Use of a Novel Real-Time PCR to Investigate Anthelmintic Efficacy Against Haemonchus contortus in Sheep and Goat Farms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Real-Time PCR Development
2.1.1. Primer and Probe Design
2.1.2. Specificity of the Method
2.1.3. Sensitivity of the Real-Time PCR Method
2.1.4. Real-Time PCR Conditions
2.2. Faecal Egg Count Reduction Tests
2.2.1. Study Design
- Avermectines (AVMs):
- Tolomec® (ivermectin)—solution for subcutaneous injection, FATRO S.p.A., Ozzano dell’Emilia, Italy (farms S7, S8 and S11);
- Ecomectin® (ivermectin)—solution for subcutaneous injection, ECO Animal Health Europe Limited, London, United Kingdom (farm S9);
- Oramec® (ivermectin)—oral suspension, Boehringer Ingelheim Animal Health Italia S.p.A., Milano, Italy (farm G7);
- Eprinex Multi® (eprinomectin)—pour-on, Boehringer Ingelheim Animal Health Italia S.p.A., Milano, Italy (farms G8 and G9).
- Benzimidazoles (BZs):
- Panacur 2.5%® (fenbendazole)—oral suspension, MSD Italia, Roma, Italy (farms G10 and S10).
- Imidazothiazoles (LEVs)
- Toloxan® (levamisole)—oral suspension, FATRO S.p.A., Ozzano dell’Emilia, Italy (farm G11).
2.2.2. Laboratory Analysis
2.2.3. Data Analysis
- Resistant (R) when the upper limit of the 90% CI (CIU) < 95%;
- Low resistance (LR, a sub-category of the previous) when CIU < 95% and the lower limit of the 90% CI (CIL) ≥ 90%;
- Inconclusive (INC) when CIU ≥ 95% and CIL < 90%;
- Susceptible (S) when CIU ≥ 95% and CIL ≥ 90%.
3. Results
3.1. Real-Time PCR Development
3.2. Real-Time PCR on Field Samples
3.3. Faecal Egg Count Reduction Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial Assessment of the Economic Burden of Major Parasitic Helminth Infections to the Ruminant Livestock Industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Advances in the Diagnosis of Key Gastrointestinal Nematode Infections of Livestock, with an Emphasis on Small Ruminants. Biotechnol. Adv. 2013, 31, 1135–1152. [Google Scholar] [CrossRef]
- Von Samson-Himmelstjerna, G.; Harder, A.; Schnieder, T. Quantitative Analysis of ITS2 Sequences in Trichostrongyle Parasites. Int. J. Parasitol. 2002, 32, 1529–1535. [Google Scholar] [CrossRef]
- Bott, N.J.; Campbell, B.E.; Beveridge, I.; Chilton, N.B.; Rees, D.; Hunt, P.W.; Gasser, R.B. A Combined Microscopic-Molecular Method for the Diagnosis of Strongylid Infections in Sheep. Int. J. Parasitol. 2009, 39, 1277–1287. [Google Scholar] [CrossRef]
- Sweeny, J.P.A.; Ryan, U.M.; Robertson, I.D.; Niemeyer, D.; Hunt, P.W. Development of a Modified Molecular Diagnostic Procedure for the Identification and Quantification of Naturally Occurring Strongylid Larvae on Pastures. Vet. Parasitol. 2012, 190, 467–481. [Google Scholar] [CrossRef]
- Learmount, J.; Conyers, C.; Hird, H.; Morgan, C.; Craig, B.H.; von Samson-Himmelstjerna, G.; Taylor, M. Development and Validation of Real-Time PCR Methods for Diagnosis of Teladorsagia Circumcincta and Haemonchus Contortus in Sheep. Vet. Parasitol. 2009, 166, 268–274. [Google Scholar] [CrossRef]
