Challenges and Enhancing Strategies of Equine Semen Preservation: Nutritional and Genetic Perspectives
Simple Summary
Abstract
1. Introduction
2. Methodology for Literature Search
3. Challenges in Equine Semen Preservation
3.1. Equine Sperm Variability
3.2. Biological Challenges
3.3. Equine Semen Sensitivity to Cryopreservation
3.4. Oxidative Stress and Its Effect on Equine Semen Preservation Quality
3.5. Limited Understanding
3.6. Effect of Season on Semen Quality
3.7. Costs and Accessibility
4. Molecular and Structural Alterations in Equine Semen Preservation
5. Strategies for Enhancing Equine Semen Quality
5.1. Nutritional Supplements for Enhancing Semen Quality
5.1.1. Antioxidants and Vitamins
5.1.2. Minerals and Trace Elements
5.1.3. Polyunsaturated Fatty Acids (PUFAs)
Supplement | Route of Administration/Amount/Duration | Effect on Semen Quality | References |
---|---|---|---|
Coenzyme Q10 | Oral supplementation: 1 g/day for 4 weeks | Sperm metabolism guards against oxidative stress | [110] |
Zinc | Oral supplementation: 360 1 g/day for two months | Increases average path velocity. Supports sperm morphology and motility | [113] |
Zinc | Oral supplementation: 1 g/day for three months | Improved motility, viability, and membrane integrity | [115] |
DHA-enriched nutraceutical | Oral supplementation: 1 g/day for 14 weeks | Increased semen DHA levels and DHA-DPA ratio | [127] |
Pomegranate seed oil | Oral feed: 200 mL/day for 90 days | Improved membrane integrity and viability in cooled semen | [127] |
Linseed oil | Oral feed: 150 mL/day for 60 days | Improved motility, vigor, viability, acrosome integrity, and osmotic tolerance | [125] |
Fish oil + thyme | Oral supplementation: (2.5% DMI fish oil, 0.02% DMI thyme for 90 days | Enhanced total and progressive motility, sperm concentration, and membrane integrity | [128] |
Vitamin E, selenium, L-carnitine, and fatty acids | Oral supplementation: 50 mL/day for two months | Higher progressive motility, membrane and acrosomal integrity | [97] |
Plasmolyzed herbal yeast | Oral dose: 0.06 mL/kg body weight/day/70 days | Antioxidant status increased | [140] |
Lepidium meyenii (Maca) powder | Oral dose: 20 g/day/60 days | Improved total and progressive motility, as well as acrosome integrity | [110] |
Encapsulated TE (ETE) | Oral/1.5–3 g/16 weeks | Improved testicular length, sperm concentration, and reduced non-progressive spermatozoa | [152] |
Hemp oil (PUFAs) | Oral supplementation: 20 mL/day/90 days | Increased sperm motility and normal morphology, reduced gel-free semen volume, and lower peroxidation | [143] |
Flaxseed oil | Oral supplementation: 24 g/kg diet/60 days | Improved sperm motility, membrane integrity, and fertilization capacity. Reduced oxidative stress | [106,145] |
Sunflower oil (SFO) | Oral supplementation: 35 g/day/for 15 weeks | Enhanced sperm motility and progressive motility Improved sperm fertility | [146] |
5.2. Screening of Potential Candidate Genes Associated with Semen Quality in Equines
Gene Symbol | Breed | Functional Role | Effect of Semen-Quality Trait | References |
---|---|---|---|---|
NME8 | Stallion | Sperm structure and motility | Essential for sperm tail formation and motility | [94,160,161] |
OR2AP1 | Stallion | GPCR signaling, sperm motility regulation, cryotolerance | Improved post-thaw sperm motility | [94] |
OR6C4 | Stallion | GPCR-mediated sperm motility signaling | Associated with sperm motility | [94] |
HERC4 | German Warmblood stallions | Protein degradation, spermatogenesis regulation | Potential impact on sperm motility and fertility | [156] |
MIER1 | German Warmblood stallions | Potential role in spermatogenesis | Associated with gel-free semen volume | [156] |
NEGR1 | German Warmblood stallions | Sperm concentration regulation | linked to sperm concentration | [156] |
CTNNA3 | German Warmblood stallions | Spermatogenesis and sperm motility | Associated with progressive sperm motility | [156] |
