Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Microbiological Evaluation
2.2. Isolation and Identification of Strains
2.3. Phenotypic Confirmation of Methicillin-Resistant Micrococcaceae
2.4. Phenotypic Evaluation Assay of Staphylococcus spp., Mammaliicoccus spp., and Macrococcus caseolyticus
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRSA | Staphylococcus aureus resistant to methicillin |
MRS | Methicillin-resistant staphylococci |
MR | Methicillin-resistant |
References
- Biesalski, H.-K. Meat as a component of a healthy diet—Are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Fulgoni, V.L., 3rd. Association of pork (all pork, fresh pork and processed pork) consumption with nutrient intakes and adequacy in US children (age 2–18 years) and adults (age 19+ years): NHANES 2011–2018 analysis. Nutrients 2023, 15, 2293. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S. Nutritional role of meat for children and adolescents. In Encyclopedia of Meat Sciences; Elsevier: Amsterdam, The Netherlands, 2024; pp. 655–662. [Google Scholar] [CrossRef]
- Conrad, Z.; Repoulis, V.; Zavela, C. Modeled sustainability impacts of increasing pork consumption among adults in the United States. Front. Nutr. 2025, 11, 1508601. [Google Scholar] [CrossRef] [PubMed]
- Mercasa. Alimentación en España 2022; Mercasa: Madrid, Spain, 2022; pp. 241–281. Available online: https://www.mercasa.es/publicaciones/alimentacion-en-espana/ (accessed on 29 April 2025).
- Taylor, T.M.; Aiyegoro, O.A. Microbial contamination: Microbial contamination of fresh meat. In Encyclopedia of Meat Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, pp. 181–188. [Google Scholar] [CrossRef]
- Alimi, B.A.; Lawal, R.; Odetunde, O.N. Food safety and microbiological hazards associated with retail meat at butchery outlets in north-central Nigeria. Food Control 2022, 139, 109061. [Google Scholar] [CrossRef]
- Hellstrom, S.; Laukkanen, R.; Siekkinen, K.M.; Ranta, J.; Mauala, R.; Korkeala, H. Listeria monocytogenes Contamination in Pork Can Originate from Farms. J. Food Prot. 2010, 73, 641–648. [Google Scholar] [CrossRef]
- Beneke, B.; Klees, S.; Stührenberg, B.; Fetsch, A.; Kraushaar, B.; Tenhagen, B.-A. Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain. J. Food Prot. 2011, 74, 126–129. [Google Scholar] [CrossRef]
- Hanson, B.M.; Dressler, A.E.; Harper, A.L.; Scheibel, R.P.; Wardyn, S.E.; Roberts, L.K.; Kroeger, J.S.; Smith, T.C. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J. Infect. Public Health 2011, 4, 169–174. [Google Scholar] [CrossRef]
- Tan, L.K.; Ooi, P.T.; Thong, K.L. Prevalence of Yersinia enterocolitica from food and pigs in selected states of Malaysia. Food Control 2014, 35, 94–100. [Google Scholar] [CrossRef]
- Silva, D.A.L.; Botelho, C.V.; Martins, B.T.F.; Tavares, R.M.; Camargo, A.C.; Yamatogi, R.S.; Bersot, L.; Nero, L. Listeria monocytogenes from farm to fork in a Brazilian pork production chain. J. Food Prot. 2020, 83, 485–490. [Google Scholar] [CrossRef]