- Roeber, F.; Larsen, J.W.A.; Anderson, N.; Campbell, A.J.D.; Anderson, G.A.; Gasser, R.B.; Jex, A.R. A Molecular Diagnostic Tool to Replace Larval Culture in Conventional Faecal Egg Count Reduction Testing in Sheep. PLoS ONE 2012, 7, e37327. [Google Scholar] [CrossRef]
- Höglund, J.; Engström, A.; von Samson-Himmelstjerna, G.; Demeler, J.; Tydén, E. Real-Time PCR Detection for Quantification of Infection Levels with Ostertagia Ostertagi and Cooperia Oncophora in Cattle Faeces. Vet. Parasitol. 2013, 197, 251–257. [Google Scholar] [CrossRef]
- McNally, J.; Callan, D.; Andronicos, N.; Bott, N.; Hunt, P.W. DNA-Based Methodology for the Quantification of Gastrointestinal Nematode Eggs in Sheep Faeces. Vet. Parasitol. 2013, 198, 325–335. [Google Scholar] [CrossRef]
- Reslova, N.; Skorpikova, L.; Kyrianova, I.A.; Vadlejch, J.; Höglund, J.; Skuce, P.; Kasny, M. The Identification and Semi-Quantitative Assessment of Gastrointestinal Nematodes in Faecal Samples Using Multiplex Real-Time PCR Assays. Parasites Vectors 2021, 14, 391. [Google Scholar] [CrossRef]
- Melville, L.; Kenyon, F.; Javed, S.; McElarney, I.; Demeler, J.; Skuce, P. Development of a Loop-Mediated Isothermal Amplification (LAMP) Assay for the Sensitive Detection of Haemonchus Contortus Eggs in Ovine Faecal Samples. Vet. Parasitol. 2014, 206, 308–312. [Google Scholar] [CrossRef]
- Rashwan, N.; Diawara, A.; Scott, M.E.; Prichard, R.K. Isothermal Diagnostic Assays for the Detection of Soil-Transmitted Helminths Based on the SmartAmp2 Method. Parasites Vectors 2017, 10, 496. [Google Scholar] [CrossRef]
- Elmahalawy, S.T.; Halvarsson, P.; Skarin, M.; Höglund, J. Droplet Digital Polymerase Chain Reaction (DdPCR) as a Novel Method for Absolute Quantification of Major Gastrointestinal Nematodes in Sheep. Vet. Parasitol. 2018, 261, 1–8. [Google Scholar] [CrossRef]
- Avramenko, R.W.; Redman, E.M.; Lewis, R.; Yazwinski, T.A.; Wasmuth, J.D.; Gilleard, J.S. Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLoS ONE 2015, 10, e0143559. [Google Scholar] [CrossRef]
- Maurizio, A.; Stancampiano, L.; Tessarin, C.; Pertile, A.; Pedrini, G.; Asti, C.; Terfa, W.; Frangipane Di Regalbono, A.; Cassini, R. Survey on Endoparasites of Dairy Goats in North-Eastern Italy Using a Farm-Tailored Monitoring Approach. Vet. Sci. 2021, 8, 69. [Google Scholar] [CrossRef]
- Lambertz, C.; Poulopoulou, I.; Wuthijaree, K.; Gauly, M. Anthelmintic Resistance in Gastrointestinal Nematodes in Sheep Raised under Mountain Farming Conditions in Northern Italy. BMC Vet. Res. 2019, 6, e000332. [Google Scholar] [CrossRef]
- Maurizio, A.; Dotto, G.; Fasoli, A.; Gaio, F.; Petratti, S.; Pertile, A.; Tessarin, C.; Marchiori, E.; Dellamaria, D.; Vadlejch, J.; et al. Treatment Ineffectiveness towards Haemonchus Contortus Is Highly Prevalent in Sheep and Goat Farms of North-Eastern Italy. BMC Vet. Res. 2024, 20, 498. [Google Scholar] [CrossRef]
- Kotze, A.C.; Prichard, R.K. Anthelmintic Resistance in Haemonchus Contortus. History, Mechanisms and Diagnosis; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 93, ISBN 9780128103951. [Google Scholar]
