’s Small Animal Clinical Oncology, 6th ed.; Vail, D.M., Thamm, D.H., Liptak, J.M., Eds.; Saunders Elsevier: St. Louis, MO, USA, 2020; pp. 773–778. [Google Scholar]
- Pintar, J.; Breitschwerdt, E.B.; Hardie, E.M.; Spaulding, K.A. Acute nontraumatic hemoabdomen in the dog: A retrospective analysis of 39 cases (1987–2001). J. Am. Anim. Hosp. Assoc. 2003, 39, 518–522. [Google Scholar] [CrossRef]
- Hammond, T.N.; Pesillo-Crosby, S.A. Prevalence of hemangiosarcoma in anemic dogs with a splenic mass and hemoperitoneum requiring a transfusion: 71 cases (2003–2005). J. Am. Vet. Med. Assoc. 2008, 232, 553–558. [Google Scholar] [CrossRef]
- Davies, O.; Taylor, A.J. Refining the “double two-thirds” rule: Genotype-based breed grouping and clinical presentation help predict the diagnosis of canine splenic mass lesions in 288 dogs. Vet. Comp. Oncol. 2020, 18, 548–558. [Google Scholar] [CrossRef]
- Johnson, K.A.; Powers, B.E.; Withrow, S.J.; Sheetz, M.J.; Curtis, C.R.; Wrigley, R.H. Splenomegaly in dogs. Predictors of neoplasia and survival after splenectomy. J. Vet. Intern. Med. 1989, 3, 160–166. [Google Scholar] [CrossRef]
- Spangler, W.L.; Culbertson, M.R. Prevalence, type, and importance of splenic diseases in dogs: 1,480 cases (1985–1989). J. Am. Vet. Med. Assoc. 1992, 200, 829–834. [Google Scholar] [CrossRef]
- Day, M.J.; Lucke, V.M.; Pearson, H. A review of pathological diagnoses made from 87 canine splenic biopsies. J. Small Anim. Pract. 1995, 36, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, G.K.; Powers, B.E.; Mallinckrodt, C.H.; Withrow, S.J. Surgery and doxorubicin in dogs with hemangiosarcoma. J. Vet. Intern. Med. 1996, 10, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Fossum, T.W.; Radlinsky, M. Chapter 23—Surgery of the Hemolymphatic System. In Small Animal Surgery, 5th ed.; Fossum, T.W., Cho, J., Dewey, C.W., Hayashi, K., Huntingford, J.L., MacPhail, C.M., Quandt, J.E., Radlinsky, M.G., Schulz, K.S., Willard, M.D., et al., Eds.; Elsevier: St. Louis, MO, USA, 2019; pp. 631–649. [Google Scholar]
- Bertazzolo, W.; Dell’Orco, M.; Bonfanti, U.; Ghisleni, G.; Caniatti, M.; Masserdotti, C.; Antoniazzi, E.; Crippa, L.; Roccabianca, P. Canine angiosarcoma: Cytologic, histologic, and immunohistochemical correlations. Vet. Clin. Pathol. 2005, 34, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Graef, A.J.; Dickerson, E.B.; Modiano, J.F. Pathobiology of Hemangiosarcoma in Dogs: Research Advances and Future Perspectives. Vet. Sci. 2015, 2, 388–405. [Google Scholar] [CrossRef]
- Maronezi, M.C.; Carneiro, R.K.; da Cruz, I.C.K.; de Oliveira, A.P.L.; De Nardi, A.B.; Pavan, L.; Del’Aguila-Silva, P.; Uscategui, R.A.R.; Feliciano, M.A.R. Accuracy of B-mode ultrasound and ARFI elastography in predicting malignancy of canine splenic lesions. Sci. Rep. 2022, 12, 4252. [Google Scholar] [CrossRef]
