Inclusion of Fermented Cassava Top and Root with Inoculation in Total Mixed Ration Silage Diets: Ensilage Quality and Nutrient Digestibility of Backgrounding Crossbred Bulls
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Preparation and In Vitro Assessment of TMR Silage
2.3. Animals Trial
2.4. Sampling and Analytical Proceducres
2.4.1. In Vitro Gas Production and Kinetics
2.4.2. Animal Biological Response Evaluation
2.5. Statistical Analyses
3. Results
3.1. Chemical Composition, Fermentation Quality, and In Vitro Trial
3.2. Feed Intake and Nutrient Digestibility
3.3. Ruminal Fermentation Characteristics, Blood Chemistry, and Hematology
4. Discussion
4.1. Chemical Composition, Fermentation Quality, and In Vitro Trial
4.2. Feed Intake and Nutrient Digestibility
4.3. Ruminal Fermentation Characteristics, Blood Chemistry and Hematology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanmugam, P.M.; Sangeetha, S.P.; Prabu, P.C.; Varshini, S.V.; Renukadevi, A.; Ravisankar, N.; Parasuraman, P.; Parthipan, T.; Satheeshkumar, N.; Natarajan, S.K.; et al. Crop–livestock-integrated farming system: A strategy to achieve synergy between agricultural production, nutritional security, and environmental sustainability. Front. Sustain. Food Syst. 2004, 8, 1338299. [Google Scholar] [CrossRef]
- Greenwood, P.L. An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef] [PubMed]
- Terry, S.A.; Basarab, J.A.; Guan, L.; McAllister, T.A. Strategies to improve the efficiency of beef cattle production. Can. J. Anim. Sci. 2021, 101, 1–19. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook 2024. Rome. 2024. Available online: https://openknowledge.fao.org/handle/20.500.14283/cd2971en (accessed on 27 February 2025).
- Wanapat, S.; Kang, S. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef]
- Khejornsart, P.; Meenongyai, W.; Juntanam, T. Cassava pulp added to fermented total mixed rations increased tropical sheep’s nutrient utilization, rumen ecology, and microbial protein synthesis. J. Adv. Vet. Anim. Res. 2022, 9, 754–760. [Google Scholar] [CrossRef]
- Lambebo, T.; Deme, T. Evaluation of nutritional potential and effect of processing on improving nutrient content of cassava (Manihot esculenta Crantz) root and leaves. bioRxiv 2022. [Google Scholar] [CrossRef]
- Wanapat, M.; Pilajun, R.; Polyorach, S.; Cherdthong, A.; Khejornsart, P.; Rowlinson, P. Effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Anim. Biosci. 2013, 26, 952–960. [Google Scholar] [CrossRef]
- Wanapat, M. The role of cassava hay as animal feed. Dep. Agric. (DOA) Cent. Int. De Agric. Trop. (CIAT) 2002, 7, 504–517. [Google Scholar]
- Soares, I.S.; Perrechil, F.; Grandis, A.; Pagliuso, D.; Purgatto, E.; de Oliveira, L.A.; Cavalari, A.A. Cassava waste (stem and leaf) analysis for reuse. Food Chem. Adv. 2024, 4, 100675. [Google Scholar] [CrossRef]
- Jiwuba, P.C.; Jiwuba, L.C.; Ogbuewu, I.P.; Mbajiorgu, C.A. Enhancement values of cassava by-product diets on production and haemato-biochemical indices of sheep and goats: A review. Trop. Anim. Health Prod. 2021, 53, 207. [Google Scholar] [CrossRef]