- Sinkovic, M.; Beraldo, P.; Pascotto, E.; Cassini, R. Survey on Roe Deer Abomasal Helminth Fauna in a Game Reserve of Croatia. In Proceedings of the IX Congresso Italiano di Teriologia, Civitella Alfedena, 7–10 Maggio 2014; Hystrix, the Italian Journal of Mammalogy; Imperio, S., Mazzaracca, S., Preatoni, D.G., Eds.; Associazione Teriologica Italiana: Roma, Italy, 2014; Volume 25, p. 136. [Google Scholar]
- Gibbons, L.M.; Khalil, L.F. A Key for the Identification of Genera of the Nematode Family Trichostrongylidae Leiper, 1912. J. Helminthol. 1982, 56, 185–233. [Google Scholar] [CrossRef]
- Maurizio, A.; Škorpíková, L.; Ilgová, J.; Tessarin, C.; Dotto, G.; Reslová, N.; Vadlejch, J.; Marchiori, E.; di Regalbono, A.F.; Kašný, M.; et al. Faecal Egg Count Reduction Test in Goats: Zooming in on the Genus Level. Vet. Parasitol. 2024, 327, 110146. [Google Scholar] [CrossRef]
- Wang, C.R.; Gao, J.F.; Zhu, X.Q.; Zhao, Q. Characterization of Bunostomum Trigonocephalum and Bunostomum Phlebotomum from Sheep and Cattle by Internal Transcribed Spacers of Nuclear Ribosomal DNA. Res. Vet. Sci. 2012, 92, 99–102. [Google Scholar] [CrossRef]
- Kaplan, R.; Denwood, M.; Nielsen, M.; Thamsborg, S.; Torgerson, P.; Gilleard, J.; Dobson, R.; Vercruysse, J.; Levecke, B. A New World Association for the Advancement of Veterinary Parasitology (WAAVP) Guideline for Diagnosing Anthelmintic Resistance Using the Faecal Egg Count Reduction Test (FECRT). Vet. Parasitol. 2023, 318, 109936. [Google Scholar] [CrossRef]
- Cringoli, G.; Maurelli, M.P.; Levecke, B.; Bosco, A.; Vercruysse, J.; Utzinger, J.; Rinaldi, L. The Mini-FLOTAC Technique for the Diagnosis of Helminth and Protozoan Infections in Humans and Animals. Nat. Protoc. 2017, 12, 1723–1732. [Google Scholar] [CrossRef]
- Bull, K.; Glover, M.J.; Rose Vineer, H.; Morgan, E.R. Increasing Resistance to Multiple Anthelmintic Classes in Gastrointestinal Nematodes on Sheep Farms in Southwest England. Vet. Rec. 2022, 190, e1531. [Google Scholar] [CrossRef]
- Dobson, R.J.; Hosking, B.C.; Jacobson, C.L.; Cotter, J.L.; Besier, R.B.; Stein, P.A.; Reid, S.A. Preserving New Anthelmintics: A Simple Method for Estimating Faecal Egg Count Reduction Test (FECRT) Confidence Limits When Efficacy and/or Nematode Aggregation Is High. Vet. Parasitol. 2012, 186, 79–92. [Google Scholar] [CrossRef]
- Denwood, M.J.; Kaplan, R.M.; McKendrick, I.J.; Thamsborg, S.M.; Nielsen, M.K.; Levecke, B. A Statistical Framework for Calculating Prospective Sample Sizes and Classifying Efficacy Results for Faecal Egg Count Reduction Tests in Ruminants, Horses and Swine. Vet. Parasitol. 2023, 314, 109867. [Google Scholar] [CrossRef]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Methods for the Detection of Anthelmintic Resistance in Nematodes of Veterinary Importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The Pathophysiology, Ecology and Epidemiology of Haemonchus Contortus Infection in Small Ruminants; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 93, ISBN 9780128103951. [Google Scholar]