- Kutara, K.; Seki, M.; Ishigaki, K.; Teshima, K.; Ishikawa, C.; Kagawa, Y.; Edamura, K.; Nakayama, T.; Asano, K. Triple-phase helical computed tomography in dogs with solid splenic masses. J. Vet. Med. Sci. 2017, 79, 1870–1877. [Google Scholar] [CrossRef]
- Kim, M.; Choi, S.; Choi, H.; Lee, Y.; Lee, K. Diagnosis of a large splenic tumor in a dog: Computed tomography versus magnetic resonance imaging. J. Vet. Med. Sci. 2016, 77, 1685–1687. [Google Scholar] [CrossRef]
- Howard, R.; Scheiner, A.; Kanetsky, P.A.; Egan, K.M. Sociodemographic and lifestyle factors associated with the neutrophil-to-lymphocyte ratio. Ann. Epidemiol. 2019, 38, 11–21.e16. [Google Scholar] [CrossRef]
- Suzuki, G.; Yamazaki, H.; Aibe, N.; Masui, K.; Sasaki, N.; Shimizu, D.; Kimoto, T.; Asai, J.; Wada, M.; Komori, S.; et al. Clinical Usefulness of the Platelet-to Lymphocyte Ratio in Patients with Angiosarcoma of the Face and Scalp. Int. J. Mol. Sci. 2017, 18, 2402. [Google Scholar] [CrossRef]
- Petrie, H.T.; Klassen, L.W.; Kay, H.D. Inhibition of human cytotoxic T lymphocyte activity in vitro by autologous peripheral blood granulocytes. J. Immunol. 1985, 134, 230–234. [Google Scholar] [CrossRef]
- Ocana, A.; Nieto-Jiménez, C.; Pandiella, A.; Templeton, A.J. Neutrophils in cancer: Prognostic role and therapeutic strategies. Mol. Cancer 2017, 16, 137. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.J.; Charles, K.A.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Cho, U.; Park, H.S.; Im, S.Y.; Yoo, C.Y.; Jung, J.H.; Suh, Y.J.; Choi, H.J. Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. PLoS ONE 2018, 13, e0200936. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Yin, W.; Lin, Y.; Zhou, L.; Sheng, X.; Xu, Y.; Sha, R.; Lu, J. Novel lymphocyte to red blood cell ratio (LRR), neutrophil to red blood cell ratio (NRR), monocyte to red blood cell ratio (MRR) as predictive and prognostic biomarkers for locally advanced breast cancer. Gland. Surg. 2019, 8, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, P.; Liu, Y.; Wei, H.; Yang, X.; Chen, T.; Xiao, J. Platelet-to-lymphocyte ratio in advanced Cancer: Review and meta-analysis. Clin. Chim. Acta 2018, 483, 48–56. [Google Scholar] [CrossRef]
- Henriques, J.; Felisberto, R.; Constantino-Casas, F.; Cabeçadas, J.; Dobson, J. Peripheral blood cell ratios as prognostic factors in canine diffuse large B-cell lymphoma treated with CHOP protocol. Vet. Comp. Oncol. 2021, 19, 242–252. [Google Scholar] [CrossRef]
- Petrucci, G.N.; Lobo, L.; Queiroga, F.; Martins, J.; Prada, J.; Pires, I.; Henriques, J. Neutrophil-to-lymphocyte ratio is an independent prognostic marker for feline mammary carcinomas. Vet. Comp. Oncol. 2021, 19, 482–491. [Google Scholar] [CrossRef]
- Valli, V.E.; Bienzle, D.; Meuten, D.J.; Linder, K.E. Tumors of the Hemolymphactic System—Tumors of the Spleen. In Tumors in Domestic Animals, 5th ed.; Meuten, D.J., Ed.; Wiley Blackwell: Ames, IA, USA, 2017; pp. 307–313. [Google Scholar]