- Vico, J.P.; Lorenzutti, A.M.; Zogbi, A.P.; Aleu, G.; Sánchez, I.C.; Caffer, M.I.; Rosmini, M.R.; Mainar, R.C. Prevalence, associated risk factors, and antimicrobial resistance profiles of non-typhoidal Salmonella in large scale swine production in Córdoba, Argentina. Res. Vet. Sci. 2020, 130, 161–169. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Yang, D.; Zhang, S.; Sun, Z.; Wang, Y.; Wangm, S.; Wu, C. Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi, China. Vet. Microbiol. 2021, 252, 108932. [Google Scholar] [CrossRef] [PubMed]
- Linn, K.Z.; Furuta, M.; Nakayama, M.; Masuda, Y.; Honjoh, K.-I.; Miyamoto, T. Characterization and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from chicken and pork. Int. J. Food Microbiol. 2021, 360, 109440. [Google Scholar] [CrossRef]
- Haque, M.; Bosilevac, J.M.; Chaves, B.D. A review of Shiga-toxin producing Escherichia coli (STEC) contamination in the raw pork production chain. Int. J. Food Microbiol. 2022, 377, 109832. [Google Scholar] [CrossRef]
- Martins, B.T.F.; de Meirelles, J.L.; Omori, W.P.; de Oliveira, R.R.; Yamatogi, R.S.; Call, D.R.; Nero, L. Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Food Res. Int. 2022, 152, 110917. [Google Scholar] [CrossRef]
- Sheng, H.; Suo, J.; Dai, J.; Wang, S.; Li, M.; Su, L.; Cao, M.; Cao, Y.; Chen, J.; Cui, S.; et al. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int. J. Food Microbiol. 2023, 403, 110305. [Google Scholar] [CrossRef]
- Lagarde, J.; Feurer, C.; Denis, M.; Douarre, P.-E.; Piveteau, P.; Roussel, S. Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiol. 2024, 119, 104430. [Google Scholar] [CrossRef]
- Todd, E.C.D. Bacteria: Yersinia enterocolitica and Yersinia pseudotuberculosis. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; pp. 574–580. [Google Scholar] [CrossRef]
- De Lucia, A.; Card, R.M.; Duggett, N.; Smith, R.P.; Davies, R.; Cawthraw, S.A.; Anjum, F. Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet. Microbiol. 2021, 258, 109125. [Google Scholar] [CrossRef]
- Bhargavi, D.; Sahu, R.; Nishanth, M.A.D.; Doijad, S.P.; Niveditha, P.; Kumar, O.R.V.; Sumanda, C. Genetic diversity and risk factor analysis of drug-resistant Escherichia coli recovered from broiler chicken farms. Comp. Immunol. Microbiol. Infect. Dis. 2023, 93, 101929. [Google Scholar] [CrossRef]
- Zomer, T.P.; Wielders, C.C.H.; Veenman, C.; Hengeveld, P.; van der Hoek, W.; de Greeff, S.C.; Smit, L. MRSA in persons not living or working on a farm in a livestock-dense area: Prevalence and risk factors. J. Antimicrob. Chemother. 2017, 72, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Shang, D.; Yang, J.; Chen, B.; Chang, J.; Jin, F.; Shi, C. Prevalence of multidrug-resistant Staphylococcus aureus isolates with strong biofilm formation ability among animal-based food in Shanghai. Food Control 2020, 112, 107106. [Google Scholar] [CrossRef]
- Tegegne, H.A.; Koláčková, I.; Florianová, M.; Gelbíčová, T.; Madec, J.-Y.; Haenni, M.; Karpíšková, R. Detection and molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from raw meat in the retail market. J. Glob. Antimicrob. Resist. 2021, 26, 233–238. [Google Scholar] [CrossRef]
- Ribeiro, C.M.; Stefani, L.M.; Lucheis, S.B.; Okano, W.; Cruz, J.C.M.; Souza, G.V.; Casagrande, T. Methicillin-resistant Staphylococcus aureus in poultry and poultry meat: A meta-analysis. J. Food Prot. 2018, 81, 1055–1062. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Hsu, B.-M.; Koner, S.; Chen, J.-S.; Hsu, G.-J.; Rathod, J.; Kenneth, M. The molecular classification of methicillin-resistant Staphylococcus aureus (MRSA) clones in the livestock settings air, and their potential bioaerosol-based transmission risk to the ambient environment: A challenge to One-health approach. J. Aerosol Sci. 2024, 179, 106381. [Google Scholar] [CrossRef]