- Tambalo, F.M.Z.; Capuno, R.B.A.; Estrellana, C.D.; Garcia, J.F.; Arcillas, L.S.N. Effect of processing on the antinutrient and protein contents of cassava leaves from selected varieties. Philipp. J. Sci. 2023, 152, 561–570. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Fresh cassava root replacing cassava chip could enhance milk production of lactating dairy cows fed diets based on high sulfur-containing pellet. Sci. Rep. 2022, 12, 3809. [Google Scholar] [CrossRef] [PubMed]
- Supapong, C.; Sommai, S.; Khonkhaeng, B.; Suntara, C.; Prachumchai, R.; Phesatcha, K.; Chanjula, P.; Cherdthong, A. Effect of rhodanese enzyme addition on rumen fermentation, cyanide concentration, and feed utilization in beef cattle receiving various levels of fresh cassava root. Fermentation 2022, 8, 146. [Google Scholar] [CrossRef]
- Khejornsart, P.; Juntanam, T.; Meenongyai, W.; Wanapat, M. Effects of cassava pulp fermentation with traditional starter media on rumen fermentation, nutrients digestibility in beef cattle. Ital. J. Anim. Sci. 2025, 24, 182–192. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S. Enriching the nutritive value of cassava as feed to increase ruminant productivity. Nutr. Ecol. Food Res. 2013, 1, 262–269. [Google Scholar] [CrossRef]
- Gunun, N.; Phimda, R.; Piamphon, N.; Kaewwongsa, W.; Puangbut, D.; Kaewpila, C.; Khota, W.; Cherdthong, A.; Gunun, P. Effect of replacing concentrates with cassava root-top silage on feed utilization, rumen fermentation, blood parameters and growth performance in beef cattle. Anim. Biosci. 2024, 37, 1751–1758. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Khejornsart, P.; Pilajun, R. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation. Trop. Anim. Health Prod. 2013, 45, 77–81. [Google Scholar] [CrossRef]
- Khejornsart, P.; Jantanam, T.; Meenongyai, W.; Khumpeerawat, P. Effect of type of treated rice straw on ruminal fermentation characteristic and cellilolytic bacteria of swamp buffalo. Buffalo Bull. 2021, 40, 599–608. [Google Scholar]
- Menke, H.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); USDA Agricultural Handbook No 379; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1970.
- Blummel, M.; Lebzien, P. Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livest. Prod. Sci. 2001, 68, 107–117. [Google Scholar] [CrossRef]
- Franco, M.; Tapio, I.; Pirttiniemi, J.; Stefański, T.; Jalava, T.; Huuskonen, A.; Rinne, M. Fermentation Quality and Bacterial Ecology of Grass Silage Modulated by Additive Treatments, Extent of Compaction and Soil Contamination. Fermentation 2022, 8, 156. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Terril, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. J. Dairy Sci. 2013, 96, 5295–5299. [Google Scholar] [CrossRef]
- Jurášková, D.; Ribeiro, S.C.; Silva, C.C.G. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods 2022, 11, 156. [Google Scholar] [CrossRef]