C1QTNF7 | German Warmblood stallions | Sperm motility | Linked to progressive sperm motility | [156] |
CRISP1 | Stallions | Protects live sperm from PMN binding and phagocytosis during breeding-induced endometritis | Positive correlation with fertility (higher CRISP3 levels linked to improved pregnancy rates) | [170,171,172,173] |
SOD1 | Stallion | Primary antioxidant defense in spermatozoa protects against oxidative stress during cryopreservation | Reduction after cryopreservation correlates with increased oxidative damage and lipid peroxidation (4-HNE) | [157] |
SIRT1 | German Warmblood | Maintains mitochondrial function | Influence sperm production and quality | [156,174,175] |
FKBP6 | Hanoverian | Conception rates Meiosis (chromosome pairing)—Acrosome reaction (AR) | Impaired acrosome reaction, conception rate | [160,161] |
CRISP3 | Stallions | Morphology | Improving motility, vitality, morphology, and membrane integrity | [161,176] |
HSP1 | Horse | Acts as a molecular chaperone (protects against oxidative stress) | Role in sperm motility, viability, and oviductal sperm reservoir formation | [162] |
KLK1E2 | Horse | Seminal plasma protein, androgen-regulated | Involved in sperm membrane integrity and function, linked to capacitation | [162] |
IZUMO4 | Horse | Gamete recognition, acrosomal protein | Potential role in fertilization. Involved in pre-fertilization stages (e.g., acrosome reaction) | [162] |
LC3 MAP1LC3 | Stallion (Andalusian horses) | Autophagy marker, acrosome reaction regulation | Enhances sperm capacitation and acrosome reaction, critical for membrane remodeling during fertilization | [132,163] |
AKAP4 proAKAP4 | Stallions | Fibrous sheath assembly, sperm flagellar structure, motility regulation, and capacitation | Total sperm motility Progressive motility Sperm viability | [164] |
IGF1 | Horse | Sperm production and metabolic activity | Relationship between IGF1 concentrations and sperm motility | [165] |
PLCζ | Criollo stallions | Signaling (calcium release) | Egg activation, calcium signaling, embryonic development, and expression correlate with sperm motility | [167,177] |
ACE | Hanoverian stallions | Affects sperm migration, zona pellucida binding | Associated with an embryonic component of breeding values (BVs) and pregnancy rate per oestrus (PRO) | [166] |
SP17 | Hanoverian stallions | Cell adhesion and fertilization | Association with embryonic and paternal components of BVs | [166] |
5.3. Advances in Semen Extender Formulations and Nutraceutical Integration
Supplement | Supplementation Method and Concentration | Effect on Semen Quality | References |
---|---|---|---|
Gallic Acid (GA) | 50–100 µg/mL in Tris-based extender; frozen at −196 °C | Improved progressive motility and DNA integrity; increased post-thaw total motility and semen concentration, membrane integrity, testosterone, motility, and fertility | [184,185,186,187] |
L-Carnitine (LC) | 1–2 mM in skimmed milk extender; 48 h at 5 °C | Preserves motility and plasma/acrosomal membrane integrity; reduces oxidative stress. | [136] |
Sucrose | 50–100 mM in skimmed milk–egg yolk extender | Highest plasma membrane integrity, best acrosomal preservation, superior mitochondrial potential, improved wobble (WOB) | [195] |
CoQ10 (C1) | Added to semen extender (175–700 µM)/Frozen storage | Improved membrane integrity, stability, and pregnancy | [188] |
Soybean Lecithin | Tris-based extender with 4% glycerol | Better protection against membrane damage and lipid peroxidation Preserved DNA and acrosome integrity | [190,191] |
Nicotinic Acid (NA) | Added to semen extender at 10, 20, and 40 mM | Improved viability and membrane and acrosome integrity, reduced DNA fragmentation, decreased lipid peroxidation and ROS/RNS | [189] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rzekęć, A.; Vial, C.; Bigot, G. Green assets of equines in the European context of the ecological transition of agriculture. Animals 2020, 10, 106. [Google Scholar] [CrossRef]