- Thongsahuan, S.; Fonghoi, L.; Kaewfai, S.; Srinoun, K. Precision and accuracy of the Mindray BC-5000Vet hematology analyzer for canine and feline blood. Vet. Clin. Pathol. 2020, 49, 207–216. [Google Scholar] [CrossRef]
- Raposo, T.P.; Beirao, B.C.B.; Pang, L.Y.; Queiroga, F.L.; Argyle, D.J. Inflammation and cancer: Till death tears them apart. Vet. J. 2015, 205, 161–174. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Diem, S.; Schmid, S.; Krapf, M.; Flatz, L.; Born, D.; Jochum, W.; Templeton, A.J.; Früh, M. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017, 111, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, S.H.; Han, J.Y.; Kim, H.T.; Yun, T.; Lee, J.S. Early neutrophil-to-lymphocyte ratio reduction as a surrogate marker of prognosis in never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy. J. Cancer Res. Clin. Oncol. 2012, 138, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Formica, V.; Luccchetti, J.; Cunningham, D.; Smyth, E.C.; Ferroni, P.; Nardecchia, A.; Tesauro, M.; Cereda, V.; Guadagni, F.; Roselli, M. Systemic inflammation, as measured by the neutrophil/lymphocyte ratio, may have differential prognostic impact before and during treatment with fluorouracil, irinotecan and bevacizumab in metastatic colorectal cancer patients. Med. Oncol. 2014, 31, 166. [Google Scholar] [CrossRef]
- Kucuk, S.; Mızrak, S. Diagnostic Value of Inflammatory Factors in Patients with Gallbladder Cancer, Dysplasia, and Cholecystitis. Cancer Control 2021, 28, 10732748211033746. [Google Scholar] [CrossRef]
- Skor, O.; Fuchs-Baumgartinger, A.; Tichy, A.; Kleiter, M.; Schwendenwein, I. Pretreatment leukocyte ratios and concentrations as predictors of outcome in dogs with cutaneous mast cell tumours. Vet. Comp. Oncol. 2017, 15, 1333–1345. [Google Scholar] [CrossRef]
- Camerino, M.; Giacobino, D.; Iussich, S.; Ala, U.; Riccardo, F.; Cavallo, F.; Martano, M.; Morello, E.; Buracco, P. Evaluation of prognostic impact of pre-treatment neutrophil to lymphocyte and lymphocyte to monocyte ratios in dogs with oral malignant melanoma treated with surgery and adjuvant CSPG4-antigen electrovaccination: An explorative study. Vet. Comp. Oncol. 2021, 19, 353–361. [Google Scholar] [CrossRef]
- Mollinedo, F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends Immunol. 2019, 40, 228–242. [Google Scholar] [CrossRef]
- Xiong, S.; Dong, L.; Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol. 2021, 14, 173. [Google Scholar] [CrossRef]
- Perry, J.A.; Thamm, D.H.; Eickhoff, J.; Avery, A.C.; Dow, S.W. Increased monocyte chemotactic protein-1 concentration and monocyte count independently associate with a poor prognosis in dogs with lymphoma. Vet. Comp. Oncol. 2011, 9, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Stanton, S.E.; Disis, M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer 2016, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009, 27, 5944–5951. [Google Scholar] [CrossRef]