- Duniere, L.; Jin, L.; Smiley, B.; Qi, M.; Rutherford, W.; Wang, Y.; McAllister, T. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage. J. Anim. Sci. 2015, 93, 2322–2335. [Google Scholar] [CrossRef]
- Devi, A.; Diarra, S. Factors affecting the utilisation of cassava products for poultry feeding review. Egypt J. Vet. Sci. 2021, 52, 387–403. [Google Scholar] [CrossRef]
- Olalere, G.C.; Iriso, B.V.; Ejimevwo, J.R.; Etela, I. Nutritional assay and growth performance of West African dwarf goats fed with fresh, wilted and ensiled cassava leaves-based diet. Agro-Science 2023, 22, 88–93. [Google Scholar] [CrossRef]
- Amos, A.T.; Idown, O.M.O.; Oso, A.O.; Durojaiye, O.J.; Agazue, K.; Adebowale, A.A. The chemical composition, anti-nutritional and microbial properties of ensiled cassava root-leaf blends as potential feed in swine diet. Pertanika J. Trop. Agric. Sci. 2019, 42, 1219–1235. [Google Scholar]
- Flibert, G.; Siourime, S.M.; Hamidou, C.; Donatien, K.; Cissé, H.; Ulrich, M.N.J.; Tankoano, A.; Hagretou, S.L.; Aly, S. Lactic Acid Bacteria and Yeasts Associated with Cassava Fermentation to attiéké in Burkina Faso and Their Technological Properties. Am. J. Adv. Food Sci. Technol. 2021, 9, 173–184. [Google Scholar] [CrossRef]
- Damayanti, E.; Ichsyani, M.; Istiqomah, L.; Anggraeni, A.S.; Kurniadi, M. Fermentation of amylolytic yeast and lactic acid bacteria to improve the quality of modified cassava. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1011, 012004. [Google Scholar] [CrossRef]
- Rashid, M.; Aboshady, H.M.; Soltan, Y.A.; Archimede, H.; Ghoneem, W.M.A. Phytochemical profile and in vitro evaluation of cassava (Manihot esculenta Crantz) foliage as ruminant feed with/without green banana flour. Sci. Rep. 2025, 15, 721. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Yaman, A.; Khotijah, L. Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract. Vet. World 2019, 12, 211–217. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Atzori, A.S.; Masoero, F.; Gallo, A.; Giuberti, G.; Atzori, A.; Masoero, F. Short communication: In vitro rumen gas production and starch degradation of starch-based feeds depend on mean particle size. J. Dairy Sci. 2018, 101, 6142–6149. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Z.; Li, T.; Shao, J.F. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Badouei Dalfardi, F.; Dayani, O.; Aghashahi, A.; Sharifi Hosseini, M.M. Survey of the in vitro nutritional value of total mixed rations silage with fresh chopped alfalfa forage at two levels of dry matter and crude protein. J. Rumin. Res. 2024, 12, 75–92. [Google Scholar]
- Calabrò, S.; Infascelli, F.; Bovera, F.; Moniello, G.; Piccolo, V. In vitro degradability of three forages: Fermentation kinetics and gas production of NDF and neutral detergent-soluble fraction of forages. J. Sci. Food Agric. 2002, 82, 222–229. [Google Scholar] [CrossRef]
- Reuben, R.C.; Elghandour, M.M.; Alqaisi, O.; Cone, J.W.; Márquez, O.; Salem, A.Z. Influence of Microbial Probiotics on Ruminant Health and Nutrition: Sources, Mode of Action and Implications. J. Sci. Food Agric. 2022, 102, 1319–1340. [Google Scholar] [CrossRef]