- Khan, M.Z.; Chen, W.; Wang, X.; Liang, H.; Wei, L.; Huang, B.; Kou, X.; Liu, X.; Zhang, Z.; Chai, W. A review of genetic resources and trends of omics applications in donkey research: Focus on China. Front. Vet. Sci. 2024, 11, 1366128. [Google Scholar] [CrossRef]
- Seyiti, S.; Kelimu, A. Donkey industry in China: Current aspects, suggestions and future challenges. J. Equine Vet. Sci. 2021, 102, 103642. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Guo, Y.; Huang, J.; Sun, Y.; Min, J.; Wang, J.; Fang, X.; Zhao, Z.; Wang, S. Donkey genomes provide new insights into domestication and selection for coat color. Nat. Commun. 2020, 11, 6014. [Google Scholar] [CrossRef] [PubMed]
- Gambini, A.; Smith, J.M.; Gurkin, R.J.; Palacios, P.D. Current and Emerging Advanced Techniques for Breeding Donkeys and Mules. Animals 2025, 15, 990. [Google Scholar] [CrossRef]
- Cabeza, J.P.; Gambini, A. Advancements and challenges in in vitro reproductive technologies for the conservation of equine species. Theriogenology Wild 2023, 2, 100036. [Google Scholar] [CrossRef]
- Khan, I.U.; Khairullah, A.R.; Khan, A.Y.; Rehman, A.U.; Mustofa, I. Strategic approaches to improve equine breeding and stud farm outcomes. Vet. World 2025, 18, 311. [Google Scholar] [CrossRef]
- Baker, D.J. Semen analysis. Clin. Lab. Sci. 2007, 20, 172. [Google Scholar] [PubMed]
- Wang, C.; Swerdloff, R.S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 2014, 102, 1502–1507. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Czerniawska-Piątkowska, E.; Kuczaj, M. Factors influencing the popularity of artificial insemination of mares in Europe. Animals 2019, 9, 460. [Google Scholar] [CrossRef]
- Laseca, N.; Anaya, G.; Peña, Z.; Pirosanto, Y.; Molina, A.; Demyda Peyrás, S. Impaired reproductive function in equines: From genetics to genomics. Animals 2021, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- DE, T.A.E.L.E.; EQUINO, S. Current trends on stallion semen evaluation: What other methods can be used to improve our capacity for semen quality assessment? J. Vet. Androl. 2019, 4, 1–19. [Google Scholar]
- Love, C.C. Modern techniques for semen evaluation. Vet. Clin. Equine Pract. 2016, 32, 531–546. [Google Scholar] [CrossRef]
- Nath, L.; Anderson, G.; McKinnon, A. Reproductive efficiency of Thoroughbred and Standardbred horses in north-east Victoria. Aust. Vet. J. 2010, 88, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Pasch, L. Stallion semen cryopreservation: Frozen semen preparation, handling and breeding. Equine Vet. Educ. 2024, 36, 375–380. [Google Scholar] [CrossRef]
- Guertin, J.E.; de Agostini Losano, J.; Salazar, S.; Callaham, J.; Daigneault, B.W. Prolonged maintenance of stallion semen by optimization of cooling conditions. J. Equine Vet. Sci. 2025, 144, 105243. [Google Scholar] [CrossRef]
- Ball, B.A. Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 2008, 107, 257–267. [Google Scholar] [CrossRef]
- Albrizio, M.; Moramarco, A.M.; Micera, E.; Mari, G.; Rizzato, G.; Mislei, B.; Guaricci, A.C.; Zarrilli, A.; Lacalandra, G.M. How temperature affects equine semen: Refrigeration versus cryopreservation. A simple method to select high quality spermatozoa. Integr. J. Vet. Biosci. 2018, 2, 1–8. [Google Scholar]
- Prien, S.; Iacovides, S. Cryoprotectants & cryopreservation of equine semen: A review of industry cryoprotectants and the effects of cryopreservation on equine semen membranes. J. Dairy Vet. Anim. Res 2016, 3, 63. [Google Scholar]
- Pezo, F.; Contreras, M.J.; Zambrano, F.; Uribe, P.; Risopatron, J.; de Andrade, A.F.C.; Yeste, M.; Sánchez, R. Thawing of cryopreserved sperm from domestic animals: Impact of temperature, time, and addition of molecules to thawing/insemination medium. Anim. Reprod. Sci. 2024, 268, 107572. [Google Scholar] [CrossRef]
- Burger, D.; Meroni, G.; Thomas, S.; Sieme, H. Effects of ground semen collection on weight bearing on hindquarters, libido, and semen parameters in stallions. Theriogenology 2015, 84, 687–692.e1. [Google Scholar] [CrossRef]