- Tuominen, K.S.; Sternberg Lewerin, S.; Widgren, S.; Rosendal, T. Assessment of control measures against livestock-associated methicillin-resistant Staphylococcus aureus in a farrow-to-finish pig herd using infectious disease modelling. Animal 2023, 17, 100840. [Google Scholar] [CrossRef]
- Abdalrahman, L.S.; Wells, H.; Fakhr, M.K. Staphylococcus aureus is More Prevalent in Retail Beef Livers than in Pork and other Beef Cuts. Pathogens 2015, 4, 182–198. [Google Scholar] [CrossRef]
- Ge, B.; Mukherjee, S.; Hsu, C.-H.; Davis, J.A.; Tran, T.T.T.; Yang, Q.; Abbot, J. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010-2011. Food Microbiol. 2017, 62, 289–297. [Google Scholar] [CrossRef]
- Sun, C.; Chen, B.; Hulth, A.; Schwarz, S.; Ji, X.; Nilsson, L.E.; Ma, S. Genomic analysis of Staphylococcus aureus along a pork production chain and in the community, Shandong Province, China. Int. J. Antimicrob. Agents 2019, 54, 8–15. [Google Scholar] [CrossRef]
- Nero, L.A.; Botelho, C.V.; Sovinski, Â.I.; Grossi, J.L.; Call, D.R.; Dos Santos Bersot, L. Occurrence and distribution of antibiotic-resistant Staphylococcus aureus in a Brazilian pork production chain. J. Food Prot. 2022, 85, 973–979. [Google Scholar] [CrossRef]
- González-Machado, C.; Alonso-Calleja, C.; Capita, R. Prevalence and types of methicillin-resistant Staphylococcus aureus (MRSA) in meat and meat products from retail outlets and in samples of animal origin collected in farms, slaughterhouses and meat processing facilities. A review. Food Microbiol. 2024, 123, 104580. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Vanderhaeghen, W.; Argudín, M.A.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. J. Antimicrob. Chemother. 2014, 69, 2928–2934. [Google Scholar] [CrossRef]
- Cuny, C.; Layer-Nicolaou, F.; Werner, G.; Witte, W. A look at staphylococci from the one health perspective. Int. J. Med. Microbiol. 2024, 314, 151604. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e08442. [Google Scholar] [CrossRef]
- Pinamonti, D.; Manzano, M.; Maifreni, M.; Bianco, S.; Domi, B.; Ferrin, A. Prevalence and characterization of Staphylococcus aureus isolated from meat and milk in Northeastern Italy. J. Food Prot. 2025, 88, 100442. [Google Scholar] [CrossRef]
- Kisoo, L.; Muloi, D.M.; Oguta, W.; Ronoh, D.; Kirwa, L.; Akoko, J. Practices and drivers for antibiotic use in cattle production systems in Kenya. One Health 2023, 17, 100646. [Google Scholar] [CrossRef]
- Courtioux, B. Le concept One Health, un changement de paradigme. Actual. Pharm. 2024, 63, 40–43. [Google Scholar] [CrossRef]
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS). Informe del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN) 2022–2023; Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN): Madrid, Spain, 2023; Available online: https://resistenciaantibioticos.es/sites/default/files/2025-01/Informe%20anual%20PRAN%202022-2023.pdf (accessed on 29 April 2025).