- Jung, H.G.; Allen, M.S. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef]
- Galvão, L.T.O.; Vargas, J.A.C.; Mezzomo, R.; Oliveira, L.R.S.; Dos Santos, P.M.; Maciel, R.P.; Soares, E.A.; Farias, M.L.C.; Caldas, C.S.; Faciola, A.P.; et al. Effects of supplementing cassava root silage to grazing dairy cows on nutrient utilization, milk production and composition in the tropics. Trop. Anim. Health Prod. 2024, 56, 120. [Google Scholar] [CrossRef] [PubMed]
- Khejornsart, P.; Juntanam, T.; Gunun, P.; Gunun, N.; Cherdthong, A. Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle. Animals 2024, 14, 3092. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Avila, A.S.; Zambom, M.A.; Faccenda, A.; Fischer, M.L.; Anschau, F.A.; Venturini, T.; Tinini, R.C.R.; Dessbesell, J.G.; Faciola, A.P. Effects of Black Wattle (Acacia mearnsii) Condensed Tannins on Intake, Protozoa Population, Ruminal Fermentation, and Nutrient Digestibility in Jersey Steers. Animals 2020, 10, 1011. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Topp, C.F.E.; Doyle, C.J. Modelling the comparative productivity and profitability of grass and legume systems of silage production in northern Europe. Grass Forage Sci. 2004, 59, 274–292. [Google Scholar] [CrossRef]
- Trail, S.; Ward, F.A. Economically optimized forage utilization choices in drylands for adapting to economic, ecological, and climate stress. Heliyon 2024, 10, e35254. [Google Scholar] [CrossRef]
- Kim, D.; Jung, J.-S.; Choi, K.-C. A Preliminary Study on Effects of Fermented Feed Supplementation on Growth Performance, Carcass Characteristics, and Meat Quality of Hanwoo Steers during the Early and Late Fattening Period. Appl. Sci. 2021, 11, 5202. [Google Scholar] [CrossRef]
- Moorby, J.M.; Dewhurst, R.J.; Evans, R.T.; Danelon, J.L. Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. J. Dairy Sci. 2006, 89, 3552–3562. [Google Scholar] [CrossRef]
- Gunun, N.; Khejornsart, P.; Polyorach, S.; Kaewpila, C.; Kimprasit, T.; Sanjun, I.; Cherdthong, A.; Wanapat, M.; Gunun, P. Utilization of Mao (Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle. Vet. Sci. 2022, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, T.J.; Firkins, J.L. Maximizing efficiency of rumen microbial protein production. Front. Microbiol. 2015, 6, 465. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Animal Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Koenig, K.M.; Beauchemin, K.A. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. J. Animal Sci. 2018, 96, 4398–4413. [Google Scholar] [CrossRef]
- Jones, S.; Brown, T.; Lee, W. Advancements in rumen microbiology: Implications for livestock health. J. Vet. Sci. 2020, 47, 120–135. [Google Scholar]
- Palmonari, A.; Federiconi, A.; Formigoni, A. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal 2021, 18, 101319. [Google Scholar] [CrossRef]
Inoculant | Ratio of Top-to-Root | Molasses, kg | Cassava Part | Rice Bran | |