- Bellemdjahed, F.; Belmouaz, C.O. Artificial Insemination in Mares; Ibn Khaldoun University: Başakşehir, Turkey, 2023. [Google Scholar]
- Abril-Sánchez, S.; Freitas-de-Melo, A.; Giriboni, J.; Santiago-Moreno, J.; Ungerfeld, R. Sperm collection by electroejaculation in small ruminants: A review on welfare problems and alternative techniques. Anim. Reprod. Sci. 2019, 205, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Love, C.C. Sperm quality assays: How good are they? The horse perspective. Anim. Reprod. Sci. 2018, 194, 63–70. [Google Scholar] [CrossRef]
- Kiser, A.M.; Brinsko, S.P.; Love, C.C.; Varner, D.D.; Sudderth, K.; Blanchard, T.L. Relationship of sperm quality to fertility after 4 days of cooled storage of equine semen. J. Equine Vet. Sci. 2014, 34, 602–605. [Google Scholar] [CrossRef]
- Wiebke, M.; Hensel, B.; Nitsche-Melkus, E.; Jung, M.; Schulze, M. Cooled storage of semen from livestock animals (part I): Boar, bull, and stallion. Anim. Reprod. Sci. 2022, 246, 106822. [Google Scholar] [CrossRef]
- Bustani, G.S.; Baiee, F.H. Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Vet. World 2021, 14, 1220. [Google Scholar] [CrossRef]
- Scherzer, J.; Fayrer-Hosken, R.; Aceves, M.; Hurley, D.; Ray, L.; Jones, L.; Heusner, G. Freezing equine semen: The effect of combinations of semen extenders and glycerol on post-thaw motility. Aust. Vet. J. 2009, 87, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Aitken, R.J. The impact of sperm metabolism during in vitro storage: The stallion as a model. BioMed Res. Int. 2016, 2016, 9380609. [Google Scholar] [CrossRef]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef]
- Loomis, P.; Graham, J. Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 2008, 105, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Loomis, P.R. Advanced methods for handling and preparation of stallion semen. Vet. Clin. Equine Pract. 2006, 22, 663–676. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Lindahl, J.; Hansson, I.; Morrell, J.M. Antimicrobial resistance in equine reproduction. Animals 2021, 11, 3035. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z. Characterization, Quantification and Removal of Potential Pathogens from Stallion Semen. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Swedish, 2019. [Google Scholar]
- Al-Kass, Z.; Guo, Y.; Pettersson, O.V.; Niazi, A.; Morrell, J. Metagenomic analysis of bacteria in stallion semen. Anim. Reprod. Sci. 2020, 221, 106568. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ferrusola, C.; González-Fernández, L.; Muriel, A.; Macías-García, B.; Rodríguez-Martínez, H.; Tapia, J.; Alonso, J.; Peña, F. Does the microbial flora in the ejaculate affect the freezeability of stallion sperm? Reprod. Domest. Anim. 2009, 44, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Cherchi, R. Microbial quality of equine frozen semen. Anim. Reprod. Sci. 2009, 115, 103–109. [Google Scholar] [CrossRef]
- Pasing, S.S.; Aurich, C.; von Lewinski, M.; Wulf, M.; Krüger, M.; Aurich, J.E. Development of the genital microflora in stallions used for artificial insemination throughout the breeding season. Anim. Reprod. Sci. 2013, 139, 53–61. [Google Scholar] [CrossRef]
- Guimaraes, T.; Lopes, G.; Pinto, M.; Silva, E.; Miranda, C.; Correia, M.; Damásio, L.; Thompson, G.; Rocha, A. Colloid centrifugation of fresh stallion semen before cryopreservation decreased microorganism load of frozen-thawed semen without affecting seminal kinetics. Theriogenology 2015, 83, 186–191. [Google Scholar] [CrossRef]
- Al-Kass, Z.; Spergser, J.; Aurich, C.; Kuhl, J.; Schmidt, K.; Morrell, J.M. Effect of presence or absence of antibiotics and use of modified single layer centrifugation on bacteria in pony stallion semen. Reprod. Domest. Anim. 2019, 54, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Leal, K.; Pezo, F.; Contreras, M.J. Sperm Membrane: Molecular Implications and Strategies for Cryopreservation in Productive Species. Animals 2025, 15, 1808. [Google Scholar] [CrossRef]