- Serrano, M.J.; Elorduy, J.; Zabaleta, I.; Istamboulie, G.; González-Fandos, E.; Bousquet-Mélou, A.; Mata, L.; Aymard, C.; Martínez-Laorden, A.; Da Silva-Guedes, J.; et al. Antimicrobial residue assessment in 5357 commercialized meat samples from the Spain-France cross-border area: A new approach for effective monitoring. Food Control 2022, 138, 109033. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Informe del Consumo de Alimentación en España 2019; MAPA: Madrid, Spain, 2019. [Google Scholar]
- Martínez-Laorden, A.; Arraiz-Fernández, C.; González-Fandos, E. Microbiological quality and safety of fresh turkey meat at retail level, including the presence of ESBL-producing Enterobacteriaceae and methicillin-resistant S. aureus. Foods 2023, 12, 1274. [Google Scholar] [CrossRef]
- Martinez-Laorden, A.; Arraiz-Fernandez, C.; Gonzalez-Fandos, E. Microbiological quality and safety of fresh quail meat at the retail level. Microorganisms 2023, 11, 2213. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Document M 100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Ekonomou, S.I.; Leech, D.J.; Lightfoot, S.; Huson, D.; Stratakos, A.C. Development of novel antimicrobial coatings incorporating linalool and eugenol to improve the microbiological quality and safety of raw chicken. Lebenson Wiss. Technol. 2023, 182, 114839. [Google Scholar] [CrossRef]
- Alessandroni, L.; Caprioli, G.; Faiella, F.; Fiorini, D.; Galli, R.; Huang, X.; Marinelli, G. A shelf-life study for the evaluation of a new biopackaging to preserve the quality of organic chicken meat. Food Chem. 2022, 371, 131134. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, X.; Lu, A.; Yang, X.; Yu, J.; Qu, J. Effect of 60Co-γ-irradiation on the degradation of β-agonists residues and the quality of fresh pork during refrigeration. Food Control 2024, 160, 110362. [Google Scholar] [CrossRef]
- Beltrán-Cotta, L.A.; Passos, R.S.F.T.; Costa, N.P.; Barreto, B.G.; Veloso, A.C.; da Silva, M.C.A.; Costa, M. Use of yellow mombin (Spondias mombin L.) in marination: Effect on quality properties of Boston butt pork during refrigerated storage. Meat Sci. 2023, 204, 109257. [Google Scholar] [CrossRef]
- Duranton, F.; Guillou, S.; Simonin, H.; Chéret, R.; de Lamballerie, M. Combined use of high pressure and salt or sodium nitrite to control the growth of endogenous microflora in raw pork meat. Innov. Food Sci. Emerg. Technol. 2012, 16, 373–380. [Google Scholar] [CrossRef]
- Rodrigues, D.; Flores, D.R.M.; da Silva, J.S.; Genro, A.L.G.; Silva, M.S.; Klein, B.; Mello, E. Application of electrolyzed water for improving pork meat quality. Food Res. Int. 2017, 100 Pt 1, 757–763. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Koo, J.; Kim, B.S.; Kim, J.H.; Kim, J.Y. Freshness-based real-time shelf-life estimation of packaged chicken meat under dynamic storage conditions. Poult. Sci. 2019, 98, 6921–6930. [Google Scholar] [CrossRef]