- Hwang, W.T.; Adams, S.F.; Tahirovic, E.; Hagemann, I.S.; Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis. Gynecol. Oncol. 2012, 124, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.; Hitre, E.; et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin. Oncol. 2013, 31, 860–867. [Google Scholar] [CrossRef]
- Carvalho, M.I.; Pires, I.; Prada, J.; Queiroga, F.L. T-lymphocytic infiltrate in canine mammary tumours: Clinic and prognostic implications. Vivo 2011, 25, 963–969. [Google Scholar]
- Carvalho, M.I.; Pires, I.; Prada, J.; Gregório, H.; Lobo, L.; Queiroga, F.L. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors. Vet. Immunol. Immunopathol. 2016, 178, 1–9. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Seruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocana, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. JNCI-J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Park, Y.H.; Ku, J.H.; Kwak, C.; Kim, H.H. Post-treatment neutrophil-to-lymphocyte ratio in predicting prognosis in patients with metastatic clear cell renal cell carcinoma receiving sunitinib as first line therapy. Springerplus 2014, 3, 243. [Google Scholar] [CrossRef]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef]
- Szkandera, J.; Absenger, G.; Liegl-Atzwanger, B.; Pichler, M.; Stotz, M.; Samonigg, H.; Glehr, M.; Zacherl, M.; Stojakovic, T.; Gerger, A.; et al. Elevated preoperative neutrophil/lymphocyte ratio is associated with poor prognosis in soft-tissue sarcoma patients. Br. J. Cancer 2013, 108, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Ethier, J.L.; Desautels, D.; Templeton, A.; Shah, P.S.; Amir, E. Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 2017, 19, 2. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef]
- Miller, A.G.; Morley, P.S.; Rao, S.; Avery, A.C.; Lana, S.E.; Olver, C.S. Anemia is associated with decreased survival time in dogs with lymphoma. J. Vet. Intern. Med. 2009, 23, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Masyr, A.R.; Rendahl, A.K.; Winter, A.L.; Borgatti, A.; Modiano, J.F. Retrospective evaluation of thrombocytopenia and tumor stage as prognostic indicators in dogs with splenic hemangiosarcoma. JAVMA-J. Am. Vet. Med. Assoc. 2021, 258, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Childress, M.O. Hematologic abnormalities in the small animal cancer patient. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 123–155. [Google Scholar] [CrossRef]