---|---|---|---|---|---|
Green Top | Root | ||||
M0 | 1:1 | 0.09 | 2.50 | 2.50 | 0.91 |
M0 | 1:2 | 0.09 | 1.67 | 3.33 | 0.91 |
M0 | 1:3 | 0.09 | 1.25 | 3.75 | 0.91 |
M0 | 1:4 | 0.09 | 1.0 | 4.0 | 0.91 |
YL | 1:1 | 0.09 | 2.50 | 2.50 | 0.91 |
YL | 1:2 | 0.09 | 1.67 | 3.33 | 0.91 |
YL | 1:3 | 0.09 | 1.25 | 3.75 | 0.91 |
YL | 1:4 | 0.09 | 1.00 | 4.00 | 0.91 |
Item | Replacement of CTRS, %Concentrate | ||
---|---|---|---|
0 | 35 | 70 | |
Ingredients, %dry matter | |||
Rice Straw | 48.0 | 43.0 | 42.0 |
CTRS | 0 | 20.3 | 40.0 |
Cassava Chip | 12.00 | 8.23 | 3.80 |
Wet Cassava Pulp | 12.00 | 8.23 | 3.80 |
Soybean meal | 10.00 | 7.05 | 3.91 |
Rice bran | 6.30 | 4.54 | 1.99 |
Palm kernel cake meal | 6.00 | 4.33 | 1.90 |
Urea | 0.70 | 0.60 | 0.57 |
Molasses | 3.50 | 2.40 | 1.11 |
Sulfur | 0.50 | 0.44 | 0.31 |
Salt | 0.50 | 0.44 | 0.31 |
Mineral and vitamin mixture | 0.50 | 0.44 | 0.31 |
Items | Inoculation (M)* and Ratio of Green Top-Root Cassava (R) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M0 | M0 | M0 | M0 | YL | YL | YL | YL | SEM | p-Value | Contrast | ||||
1:1 | 1:2 | 1:3 | 1:4 | 1:1 | 1:2 | 1:3 | 1:4 | M | R | MR | L | Q | ||
Chemical Composition, %DM | ||||||||||||||
DM | 44.30 | 45.00 | 43.50 | 42.80 | 43.70 | 44.20 | 42.50 | 42.30 | 1.322 | 0.116 | 0.210 | 0.175 | 0.412 | 0.856 |
OM | 91.40 | 90.70 | 90.70 | 91.10 | 90.80 | 90.82 | 90.90 | 91.40 | 1.524 | 0.155 | 0.087 | 0.552 | 0.472 | 0.172 |
CP | 15.62 a | 12.84 ab | 11.45 bc | 10.68 c | 15.48 a | 12.64 ab | 11.23 bc | 10.49 c | 0.573 | 0.412 | 0.013 | 0.430 | 0.041 | 0.915 |
EE | 2.17 | 2.14 | 2.11 | 2.10 | 2.38 | 2.35 | 2.26 | 2.17 | 0.150 | 0.159 | 0.501 | 0.140 | 0.285 | 0.142 |
NDF | 42.41 | 40.95 | 40.84 | 39.51 | 42.86 | 41.63 | 39.60 | 39.15 | 1.095 | 0.173 | 0.185 | 0.343 | 0.172 | 0.423 |
ADF | 27.31 | 25.91 | 25.15 | 25.15 | 26.16 | 25.27 | 24.50 | 26.67 | 0.714 | 0.611 | 0.235 | 0.911 | 0.681 | 0.107 |
NFC | 30.19 b | 31.84 ab | 33.30 a | 33.32 a | 30.45 b | 32.90 b | 32.61 a | 32.96 b | 0.884 | 0.151 | 0.032 | 0.471 | 0.112 | 0.856 |
CT | 5.48 a | 5.01 ab | 4.63 ab | 4.30 b | 5.45 a | 4.89 ab | 4.46 ab | 4.17 b | 0.335 | 0.814 | 0.021 | 0.170 | 0.093 | 0.451 |
Fermentation Quality, g/kg DM | ||||||||||||||
pH | 5.12 a | 4.97 a | 4.50 b | 4.33 b | 4.31 b | 4.28 b | 4.25 b | 4.23 b | 0.129 | 0.010 | 0.024 | 0.035 | 0.014 | 0.131 |
NH3-N | 2.62 a | 2.03 cd | 1.85 d | 1.76 d | 2.53 ab | 2.09 bc | 2.16 bc | 2.29 b | 0.108 | 0.050 | 0.072 | 0.086 | 0.713 | 0.170 |
Lactic acid | 1.20 d | 1.32 d | 1.95 bc | 2.15 c | 3.09 b | 3.50 a | 3.49 a | 3.52 a | 0.099 | 0.010 | 0.034 | 0.418 | 0.012 | 0.147 |
Acetic acid | 0.24 | 0.20 | 0.28 | 0.51 | 0.47 | 0.73 | 0.67 | 0.78 | 0.089 | 0.820 | 0.418 | 0.571 | 0.265 | 0.201 |
Propionic acid | 0.010 | 0.012 | 0.017 | 0.023 | 0.025 | 0.030 | 0.029 | 0.026 | 0.008 | 0.258 | 0.126 | 0.295 | 0.226 | 0.215 |
Butyric acid | 0.017 | 0.019 | 0.024 | 0.031 | 0.037 | 0.042 | 0.048 | 0.080 | 0.025 | 0.786 | 0.539 | 0.154 | 0.419 | 0.557 |