- O’Connor, L.J.; Walkden-Brown, S.W.; Kahn, L.P. Ecology of the Free-Living Stages of Major Trichostrongylid Parasites of Sheep. Vet. Parasitol. 2006, 142, 1–15. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Campbell, A.J.D.; Nielsen, R.; Anderson, G.A.; Stanley, K.K.; Gasser, R.B. Establishment of a Robotic, High-Throughput Platform for the Specific Diagnosis of Gastrointestinal Nematode Infections in Sheep. Int. J. Parasitol. 2012, 42, 1151–1158. [Google Scholar] [CrossRef]
- Jurasek, M.E.; Bishop-Stewart, J.K.; Storey, B.E.; Kaplan, R.M.; Kent, M.L. Modification and Further Evaluation of a Fluorescein-Labeled Peanut Agglutinin Test for Identification of Haemonchus Contortus Eggs. Vet. Parasitol. 2010, 169, 209–213. [Google Scholar] [CrossRef]
- Umair, S.; McMurtry, L.W.; Knight, J.S.; Simpson, H.V. Use of Fluorescent Lectin Binding to Distinguish Eggs of Gastrointestinal Nematode Parasites of Sheep. Vet. Parasitol. 2016, 217, 76–80. [Google Scholar] [CrossRef]
- Ljungström, S.; Melville, L.; Skuce, P.J.; Höglund, J. Comparison of Four Diagnostic Methods for Detection and Relative Quantification of Haemonchus Contortus Eggs in Feces Samples. Front. Vet. Sci. 2018, 4, 239. [Google Scholar] [CrossRef]
- Zarlenga, D.S.; Hoberg, E.P.; Tuo, W. The Identification of Haemonchus Species and Diagnosis of Haemonchosis. Adv. Parasitol. 2016, 93, 145–180. [Google Scholar] [CrossRef]
- Harmon, A.F.; Williams, Z.B.; Zarlenga, D.S.; Hildreth, M.B. Real-Time PCR for Quantifying Haemonchus Contortus Eggs and Potential Limiting Factors. Parasitol. Res. 2007, 101, 71–76. [Google Scholar] [CrossRef]
- Zanzani, S.A.; Gazzonis, A.L.; Di Cerbo, A.; Varady, M.; Manfredi, M.T. Gastrointestinal Nematodes of Dairy Goats, Anthelmintic Resistance and Practices of Parasite Control in Northern Italy. BMC Vet. Res. 2014, 10, 114. [Google Scholar] [CrossRef]
- Morgan, E.R.; Lanusse, C.; Rinaldi, L.; Charlier, J.; Vercruysse, J. Confounding Factors Affecting Faecal Egg Count Reduction as a Measure of Anthelmintic Efficacy. Parasite 2022, 29, 20. [Google Scholar] [CrossRef]
- Lamanna, M.; Muca, E.; Buonaiuto, G.; Formigoni, A.; Cavallini, D. From Posts to Practice: Instagram’s Role in Veterinary Dairy Cow Nutrition Education—How Does the Audience Interact and Apply Knowledge? A Survey Study. J. Dairy Sci. 2025, 108, 1659–1671. [Google Scholar] [CrossRef]
Primer/Probe | Sequence (5′-3′) | Length of Amplicon |
---|---|---|
GEN | 140 bp | |
Forward | 5′-ATGGATCGGTTCGATTCGCGT-3′ | |
Reverse | 5′-ACAACCCTGAACCAGACGTG-3′ | |
Probe | 5′-(FAM) CGCATAGCGCCGTTGGGTTT (BHQ1)-3′ | |
HAEM | 194 bp | |
Forward | 5′-GGGCTAATTTCAACATTGTTGGT-3′ | |
Reverse | 5′-ACATCGTCGCTATACATGTCAC-3′ | |
Probe | 5′-(FAM) ACATGCAACGTGATGTTATGA (BHQ1)-3′ |
Trial ID | Time | GEN Estimated Quantity (Mean) | HAEM Estimated Quantity (Mean) | Percentage H. contortus (%) |
---|---|---|---|---|
G7 | D0 | 3132.0 | 1660.5 | 53.0 |
D14 | 1177.5 | 728.5 | 61.9 | |
G8 | D0 | 450.5 | 206.5 | 45.8 |
D14 | 142.0 | 64.5 | 45.4 | |
G9 | D0 | 1809.5 | 2171.0 | 120.0 * |
D14 | 1659.0 | 897.5 | 54.1 | |
G10 | D0 | 415.5 | 50.5 | 12.2 |
D14 | 207.0 | 126.0 | 60.9 | |
G11 | D0 | 9.0 | 0.2 | 2.2 |