- Rejec, A.; Butinar, J.; Gawor, J.; Petelin, M. Evaluation of Complete Blood Count Indices (NLR, PLR, MPV/PLT, and PLCRi) in Healthy Dogs, Dogs With Periodontitis, and Dogs With Oropharyngeal Tumors as Potential Biomarkers of Systemic Inflammatory Response. J. Vet. Dent. 2017, 34, 231–240. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Li, J.; Zhang, G.; Yang, L.; Bi, C.; Zhao, B.; Yang, Y.; Li, R.; Wu, H.; et al. Prognostic value of systemic inflammatory factors NLR, LMR, PLR and LDH in penile cancer. BMC Urol. 2020, 20, 57. [Google Scholar] [CrossRef]
- Couto, C.G. Chapter 88—Lymphadenopathy and Splenomegaly. In Small Animal Internal Medicine, 6th ed.; Nelson, R.W., Couto, C.G., Eds.; Elsevier: St. Louis, MO, USA, 2019; pp. 1407–1419. [Google Scholar]
- Nyland, T.G.; Mattoon, J.S. Chapter 10—Spleen. In Small Animal Diagnostic Ultrasound, 3rd ed.; Mattoon, J.S., Nyland, T.G., Eds.; W.B. Saunders: St. Louis, MO, USA, 2015; pp. 400–437. [Google Scholar]
- De Nardi, A.B.; de Oliveira Massoco Salles Gomes, C.; Fonseca-Alves, C.E.; de Paiva, F.N.; Linhares, L.C.M.; Carra, G.J.U.; Dos Santos Horta, R.; Ruiz Sueiro, F.A.; Jark, P.C.; Nishiya, A.T.; et al. Diagnosis, Prognosis, and Treatment of Canine Hemangiosarcoma: A Review Based on a Consensus Organized by the Brazilian Association of Veterinary Oncology, ABROVET. Cancers 2023, 15, 2025. [Google Scholar] [CrossRef]
- Zakari, S.; Niels, N.K.; Olagunju, G.V.; Nnaji, P.C.; Ogunniyi, O.; Tebamifor, M.; Israel, E.N.; Atawodi, S.E.; Ogunlana, O.O. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review. Front. Oncol. 2024, 14, 1405267. [Google Scholar] [CrossRef] [PubMed]
Clinicopathological Variables | n (%) |
---|---|
Size of the lesion | |
Less than 5 cm | 58 (37.7) |
≥5 cm or ruptured | 96 (62.3) |
Transfusion after a CBC | |
Yes | 50 (32.5) |
No | 104 (67.5) |
Presence of Hemoabdomen | |
Yes | 72 (46.8) |
No | 82 (53.2) |
Histopathological diagnosis | |
Non-Neoplastic | 61 (39.6) |
Congestion | 1 (0.65) |
Hematoma | 11 (7.14) |
Hematoma and Lymphoid Hyperplasia | 11 (7.14) |
Extramedullary Hematopoiesis | 5 (3.24) |
Lymphoid Hyperplasia | 22 (14.26) |
Splenitis | 5 (3.25) |
Necrosis | 5 (3.25) |
Hemosiderosis | 1 (0.65) |
Neoplastic | 93 (60.39) |
Benign | 6 (3.90) |
Angiolipoma | 1 (0.65) |
Hemangioma | 4 (2.60) |
Lymphangioma | 1 (0.65) |
Malignant | 87 (56.49) |
Hemangiosarcoma | 63 (40.9) |
Sarcoma | 11 (7.14) |
Lymphoma | 13 (8.45) |
Clinicopathological Variables | n (%) |
---|---|
Tumor Size | |
Less than 5 cm | 9 (14.3) |
≥5 cm or ruptured | 48 (76.2) |
Tumors invading adjacentstructures, including muscle | 6 (9.5) |
Lymph Node Involvement | |
Yes * | 7 (11.1) |
No | 56 (88.9) |
Hemoabdomen | |
Yes | 42 (66.6) |
No | 21 (33.3) |
Distant Metastasis | |
Yes ** | 18 (28.6) |
No | 45 (71.4) |
Clinical Stage | |
I | 8 (12.7) |
Less than 5 cm | 8 (100) |
II | 35 (55.6) |
Less than 5 cm | 1 (2.9) |
≥5 cm or ruptured | 34 (97.1) |
III | 20 (31.7) |
Less than 5 cm | 2 (10) |
≥5 cm or ruptured | 18 (90) |
Histological Grade of Malignancy | |
I | 21 (33.3) |