- Zhou, Z.; Ren, F.; Huang, Q.; Cheng, H.; Cun, Y.; Ni, Y.; Wu, W. Characterization and interactions of spoilage of Pseudomonas fragi C6 and Brochothrix thermosphacta S5 in chilled pork based on LC-MS/MS and screening of potential spoilage biomarkers. Food Chem. 2024, 444, 138562. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Panagou, E.Z.; Tassou, C.C.; Nychas, G.-J.E. Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage. Food Res. Int. 2011, 44, 3264–3271. [Google Scholar] [CrossRef]
- Tang, Y.-F.; Lin, Y.-S.; Su, L.-H.; Liu, J.-W. Increasing trend of healthcare-associated infections due to vancomycin-resistant Enterococcus faecium (VRE-fm) paralleling escalating community-acquired VRE-fm infections in a medical center implementing strict contact precautions: An epidemiologic and pathogenic genotype analysis and its implications. J. Microbiol. Immunol. Infect. 2023, 56, 1045–1053. [Google Scholar] [CrossRef]
- Kulawik, P.; Jamróz, E.; Tkaczewska, J.; Vlčko, T.; Zając, M.; Guzik, P.; Janik, M. pplication of antimicrobial chitosan-Furcellaran-hydrolysate gelatin edible coatings enriched with bioactive peptides in shelf-life extension of pork loin stored at 4 and −20 °C. Int. J. Biol. Macromol. 2024, 254 Pt 2, 127865. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, W.; Mao, Y.; Zhang, Y.; Li, K.; Luo, X.; Yang, X. Effects of CO2 on the physicochemical, microbial, and sensory properties of pork patties packaged under optimized O2 levels. Meat Sci. 2024, 209, 109422. [Google Scholar] [CrossRef]
- Stellato, G.; Utter, D.R.; Voorhis, A.; De Angelis, M.; Eren, A.M.; Ercolini, D. A few Pseudomonas oligotypes dominate in the meat and dairy processing environment. Front. Microbiol. 2017, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Liu, S.; Wang, H.; Shao, L.; Chen, S.; Xu, X.; Wang, H. Investigating meat-borne bacterial profiles related to biofilm formation: An in situ and in vitro assessment. Food Control 2024, 157, 110175. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Houf, K.; Joossens, M.; Yu, Z.; Proroga, Y.T.R.; Murru, N. Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. Int. J. Food Microbiol. 2021, 336, 108902. [Google Scholar] [CrossRef]
- Dorn-In, S.; Mang, S.; Cosentino, R.O.; Schwaiger, K. Changes in the Microbiota from fresh to spoiled meat, determined by culture and 16S rRNA analysis. J. Food Prot. 2024, 87, 100212. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, C.M.; Nespoli, L.; Bellesia, T.; Ghaani, M.; Farris, S.; Romano, D. Fabrication of double layer nanoparticle infused starch-based thermoplastic food packaging system for meat preservation. Int. J. Biol. Macromol. 2024, 254 Pt 1, 127689. [Google Scholar] [CrossRef] [PubMed]
- Magqupu, S.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Strydom, P.E.; Mapiye, C. Quality and safety of pork sold in the informal urban street markets of the Cape Metropole, South Africa. Meat Sci. 2023, 204, 109270. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Y.; Ren, H.-L.; Xiao, Y.-R.; Wang, C.; Chang, J.; Wuong, Y. A lateral flow immunochromatographic strip based on RPA and quantum dot nanobeads for rapid identification of pathogenic Yersinia enterocolitica. Lebenson Wiss. Technol. 2023, 187, 115271. [Google Scholar] [CrossRef]