- Devireddy, R.; Swanlund, D.; Olin, T.; Vincente, W.; Troedsson, M.; Bischof, J.; Roberts, K. Cryopreservation of equine sperm: Optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry. Biol. Reprod. 2002, 66, 222–231. [Google Scholar] [CrossRef]
- Kaur, R.; Pramanik, K.; Sarangi, S. Cryopreservation-induced stress on long-term preserved articular cartilage. Int. Sch. Res. Not. 2013, 2013, 973542. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Baumber, J.; Kass, P.H.; Meyers, S.A. Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol. Reprod. 2010, 82, 644–651. [Google Scholar] [CrossRef]
- Aurich, C.; Schreiner, B.; Ille, N.; Alvarenga, M.; Scarlet, D. Cytosine methylation of sperm DNA in horse semen after cryopreservation. Theriogenology 2016, 86, 1347–1352. [Google Scholar] [CrossRef]
- Morris, G.J.; Acton, E.; Murray, B.J.; Fonseca, F. Freezing injury: The special case of the sperm cell. Cryobiology 2012, 64, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J.; Llavanera, M.; Bonilla-Correal, S.; Papas, M.; Gacem, S.; Rodríguez-Gil, J.E.; Yeste, M.; Miró, J. Irradiating frozen-thawed stallion sperm with red-light increases their resilience to withstand post-thaw incubation at 38 °C. Theriogenology 2020, 157, 85–95. [Google Scholar] [CrossRef]
- Pezo, F.; Zambrano, F.; Uribe, P.; Moya, C.; de Andrade, A.F.C.; Risopatron, J.; Yeste, M.; Burgos, R.A.; Sánchez, R. Oxidative and nitrosative stress in frozen-thawed pig spermatozoa. I: Protective effect of melatonin and butylhydroxytoluene on sperm function. Res. Vet. Sci. 2021, 136, 143–150. [Google Scholar] [CrossRef]
- Peña, F.J.; Gibb, Z. Oxidative stress and reproductive function: Oxidative stress and the long-term storage of horse spermatozoa. Reproduction 2022, 164, F135–F144. [Google Scholar] [CrossRef] [PubMed]
- Kadenbach, B.; Ramzan, R.; Wen, L.; Vogt, S. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2010, 1800, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pena, F.; García, B.M.; Samper, J.; Aparicio, I.; Tapia, J.; Ferrusola, C.O. Dissecting the molecular damage to stallion spermatozoa: The way to improve current cryopreservation protocols? Theriogenology 2011, 76, 1177–1186. [Google Scholar] [CrossRef]
- Yeste, M.; Estrada, E.; Rocha, L.; Marín, H.; Rodríguez-Gil, J.; Miró, J. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 2015, 3, 395–407. [Google Scholar] [CrossRef]
- Muñoz, P.M.; Ferrusola, C.O.; Lopez, L.A.; Del Petre, C.; Garcia, M.A.; de Paz Cabello, P.; Anel, L.; Peña, F.J. Caspase 3 activity and lipoperoxidative status in raw semen predict the outcome of cryopreservation of stallion spermatozoa. Biol. Reprod. 2016, 95, 53. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Dewry, R.; Srivastava, R.; Nath, S.; Mohanty, T. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology 2022, 179, 22–31. [Google Scholar] [CrossRef]
- Kawai, G.K.V.; Gurgel, J.R.C.; de Agostini Losano, J.D.; Dalmazzo, A.; Rocha, C.C.; Tsunoda, R.H.; de Araujo Goes, P.A.; Rui, B.R.; Angrimani, D.d.S.R.; Mendes, C.M. Susceptibility of stallion spermatozoa to different oxidative challenges: Role of seminal plasma. J. Equine Vet. Sci. 2017, 55, 76–83. [Google Scholar] [CrossRef]
- Ortiz-Rodriguez, J.M.; Ortega-Ferrusola, C.; Gil, M.C.; Martin-Cano, F.E.; Gaitskell-Phillips, G.; Rodríguez-Martínez, H.; Hinrichs, K.; Alvarez-Barrientos, A.; Román, Á.; Pena, F.J. Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS ONE 2019, 14, e0213420. [Google Scholar] [CrossRef] [PubMed]
- Atroshchenko, M.; Engalycheva, M.; Shitikova, A. The level of sperm plasma protein oxidative modification assessed in stallions (Equus ferus caballus L.) of different ages. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2023, 58, 660–668. [Google Scholar]
- Bucak, M.N.; Tuncer, P.B.; Sarıözkan, S.; Başpınar, N.; Taşpınar, M.; Çoyan, K.; Bilgili, A.; Akalın, P.P.; Büyükleblebici, S.; Aydos, S. Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology 2010, 61, 248–253. [Google Scholar] [CrossRef]