II | 25 (39.7) |
III | 17 (27.0) |
Mitotic Count | |
≤10 | 45 (71.4) |
11–20 | 12 (19.0) |
21–30 | 3 (4.8) |
>30 | 2 (3.2) |
Splenic Lesions Non-HSA (Neoplastic or Non-Neoplastic) n = 91 |
Splenic HSA n = 63 | p | |||||
---|---|---|---|---|---|---|---|
Min–Max |
Mean (SD) | Median (IQR) | Min–Max |
Mean (SD) | Median (IQR) | ||
WBC * (103/uL) | 0.35–73.89 | 15.84 (11.08) | 13.3 (10.46) | 5.54–61 | 17.77 (10.17) | 16.29 (9.06) | 0.067 |
BAS (103/uL) | 0–0.47 | 0.02 (0.05) | 0.01 (0.02) | 0–0.25 | 0.02 (0.04) | 0.01 (0.02) | 0.599 |
NEU * (103/uL) | 0.24–58.63 | 12.6 (9.56) | 9.88 (9.5) | 3.42–58 | 14.91 (9.71) | 13.1 (8.88) | 0.027 |
EOS * (103/uL) | 0–1.13 | 0.26 (0.27) | 0.17 (0.33) | 0–1.2 | 0.18 (0.23) | 0.11 (0.22) | 0.015 |
LYM * (103/uL) | 0.08–28.2 | 1.8 (2.99) | 1.19 (1.09) | 0.1–7.25 | 1.71 (1.22) | 1.3 (1.33) | 0.376 |
MON * (103/uL) | 0.02–14.7 | 1.25 (1.84) | 0.78 (0.98) | 0.2–4.13 | 0.93 (0.69) | 0.76 (0.56) | 0.797 |
RBC (1012/L) | 0.24–9.17 | 5.66 (1.65) | 5.62 (2.06) | 2.21–8.1 | 4.54 (1.41) | 4.42 (1.82) | <0.001 |
RDW-CV * (%) | 12.1–30 | 16.28 (2.82) | 15.5 (2.4) | 11.8–39.4 | 16.41 (3.92) | 15.5 (3.1) | 0.995 |
HCT (%) | 0.33–59.3 | 37.06 (11.51) | 36.7 (16.6) | 15.2–55.7 | 30.45 (9.46) | 28.8 (10.6) | <0.001 |
PLT * (109/L) | 11–1462 | 270.03 (212.89) | 225 (181) | 10.5–517 | 144.93 (111) | 115 (134) | <0.001 |
MPV (fL) | 5.3–15.4 | 10 (1.84) | 9.8 (2) | 7.1–16.2 | 9.94 (1.59) | 9.7 (1.8) | 0.835 |
PDW * (%) | 14–20.8 | 16 (1.25) | 15.7 (0.9) | 13–20.4 | 16.6 (1.26) | 16.4 (1.5) | 0.003 |
HGB (g/dL) | 45–210 | 129.12 (35.37) | 129 (51) | 51–183 | 102.9 (31.13) | 98 (37) | <0.001 |
PCT (%) | 0.01–0.82 | 0.23 (0.16) | 0.21 (0.15) | 0.03–1.4 | 0.2 (0.22) | 0.13 (0.17) | 0.134 |
NLR * (103/uL) | 0.18–66.31 | 11.92 (11.24) | 8.36 (10.87) | 1.75–105 | 14.13 (16.64) | 8.7 (13.02) | 0.390 |
NRR * (10−4/L) | 0.45–33.5 | 2.65 (3.65) | 1.82 (1.95) | 0.5–12.71 | 3.7 (2.59) | 2.79 (2.84) | <0.001 |
PLR * (109/L) | 11.74–1923.08 | 259.91 (277.95) | 186.49 (229.58) | 6.21–670 | 139.39 (160) | 80.19 (131.12) | <0.001 |
HR |
CI 95% (Min–Max) | p | |
---|---|---|---|
WBC * (103/uL) | 2.338 | 1.274–4.291 | 0.006 |
BAS (103/uL) | ** | ** | ** |
NEU * (103/uL) | 2.134 | 1.238–3.681 | 0.006 |
EOS * (103/uL) | 1.139 | 0.800–1.621 | 0.471 |
LYM * (103/uL) | 1.225 | 0.771–1.945 | 0.391 |
MON * (103/uL) | 1.561 | 0.976–2.197 | 0.063 |
RBC (1012/L) | 0.729 | 0.576–0.922 | 0.008 |
RDW-CV * (%) | 1.992 | 0.331–11.99 | 0.452 |
HCT (%) | 0.951 | 0.914–0.988 | 0.011 |
PLT * (109/L) | 0.533 | 0.340–0.835 | 0.006 |
MPV (fL) | 1.053 | 0.879–1.262 | 0.573 |
PDW * (%) | ** | ** | ** |
HGB (g/dL) | 0.987 | 0.977–0.998 | 0.019 |
PCT * (%) | 0.733 | 0.496–1.084 | 0.120 |
NLR * (103/uL) | 1.192 | 0.850–1.671 | 0.309 |
NRR * (10−4/L) | 2.030 | 1.309–3.149 | 0.002 |
PLR * (10−4/L) | 0.685 | 0.505–0.930 | 0.015 |