- Quiñonez, E.I.; Vázquez-Salinas, C.; Rodas-Suárez, O.R.; Pedroche, F.F. Isolation of Yersinia from raw meat (pork and chicken) and precooked meat (porcine tongues and sausages) collected from commercial establishments in Mexico City. J. Food Prot. 2000, 63, 542–544. [Google Scholar] [CrossRef]
- Bonardi, S.; Paris, A.; Bassi, L.; Salmi, F.; Bacci, C.; Riboldi, E.; Boni, E. Detection, semiquantitative enumeration, and antimicrobial susceptibility of Yersinia enterocolitica in pork and chicken meats in Italy. J. Food Prot. 2010, 73, 1785–1792. [Google Scholar] [CrossRef]
- Gao, H.; Lei, Z.; Jia, J.; Wang, S.; Chen, Y.; Sun, M.; Kiang, C. Application of loop-mediated isothermal amplification for detection of Yersinia enterocolitica in pork meat. J. Microbiol. Methods 2009, 77, 198–201. [Google Scholar] [CrossRef]
- Bouvet, J.; Bavai, C.; Rossel, R.; Le Roux, A.; Montet, M.P.; Ray-Gueniot, S.; Mazui, B. Effects of cutting process on pork meat contamination by verotoxin-producing Escherichia coli (VTEC) and E. coli O157:H7. Int. J. Food Microbiol. 2002, 77, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, K.; Huther, S.; Hölzel, C.; Kämpf, P.; Bauer, J. Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int. J. Food Microbiol. 2012, 154, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Rega, M.; Andriani, L.; Poeta, A.; Casadio, C.; Diegoli, G.; Bonardi, S.; Conter, M. Transmission of β-lactamases in the pork food chain: A public health concern. One Health 2023, 17, 100632. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, M.; Bi, Y.; Liu, W.J.; Ma, S.; Wan, B.; Hu, Y. The multi-kingdom microbiome catalog of the chicken gastrointestinal tract. Biosaf. Health 2024, 6, 101–115. [Google Scholar] [CrossRef]
- Meng, D.-M.; Sun, S.-N.; Shi, L.-Y.; Cheng, L.; Fan, Z.-C. Application of antimicrobial peptide mytichitin-CB in pork preservation during cold storage. Food Control 2021, 125, 108041. [Google Scholar] [CrossRef]
- Kim, Y.; Ban, G.-H.; Hong, Y.W.; Jeong, K.C.; Bae, D.; Kim, S.A. Bacterial profile of pork from production to retail based on high-throughput sequencing. Food Res. Int. 2024, 176, 113745. [Google Scholar] [CrossRef]
- Pletinckx, L.J.; Verhegghe, M.; Dewulf, J.; Crombé, F.; De Bleecker, Y.; Rasschaert, G.; Goddeeris, B.M.; Manm, I. Screening of poultry-pig farms for methicillin-resistant Staphylococcus aureus: Sampling methodology and within herd prevalence in broiler flocks and pigs. Infect. Genet. Evol. 2011, 11, 2133–2137. [Google Scholar] [CrossRef]
- Plan Nacional frente a la Resistencia a los Antibióticos (PRAN). Categorización de Antibióticos; PRAN: Madrid, Spain, 2023; Available online: https://resistenciaantibioticos.es/es/lineas-de-accion/vigilancia/antibioticos-criticos (accessed on 22 April 2025).
- Lee, G.Y.; Lee, H.H.; Yang, S.-J. Antimicrobial resistance profiles and clonal diversity of Staphylococcus epidermidis isolates from pig farms, slaughterhouses, and retail pork. Vet. Microbiol. 2023, 282, 109753. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Heidemann Olsen, R.; Ye, L.; Yan, H.; Nie, Q.; Meng, H.; Shi, L. Antimicrobial resistance and resistance genes in aerobic bacteria isolated from pork at slaughter. J. Food Prot. 2016, 79, 589–597. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, Y.; Li, S.; Jia, Y.; Ma, A. Analysis of contamination with drug-resistant bacteria among three types of commercially available pork in Beijing and Shanxi, China. Lebenson Wiss. Technol. 2023, 187, 115272. [Google Scholar] [CrossRef]