- Suliman, Y.; Becker, F.; Wimmers, K. Implication of transcriptome profiling of spermatozoa for stallion fertility. Reprod. Fertil. Dev. 2018, 30, 1087–1098. [Google Scholar] [CrossRef]
- Ponthier, J.; Desvals, M.; Franck, T.; de la Rebière, G.; Spalart, M.; Palmer, E.; Serteyn, D.; Deleuze, S. Myeloperoxidase in equine semen: Concentration and Localization during freezing processing. J. Equine Vet. Sci. 2012, 32, 32–37. [Google Scholar] [CrossRef]
- Ponthier, J.; Teague, S.R.; Franck, T.Y.; de la Rebière, G.; Serteyn, D.D.; Brinsko, S.P.; Love, C.C.; Blanchard, T.L.; Varner, D.D.; Deleuze, S.C. Effect of non–sperm cells removal with single-layer colloidal centrifugation on myeloperoxidase concentration in post-thaw equine semen. Theriogenology 2013, 80, 1082–1087. [Google Scholar] [CrossRef]
- Squires, E. Semen cryopreservation-challenges and perspectives. Rev. Bros. Reprod. Anim 2013, 37, 136–139. [Google Scholar]
- Wrench, N.; Pinto, C.R.; Klinefelter, G.R.; Dix, D.J.; Flowers, W.L.; Farin, C.E. Effect of season on fresh and cryopreserved stallion semen. Anim. Reprod. Sci. 2010, 119, 219–227. [Google Scholar] [CrossRef]
- Ebel, F.; Vallejos, A.; Gajardo, G.; Ulloa, O.; Clavel, E.; Rodríguez-Gil, J.E.; Ramírez-Reveco, A. Semen quality and freezability analysis during breeding and non-breeding seasons in heavy draft stallions in southern Chile. Andrologia 2020, 52, e13797. [Google Scholar] [CrossRef]
- Cavalero, T.M.S.; Papa, F.O.; Tironi, S.M.T.; Canuto, L.E.F.; da Cunha Scheeren, V.F.; Trinque, C.M.; Freitas-Dell’Aqua, C.D.P.; Conley, A.J. Preliminary analysis of hormonal and seminal sperm parameters of subfertile and fertile stallions treated with the GnRH agonist lecirelin. J. Equine Vet. Sci. 2023, 125, 104582. [Google Scholar] [CrossRef]
- Hind, H.; Farida, B.-A.; Zoubir, B. Biometric testicular and hormonal serum profiles of Arabian stallion during breeding season in Algeria. Anim. Biotechnol. 2021, 137, 137. [Google Scholar]
- Crespo, F.; Wilson, R.; Díaz-Jimenez, M.; Consuegra, C.; Dorado, J.; Barrado, B.G.; Gosálvez, J.; Smit, R.L.; Hidalgo, M.; Johnston, S. Effect of season on individual stallion semen characteristics. Anim. Reprod. Sci. 2020, 223, 106641. [Google Scholar] [CrossRef]
- Waheed, M.M.; Ghoneim, I.M.; Abdou, M.S. Morphometric characteristics of spermatozoa in the Arabian horse with regard to season, age, sperm concentration, and fertility. J. Equine Vet. Sci. 2015, 35, 244–249. [Google Scholar] [CrossRef]
- Albrizio, M.; Lacalandra, G.; Volpe, S.; Nicassio, M.; Cinone, M. Heat SHOCK proteins in equine spermatozoa: Expression and correlation to kinetic and environmental parameters. Theriogenology 2020, 155, 185–196. [Google Scholar] [CrossRef]
- Egyptien, S.; Deleuze, S.; Ledeck, J.; Ponthier, J. Sperm Quality Assessment in Stallions: How to Choose Relevant Assays to Answer Clinical Questions. Animals 2023, 13, 3123. [Google Scholar] [CrossRef]
- de Alcantara Menezes, T.; Mellagi, A.P.G.; da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; da Rosa Ulguim, R.; Bortolozzo, F.P. Antibiotic-free extended boar semen preserved under low temperature maintains acceptable in-vitro sperm quality and reduces bacterial load. Theriogenology 2020, 149, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Khaydukova, I.V.; Ivannikova, V.M.; Zhidkov, D.A.; Belikov, N.V.; Peshkova, M.A.; Timashev, P.S.; Tsiganov, D.I.; Pushkarev, A.V. Current state and challenges of tissue and organ cryopreservation in biobanking. Int. J. Mol. Sci. 2024, 25, 11124. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Ma, Q.; Li, Y.; Chai, W.; Zhang, Z.; Li, L.; Wang, C. Effect of sperm cryopreservation in farm animals using nanotechnology. Animals 2022, 12, 2277. [Google Scholar] [CrossRef] [PubMed]
- Ball, B.; Meyers, S. 003. Oxidative Stress, Osmotic Stress and Apoptotic Changes: Effects on Equine Spermatozoa. Reprod. Fertil. Dev. 2010, 22, 3. [Google Scholar] [CrossRef]
- Dowsett, K.; Knott, L. The influence of age and breed on stallion semen. Theriogenology 1996, 46, 397–412. [Google Scholar] [CrossRef]