HR | CI 95% (Min–Max) | p | |
---|---|---|---|
WBC * (103/uL) | 1.947 | 1.100–3.446 | 0.022 |
BAS (103/uL) | ** | ** | ** |
NEU * (103/uL) | 1.755 | 1.055–2.919 | 0.030 |
EOS * (103/uL) | 1.148 | 0.837–1.573 | 0.392 |
LYM * (103/uL) | 1.240 | 0.810–1.898 | 0.322 |
MON * (103/uL) | 1.406 | 0.908–2.176 | 0.127 |
RBC (1012/L) | 0.787 | 0.638–0.972 | 0.026 |
RDW-CV * (%) | 1.982 | 0.352–11.16 | 0.438 |
HCT (%) | 0.960 | 0.927–0.995 | 0.025 |
PLT * (109/L) | 0.628 | 0.416–0.947 | 0.027 |
MPV (fL) | 1.067 | 0.906–1.257 | 0.435 |
PDW * | ** | ** | ** |
HGB (g/dL) | 0.991 | 0.982–1.000 | 0.058 |
PCT * (%) | 0.831 | 0.591–1.167 | 0.285 |
NLR * | 1.101 | 0.799–1.517 | 0.557 |
NRR * | 1.661 | 1.119–2.465 | 0.012 |
PLR * | 0.743 | 0.566–0.976 | 0.033 |
Disease-Free Interval | Overall Survival | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Model 1 | Model 1 | |||
WBC * (103/uL) | 0.856 (0.014–5.9) | 0.940 | 2.864 (0.109–7.558) | 0.529 |
NEU * (103/uL) | 2.053 (0.053–8.155) | 0.70 | 0.595 (0.033–10.814) | 0.726 |
RBC (1012/L) | 0.840 (0.501–1.409) | 0.509 | 0.863 (0.538–1.385) | 0.542 |
HCT (%) | 0.958 (0.852–1.078) | 0.478 | 0.942 (0.848–1.047) | 0.269 |
PLT * (109/L) | 0.670 (0.396–1.34) | 0.136 | 0.765 (0.478–1.223) | 0.262 |
HGB (g/dL) | 1.013 (0.980–1.048) | 0.440 | 1.018 (0.988–1.049) | 0.241 |
Model 2 | Model 2 | |||
NRR * (10−4/L) | 1.837 (1.147–2.942) | 0.011 | 1.510 (0.985–2.314) | 0.059 |
PLR * (109/L) | 0.788 (0.570–1.089) | 0.149 | 0.194 (0.618–1.103) | 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, A.M.; Petrucci, G.; Gregório, H.; Lobo, L.; Henriques, J.; Figueira, A.C.; Vilhena, H.; Marrinhas, C.; Queiroga, F.L. Diagnostic and Prognostic Value of Blood Ratios in Canine Splenic Hemangiosarcoma: A Multicentric Observational Study. Vet. Sci. 2025, 12, 346. https://doi.org/10.3390/vetsci12040346
Marques AM, Petrucci G, Gregório H, Lobo L, Henriques J, Figueira AC, Vilhena H, Marrinhas C, Queiroga FL. Diagnostic and Prognostic Value of Blood Ratios in Canine Splenic Hemangiosarcoma: A Multicentric Observational Study. Veterinary Sciences. 2025; 12(4):346. https://doi.org/10.3390/vetsci12040346
Chicago/Turabian StyleMarques, Ana M., Gonçalo Petrucci, Hugo Gregório, Luís Lobo, Joaquim Henriques, Ana C. Figueira, Hugo Vilhena, Carla Marrinhas, and Felisbina L. Queiroga. 2025. "Diagnostic and Prognostic Value of Blood Ratios in Canine Splenic Hemangiosarcoma: A Multicentric Observational Study" Veterinary Sciences 12, no. 4: 346. https://doi.org/10.3390/vetsci12040346
APA StyleMarques, A. M., Petrucci, G., Gregório, H., Lobo, L., Henriques, J., Figueira, A. C., Vilhena, H., Marrinhas, C., & Queiroga, F. L. (2025). Diagnostic and Prognostic Value of Blood Ratios in Canine Splenic Hemangiosarcoma: A Multicentric Observational Study. Veterinary Sciences, 12(4), 346. https://doi.org/10.3390/vetsci12040346