S7 | D0 | 322.5 | 79.0 | 24.5 |
D14 | 44.5 | 17.5 | 39.3 | |
S8 | D0 | 2905.5 | 197.0 | 6.8 |
D14 | 2876.0 | 1017.0 | 35.4 | |
S9 | D0 | 289.5 | 86.5 | 29.9 |
D14 | 195.0 | 100.0 | 51.3 | |
S10 | D0 | 503.5 | 261.0 | 51.8 |
D14 | 1.5 | 2.5 | 161.3 * | |
S11 | D0 | 402.0 | 0.4 | 0.1 |
D14 | 7.5 | 0.2 | 2.0 |
ID | Drug | Class | Admin. Route | FEC | FECR (%) | 90% CI | Efficacy | |||
---|---|---|---|---|---|---|---|---|---|---|
Genus | D0 | D14 | ||||||||
Goat | G7 | Ivermectin a | ML | PO | Overall strongylids | 5131 | 610 | 88.1 | 87.3–88.8 | R |
H. contortus | 2744 | 379 | 86.2 | 85.1–87.2 | R | |||||
G8 | Eprinomectin b | ML | Pour-on | Overall strongylids | 741 | 539 | 27.3 | 24.7–30.0 | R | |
H. contortus | 341 | 242 | 28.9 | 25.0–33.1 | R | |||||
G9 | Eprinomectin b | ML | Pour-on | Overall strongylids | 8027 | 4205 | 47.6 | 46.7–48.5 | R | |
H. contortus | 8027 | 2285 | 71.5 | 70.7–72.4 | R | |||||
G10 | Fenbendazole c | BZ | PO | Overall strongylids | 1710 | 354 | 79.3 | 77.6–80.9 | R | |
H. contortus | 223 | 213 | 4.4 | 2.7–7.3 | R | |||||
G11 | Levamisole d | IT | PO | Overall strongylids | 2818 | 42 | 98.5 | 98.1–98.8 | S | |
H. contortus | 62 | n.a. | n.c. | n.c. | n.a. | |||||
Sheep | S7 | Ivermectin e | ML | SC | Overall strongylids | 2389 | 2506 | −4.9 | n.c. | R |
H. contortus | 594 | 957 | −61.2 | n.c. | R | |||||
S8 | Ivermectin e | ML | SC | Overall strongylids | 8705 | 4773 | 45.2 | 44.3–46.0 | R | |
H. contortus | 566 | 1712 | −202.5 | n.c. | R | |||||
S9 | Ivermectin f | ML | SC | Overall strongylids | 235 | 42 | 82.1 | 77.6–85.8 | R | |
Haemonchus | 69 | 22 | 68.3 | 58.5–76.5 | R | |||||
S10 | Fenbendazole c | BZ | PO | Overall strongylids | 2627 | 0 | 100 | 99.9–100 | S | |
H. contortus | 1359 | 0 | 100 | 99.8–100 | S | |||||
S11 | Ivermectin e | ML | SC | Overall strongylids | 2827 | 55 | 98.1 | 97.6–98.4 | S | |
H. contortus | 2.3 | 0.7 | 68.0 | 22.1–91.6 | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurizio, A.; Dotto, G.; Tessarin, C.; Beraldo, P.; Franzo, G.; Cassini, R. Use of a Novel Real-Time PCR to Investigate Anthelmintic Efficacy Against Haemonchus contortus in Sheep and Goat Farms. Vet. Sci. 2025, 12, 569. https://doi.org/10.3390/vetsci12060569
Maurizio A, Dotto G, Tessarin C, Beraldo P, Franzo G, Cassini R. Use of a Novel Real-Time PCR to Investigate Anthelmintic Efficacy Against Haemonchus contortus in Sheep and Goat Farms. Veterinary Sciences. 2025; 12(6):569. https://doi.org/10.3390/vetsci12060569
Chicago/Turabian StyleMaurizio, Anna, Giorgia Dotto, Cinzia Tessarin, Paola Beraldo, Giovanni Franzo, and Rudi Cassini. 2025. "Use of a Novel Real-Time PCR to Investigate Anthelmintic Efficacy Against Haemonchus contortus in Sheep and Goat Farms" Veterinary Sciences 12, no. 6: 569. https://doi.org/10.3390/vetsci12060569
APA StyleMaurizio, A., Dotto, G., Tessarin, C., Beraldo, P., Franzo, G., & Cassini, R. (2025). Use of a Novel Real-Time PCR to Investigate Anthelmintic Efficacy Against Haemonchus contortus in Sheep and Goat Farms. Veterinary Sciences, 12(6), 569. https://doi.org/10.3390/vetsci12060569