- Ferrer, M.S.; Lyle, S.; Eilts, B.; Eljarrah, A.; Paccamonti, D. Factors affecting sperm recovery rates and survival after centrifugation of equine semen. Theriogenology 2012, 78, 1814–1823. [Google Scholar] [CrossRef]
- Catalán, J.; Yánez-Ortiz, I.; Torres-Garrido, M.; Ribas-Maynou, J.; Llavanera, M.; Barranco, I.; Yeste, M.; Miró, J. Impact of seminal plasma antioxidants on DNA fragmentation and lipid peroxidation of frozen–thawed horse sperm. Antioxidants 2024, 13, 322. [Google Scholar] [CrossRef]
- Stoeckius, M.; Grün, D.; Rajewsky, N. Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J. 2014, 33, 1740–1750. [Google Scholar] [CrossRef]
- Esmaeili, A.; Esmaeili, V.; Shahverdi, A.; Eslaminejad, M.B. Engineered extracellular vesicles: A breakthrough approach to overcoming sperm cryopreservation challenges. Reprod. Biol. Endocrinol. RBE 2025, 23, 75. [Google Scholar] [CrossRef]
- Xiong, Y.; Lou, P.; Xu, C.; Han, B.; Liu, J.; Gao, J. Emerging role of extracellular vesicles in veterinary practice: Novel opportunities and potential challenges. Front. Vet. Sci. 2024, 11, 1335107. [Google Scholar] [CrossRef]
- Peña, F.J.; O’Flaherty, C.; Ortiz Rodriguez, J.M.; Martin Cano, F.E.; Gaitskell-Phillips, G.L.; Gil, M.C.; Ortega Ferrusola, C. Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants 2019, 8, 567. [Google Scholar] [CrossRef]
- Catalán, J.; Yánez-Ortiz, I.; Tvarijonaviciute, A.; González-Aróstegui, L.G.; Rubio, C.P.; Barranco, I.; Yeste, M.; Miró, J. Seminal plasma antioxidants are related to sperm cryotolerance in the horse. Antioxidants 2022, 11, 1279. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.J.; Arias, M.E.; Fuentes, F.; Muñoz, E.; Bernecic, N.; Fair, S.; Felmer, R. Cellular and molecular consequences of stallion sperm cryopreservation: Recent approaches to improve sperm survival. J. Equine Vet. Sci. 2023, 126, 104499. [Google Scholar] [CrossRef]
- Schober, D.; Aurich, C.; Nohl, H.; Gille, L. Influence of cryopreservation on mitochondrial functions in equine spermatozoa. Theriogenology 2007, 68, 745–754. [Google Scholar] [CrossRef]
- Aurich, J.; Kuhl, J.; Tichy, A.; Aurich, C. Efficiency of semen cryopreservation in stallions. Animals 2020, 10, 1033. [Google Scholar] [CrossRef]
- Sieme, H. Semen evaluation. Equine Breed. Manag. Artif. Insemin. 2009, 712, 713. [Google Scholar]
- Khan, I.M.; Cao, Z.; Liu, H.; Khan, A.; Rahman, S.U.; Khan, M.Z.; Sathanawongs, A.; Zhang, Y. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 2021, 8, 609180. [Google Scholar] [CrossRef]
- Atroshchenko, M.M.; Bragina, E.E.; Zaitsev, A.M.; Kalashnikov, V.V.; Naumenkova, V.A.; Kudlaeva, A.M.; Nikitkina, E.V. Conservation of genetic resources in horse breeding and major structural damages of sperm during semen cryopreservation in stallions. Nat. Conserv. Res. Запoведная наука 2019, 4, 78–82. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Mansour, H.H.; Mahdy, A.B.; Amer, H.A.; Derbala, M.K.; Abdallah, A.A. Cryopreservation of stallion semen: A Review. Zagazig Vet. J. 2023, 51, 263–278. [Google Scholar] [CrossRef]
- Hoogewijs, M.; Rijsselaere, T.; De Vliegher, S.; Vanhaesebrouck, E.; De Schauwer, C.; Govaere, J.; Thys, M.; Hoflack, G.; Van Soom, A.; de Kruif, A. Influence of different centrifugation protocols on equine semen preservation. Theriogenology 2010, 74, 118–126. [Google Scholar] [CrossRef]
- Bazzano, M.; Laus, F.; Spaterna, A.; Marchegiani, A. Use of nutraceuticals in the stallion: Effects on semen quality and preservation. Reprod. Domest. Anim. 2021, 56, 951–957. [Google Scholar] [CrossRef]
- Díaz Rojas, E.; Carrillo Moreno, D.I.; Contreras Villarreal, V.; Arellano Rodríguez, F.; Alvarado Espino, A.S.; Ángel García, O. Effect of nutraceutical supplementation on semen quality in stallions. Vet. Med. Sci. 2023, 9, 2600–2605. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.F.; Khalil, W.A.; Grawish, S.I.; Mahmoud, K.G.M.; Abdelnour, S.A.; Gad, A.M. Putative effects of moringa oil or its nano-emulsion on the growth, physiological responses, blood health, semen quality, and the sperm antioxidant-related genes in ram. BMC Vet. Res. 2025, 21, 11. [Google Scholar] [CrossRef]