- Mazhar, S.; Hill, C.; McAuliffe, O. The genus Macrococcus: An insight into its biology, evolution, and relationship with Staphylococcus. Adv. Appl. Microbiol. 2018, 105, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.E.; Schwendener, S.; Neuenschwander, J.; Overesch, G.; Perreten, V. Prevalence and characterization of methicillin-resistant Macrococcus spp. in food producing animals and meat in Switzerland in 2019. Schweiz. Arch. Für Tierheilkd. 2021, 164, 153–164. [Google Scholar] [CrossRef]
- Snyder, H.L.; Niebuhr, S.E.; Dickson, J.S. Transfer of methicillin-resistant Staphylococcus aureus from retail pork products onto food contact surfaces and the potential for consumer exposure. J. Food Prot. 2013, 76, 2087–2092. [Google Scholar] [CrossRef] [PubMed]
- Schoen, M.E.; Peckham, T.K.; Shirai, J.H.; Kissel, J.C.; Thapaliya, D.; Smith, T.C.; Scott, J. Risk of nasal colonization of methicillin-resistant Staphylococcus aureus during preparation of contaminated retail pork meat. Microb. Risk Anal. 2020, 16, 100136. [Google Scholar] [CrossRef]
Microbial Group | N 1 Counts < 1 log CFU/g | N Counts > 1 Log CFU/g | Minimum Value (log CFU/g) | Maximum Value (log CFU/g) | Mean ± Standard Deviation |
---|---|---|---|---|---|
Mesophiles | 0 | 39 | 2.00 | 7.45 | 4.93 ± 1.37 |
Pseudomonas | 19 | 20 | 2.00 | 6.15 | 3.89 ± 1.17 |
Enterobacteriaceae | 25 | 14 | 1.60 | 4.49 | 3.46 ± 0.86 |
Staphylococci | 24 | 15 | 1.30 | 3.92 | 2.16 ± 0.74 |
Microbial Group (N 1; Percentage) | Specie | Number of Strains | Percentage (%) |
---|---|---|---|
Pseudomonas spp. (25; 22.12%) | Pseudomonas extremorientalis | 1 | 0.88 |
Pseudomonas fragi | 14 | 12.39 | |
Pseudomonas libanensis | 1 | 0.88 | |
Pseudomonas lundensis | 9 | 7.96 | |
Micrococcaceae (14; 12.39%) | Kocuria palustris | 1 | 0.88 |
Kocuria rhizophila | 6 | 5.31 | |
Kocuria salsicia | 4 | 3.54 | |
Macrococcus caseolyticus | 1 | 0.88 | |
Staphylococcus warneri | 2 | 1.77 | |
BAL (22; 19.47%) | Carnobacterium divergens | 16 | 14.16 |
Carnobacterium maltaromaticum | 3 | 2.65 | |
Lactobacillus sp. | 2 | 1.77 | |
Lactococcus lactis | 1 | 0.88 | |
Enterobacteriacecae (10; 8.85%) | Citrobacter braakii | 1 | 0.88 |
Hafnia alvei | 3 | 2.65 | |
Rahnella inusitata | 4 | 3.54 | |
Serratia proteamaculans | 2 | 1.77 | |
Brochothrix thermosphacta (30; 26.55%) | Brochothrix thermosphacta | 30 | 26.55 |
Other Gram-negative bacteria (9; 7.96%) | Acinetobacter guillouiae | 2 | 1.77 |
Acinetobacter harbinensis | 4 | 3.54 | |
Acinetobacter lactucae | 1 | 0.88 | |
Stenotrophomonas rhizophila | 1 | 0.88 | |
Moraxella osloensis | 1 | 0.88 | |
Other Gram-positive bacteria (3; 2.65%) | Dermacoccus nishinomiyaensis | 3 | 2.65 |
Media (N 1) | Species | Number of Strains | Percentage (%) |
---|---|---|---|
Chromogenic Pseudomonas Agar (78) | Pseudomonas antarctica | 7 | 8.97 |
Pseudomonas azotoformans | 8 | 10.26 | |
Pseudomonas extremorientalis | 5 | 6.41 | |