Treatment | Gas Production Kinetics | Total Gas Accumulation 96 h, mL/0.5 g | IVDMD (%) | ME, MJ/kg DM | MBP, mg/g DM | ||||
---|---|---|---|---|---|---|---|---|---|
M | R | a | b | c | a + b | ||||
M0 | 1:1 | −4.51 b | 99.77 b | 0.042 | 95.26 bc | 94.54 b | 60.05 b | 5.91 b | 123.47 a |
M0 | 1:2 | −2.78 a | 101.87 ab | 0.044 | 99.09 ab | 97.67 ab | 61.96 ab | 6.06 b | 127.17 a |
M0 | 1:3 | −3.71 ab | 100.70 ab | 0.052 | 96.99 b | 94.69 b | 57.74 bc | 5.97 b | 112.25 b |
M0 | 1:4 | −3.01 a | 94.10 b | 0.050 | 91.09 c | 89.32 c | 56.68 c | 5.76 c | 118.09 ab |
YL | 1:1 | −4.37 b | 106.30 ab | 0.053 | 101.93 a | 99.70 a | 61.48 ab | 6.16 a | 121.00 ab |
YL | 1:2 | −3.17 a | 106.89 a | 0.045 | 103.72 a | 101.30 a | 62.88 a | 6.23 a | 125.01 a |
YL | 1:3 | −3.29 ab | 103.74 ab | 0.048 | 100.45 ab | 98.80 ab | 60.26 ab | 6.13 ab | 116.61 b |
YL | 1:4 | −3.01 a | 98.37 b | 0.049 | 95.36 bc | 94.14 b | 59.20 bc | 5.96 bc | 119.98 ab |
SEM | 0.397 | 2.283 | 0.015 | 1.534 | 1.467 | 0.917 | 0.067 | 3.109 | |
Factor M | |||||||||
M0 | −3.50 | 99.11 | 0.047 | 95.61 b | 94.06 b | 59.11 | 5.93 | 120.24 | |
YL | −3.46 | 103.83 | 0.049 | 100.37 a | 98.48 a | 60.96 | 6.12 | 120.65 | |
Factor R | |||||||||
1:1 | −4.44 b | 103.04 ab | 0.048 | 98.60 a | 97.12 a | 60.77 a | 6.04 ab | 122.24 ab | |
1:2 | −2.98 a | 104.38 a | 0.045 | 101.41 a | 99.49 a | 62.42 a | 6.15 a | 126.09 a | |
1:3 | −3.50 ab | 102.22 ab | 0.050 | 98.72 a | 96.74 a | 59.00 b | 6.05 ab | 114.43 b | |
1:4 | −3.01 a | 96.24 b | 0.050 | 93.23 b | 91.73 b | 57.94 b | 5.86 b | 119.03 ab | |
Interaction M × R | 0.612 | 0.771 | 0.251 | 0.034 | 0.048 | 0.642 | 0.327 | 0.108 | |
Contrast | |||||||||
L | 0.067 | 0.050 | 0.114 | 0.050 | 0.050 | 0.024 | 0.030 | 0.117 | |
Q | 0.287 | 0.314 | 0.512 | 0.228 | 0.147 | 0.117 | 0.217 | 0.210 |
Item | Cassava Top-Root Silage (CTRS), %Concentrate | SEM | p-Value | Contrast | |||
---|---|---|---|---|---|---|---|
0 | 35 | 70 | L | Q | |||
Chemical composition, % of DM | |||||||
DM | 45.63 | 43.68 | 43.23 | 1.245 | 0.065 | 0.098 | 0.246 |
OM | 87.85 | 88.50 | 87.78 | 2.478 | 0.571 | 0.128 | 0.306 |
CP | 10.62 | 10.60 | 10.54 | 0.255 | 0.245 | 0.144 | 1.424 |
EE | 2.57 | 2.94 | 3.12 | 0.197 | 0.115 | 0.099 | 0.123 |
NDF | 58.48 | 56.84 | 54.85 | 1.542 | 0.478 | 0.064 | 0.153 |
ADF | 38.48 | 36.84 | 34.85 | 0.927 | 0.054 | 0.072 | 0.713 |
NFC | 20.18 b | 22.12 ab | 23.27 a | 1.025 | 0.041 | 0.010 | 0.219 |
CT | 0.58 b | 1.02 ab | 2.00 a | 0.452 | 0.010 | 0.017 | 0.137 |
Price (USD/100 kg DM) | 16.68 a | 12.82 ab | 8.25 b | 1.579 | 0.014 | 0.021 | 0.127 |
Item | Cassava Top-Root Silage (CTRS), %Concentrate | SEM | p-Value | Contrast | |||
---|---|---|---|---|---|---|---|
0 | 35 | 70 | L | Q | |||
Dry matter intake | |||||||
kg/d | 5.78 b | 5.98 ab | 6.03 a | 0.145 | 0.041 | 0.011 | 0.572 |
%BW | 3.34 | 3.40 | 3.34 | 0.325 | 0.230 | 0.472 | 0.594 |
Nutrient intake, kg/d | |||||||
OM | 5.08 b | 5.29 a | 5.29 a | 0.156 | 0.047 | 0.023 | 0.751 |
CP | 0.61 | 0.63 | 0.64 | 0.086 | 0.065 | 0.102 | 0.515 |
EE | 0.15 | 0.18 | 0.19 | 0.039 | 0.082 | 0.098 | 0.118 |
NDF | 3.38 | 3.40 | 3.31 | 0.124 | 0.107 | 0.183 | 0.270 |
ADF | 2.22 | 2.00 | 2.20 | 0.108 | 0.112 | 0.120 | 0.127 |
CT | 0.03 b | 0.06 ab | 0.11 a | 0.020 | 0.010 | 0.051 | 0.214 |
Digestibility coefficients, % | |||||||
DM | 59.87 | 61.95 | 60.80 | 1.090 | 0.069 | 0.104 | 0.170 |
OM | 61.39 | 63.28 | 62.88 | 1.990 | 0.341 | 0.390 | 0.119 |
CP | 64.79 | 63.90 | 62.65 | 1.458 | 0.080 | 0.690 | 0.430 |
EE | 54.64 | 56.32 | 55.97 | 1.751 | 0.594 | 0.829 | 0.516 |
NDF | 48.86 | 50.05 | 49.95 | 1.840 | 0.058 | 0.090 | 0.232 |
ADF | 39.79 | 40.99 | 41.59 | 1.036 | 0.145 | 0.085 | 0.513 |
Item | Cassava Top-Root Silage (CTRS), %Concentrate | SEM | p-Value | Contrast | |||
---|---|---|---|---|---|---|---|
0 | 35 | 70 | L | Q | |||
Rumen fermentation parameters | |||||||
pH | 6.84 | 7.02 | 6.89 | 0.032 | 0.450 | 0.700 | 0.547 |
NH3-N (mg/dL) | 18.5 | 17.4 | 16.7 | 1.036 | 0.071 | 0.099 | 0.772 |
Total volatile fatty acid (mM/L) | 99.7 | 105.1 | 102.5 | 5.250 | 0.342 | 0.241 | 0.597 |
Volatile fatty acid (mol/100 mol) | |||||||
Acetate | 65.2 | 64.2 | 64.5 | 1.066 | 0.218 | 0.131 | 0.945 |
Propionate | 19.5 b | 21.3 a | 20.6 ab | 0.545 | 0.050 | 0.042 | 0.544 |
Butyrate | 15.2 | 14.9 | 14.8 | 0.497 | 0.714 | 0.141 | 0.950 |
Acetate-to-propionate ratio | 3.3 | 3.0 | 3.1 | 0.069 | 0.180 | 0.163 | 0.359 |
Blood chemistry and hematology | |||||||
Glucose (mg/dL) | 76.93 b | 78.84 ab | 81.72 b | 1.296 | 0.048 | 0.012 | 0.348 |
Total protein (g/dL) | 5.94 | 6.04 | 6.51 | 0.338 | 0.168 | 0.330 | 0.093 |
BUN (mg/dL) | 8.70 | 8.02 | 7.78 | 0.485 | 0.060 | 0.315 | 0.220 |
Hemoglobin (g/dL) | 5.84 | 7.86 | 7.61 | 0.788 | 0.211 | 0.670 | 0.090 |
Hematocrit (%) | 17.53 | 20.08 | 19.93 | 0.894 | 0.324 | 0.680 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khejornsart, P.; Traithilen, U.; Juntanam, T. Inclusion of Fermented Cassava Top and Root with Inoculation in Total Mixed Ration Silage Diets: Ensilage Quality and Nutrient Digestibility of Backgrounding Crossbred Bulls. Vet. Sci. 2025, 12, 402. https://doi.org/10.3390/vetsci12050402
Khejornsart P, Traithilen U, Juntanam T. Inclusion of Fermented Cassava Top and Root with Inoculation in Total Mixed Ration Silage Diets: Ensilage Quality and Nutrient Digestibility of Backgrounding Crossbred Bulls. Veterinary Sciences. 2025; 12(5):402. https://doi.org/10.3390/vetsci12050402
Chicago/Turabian StyleKhejornsart, Pichad, Unchan Traithilen, and Theerayut Juntanam. 2025. "Inclusion of Fermented Cassava Top and Root with Inoculation in Total Mixed Ration Silage Diets: Ensilage Quality and Nutrient Digestibility of Backgrounding Crossbred Bulls" Veterinary Sciences 12, no. 5: 402. https://doi.org/10.3390/vetsci12050402
APA StyleKhejornsart, P., Traithilen, U., & Juntanam, T. (2025). Inclusion of Fermented Cassava Top and Root with Inoculation in Total Mixed Ration Silage Diets: Ensilage Quality and Nutrient Digestibility of Backgrounding Crossbred Bulls. Veterinary Sciences, 12(5), 402. https://doi.org/10.3390/vetsci12050402