Pseudomonas fluorescens | 11 | 14.10 | |
Pseudomonas fragi | 2 | 2.56 | |
Pseudomonas libanensis | 32 | 41.03 | |
Pseudomonas marginalis | 2 | 2.56 | |
Pseudomonas poae | 1 | 1.28 | |
Pseudomonas rhodesiae | 1 | 1.28 | |
Pseudomonas synxantha | 3 | 3.85 | |
Pseudomonas tolaasii | 1 | 1.28 | |
Pseudomonas trivialis | 1 | 1.28 | |
Pseudomonas veronii | 4 | 5.13 | |
MacConkey Agar (65) | Buttiauxella gaviniae | 3 | 4.62 |
Buttiauxella warmboldiae | 5 | 7.69 | |
Ewingella americana | 5 | 7.69 | |
Hafnia alvei | 9 | 13.85 | |
Klebsiella oxytoca | 3 | 4.62 | |
Pantoea agglomerans | 3 | 4.62 | |
Rahnella aquatilis | 13 | 20.00 | |
Serratia grimesii | 2 | 3.08 | |
Serratia liquefaciens | 21 | 32.31 | |
Yersinia enterocolitica | 1 | 1.54 | |
Mannitol Salt Agar (49) | Kocuria uropygioeca | 1 | 2.04 |
Macrococcus caseolyticus | 6 | 12.24 | |
Mammaliicoccus fleurettii | 1 | 2.04 | |
Mammaliicoccus sciuri | 4 | 8.16 | |
Mammaliicoccus vitulinus | 3 | 6.12 | |
Staphylococcus epidermidis | 2 | 4.08 | |
Staphylococcus equorum | 5 | 10.20 | |
Staphylococcus saprophyticus | 19 | 38.78 | |
Staphylococcus succinus | 2 | 4.08 | |
Staphylococcus warneri | 6 | 12.24 |
Identification | Phenotypic Pattern of Resistance 1 | Multirresist 2 | MR 3 |
---|---|---|---|
Staphylococcus aureus | AK-S-K-TOB-FOX-CMN-MY-PNG-P-SUZ-MH-TE-FAD-PUM C | Yes (8) 5 | Yes |
Staphylococcus epidermidis | TOB-ERY-P-SUZ-DO-TE B | Yes (5) | No |
- 4B | No | No | |
Staphylococcus equorum | ERY-W B | No | No |
MY-ERY B | No | No | |
- B | No | No | |
Staphylococcus saprophyticus | ERY-FAD B | No | No |
PNG-P-DO-TE B | No | No | |
- B | No | No | |
- B | No | No | |
- B | No | No | |
DO-TE B | No | No | |
Staphylococcus succinus | - B | No | No |
- B | No | No | |
Staphylococcus warneri | S-TOB-FOX-P-SUZ-FAD-PUM B | Yes (6) | Yes |
ERY A | No | No | |
MY-P B | No | No | |
ERY A | No | No | |
Mammaliicoccus fleurettii | MY B | No | No |
Mammaliicoccus sciuri | MY-FAD B | No | No |
FOX-MY-P-PUM B | Yes (4) 5 | Yes | |
Mammaliicoccus vitulinus | - B | No | No |
MY B | No | No | |
Macrococcus caseolyticus | CMN-MY-ERY-TE B | Yes (3) 4 | No |
MY-ERY B | No | No | |
MY-ERY A | No | No | |
AK-FOX-CPT-MY-P-PUM B | Yes (5) | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Laorden, A.; Arraiz-Fernandez, C.; Ibañez-Torija, G.; Gonzalez-Fandos, E. Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci. Vet. Sci. 2025, 12, 568. https://doi.org/10.3390/vetsci12060568
Martinez-Laorden A, Arraiz-Fernandez C, Ibañez-Torija G, Gonzalez-Fandos E. Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci. Veterinary Sciences. 2025; 12(6):568. https://doi.org/10.3390/vetsci12060568
Chicago/Turabian StyleMartinez-Laorden, Alba, Celia Arraiz-Fernandez, Gonzalo Ibañez-Torija, and Elena Gonzalez-Fandos. 2025. "Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci" Veterinary Sciences 12, no. 6: 568. https://doi.org/10.3390/vetsci12060568
APA StyleMartinez-Laorden, A., Arraiz-Fernandez, C., Ibañez-Torija, G., & Gonzalez-Fandos, E. (2025). Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci. Veterinary Sciences, 12(6), 568. https://doi.org/10.3390/vetsci12060568