- Nikitkina, E.V.; Dementieva, N.V.; Shcherbakov, Y.S.; Atroshchenko, M.M.; Kudinov, A.A.; Samoylov, O.I.; Pozovnikova, M.V.; Dysin, A.P.; Krutikova, A.A.; Musidray, A.A. Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds. Anim. Biosci. 2022, 35, 1827. [Google Scholar] [CrossRef]
- Sieme, H.; Distl, O. Genomics and fertility in stallions. J. Equine Vet. Sci. 2012, 32, 467–470. [Google Scholar] [CrossRef]
- Walke, G.; Gaurkar, S.S.; Prasad, R.; Lohakare, T.; Wanjari, M. The impact of oxidative stress on male reproductive function: Exploring the role of antioxidant supplementation. Cureus 2023, 15, e42583. [Google Scholar] [CrossRef]
- Freitas, M.L.; Bouéres, C.S.; Pignataro, T.A.; de Oliveira, F.J.G.; de Oliveira Viu, M.A.; de Oliveira, R.A. Quality of fresh, cooled, and frozen semen from stallions supplemented with antioxidants and fatty acids. J. Equine Vet. Sci. 2016, 46, 1–6. [Google Scholar] [CrossRef]
- Lagares, M.d.A.; da Silva, G.C.; Cortes, S.F.; Moreira, F.H.M.; Neves, F.C.D.; Alves, N.d.C.; Viegas, R.N.; Diniz, T.F.; Lemos, V.S.; de Rezende, A.S.C. L-carnitine added to post-thawed semen acts as an antioxidant and a stimulator of equine sperm metabolism. Andrologia 2022, 54, e14338. [Google Scholar] [CrossRef] [PubMed]
- Clément, C.; Witschi, U.; Kreuzer, M. The potential influence of plant-based feed supplements on sperm quantity and quality in livestock: A review. Anim. Reprod. Sci. 2012, 132, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F. Ethnobiology and ethnopharmacology of Lepidium meyenii (Maca), a plant from the Peruvian highlands. Evid.-Based Complement. Altern. Med. 2012, 2012, 193496. [Google Scholar] [CrossRef]
- Del Prete, C.; Tafuri, S.; Ciani, F.; Pasolini, M.P.; Ciotola, F.; Albarella, S.; Carotenuto, D.; Peretti, V.; Cocchia, N. Influences of dietary supplementation with Lepidium meyenii (Maca) on stallion sperm production and on preservation of sperm quality during storage at 5 °C. Andrology 2018, 6, 351–361. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Chemical composition and health effects of maca (Lepidium meyenii). Food Chem. 2019, 288, 422–443. [Google Scholar] [CrossRef]
- Contreras, M.J.; Treulen, F.; Arias, M.E.; Silva, M.; Fuentes, F.; Cabrera, P.; Felmer, R. Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology. Reprod. Domest. Anim. 2020, 55, 229–239. [Google Scholar] [CrossRef]
- Treulen, F.; Aguila, L.; Arias, M.E.; Jofré, I.; Felmer, R. Impact of post-thaw supplementation of semen extender with antioxidants on the quality and function variables of stallion spermatozoa. Anim. Reprod. Sci. 2019, 201, 71–83. [Google Scholar] [CrossRef]
- Gee, E.K.; DeLuca, C.; Stylski, J.L.; McCue, P.M. Efficacy of medroxyprogesterone acetate in suppression of estrus in cycling mares. J. Equine Vet. Sci. 2009, 29, 140–145. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, K.; Wang, Z.; Ma, X.; Liu, H.; Zhao, J.; Lu, W.; Wang, J. Dietary flaxseed oil and vitamin E improve semen quality via propionic acid metabolism. Front. Endocrinol. 2023, 14, 1139725. [Google Scholar] [CrossRef]
- Gee, E.; Bruemmer, J.; Siciliano, P.; McCue, P.; Squires, E. Effects of dietary vitamin E supplementation on spermatozoal quality in stallions with suboptimal post-thaw motility. Anim. Reprod. Sci. 2008, 107, 324–325. [Google Scholar] [CrossRef]
- Hu, J.-H.; Tian, W.-Q.; Zhao, X.-L.; Zan, L.-S.; Wang, H.; Li, Q.-W.; Xin, Y.-P. The cryoprotective effects of ascorbic acid supplementation on bovine semen quality. Anim. Reprod. Sci. 2010, 121, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Ralston, S.; Barbacini, S.; Squires, E.; Nockels, C. Ascorbic acid supplementation in stallions. J. Equine Vet. Sci. 1988, 8, 290–293. [Google Scholar] [CrossRef]
- Ruiz, A.J.; Tibary, A.; Heaton, R.A.; Hargreaves, I.P.; Leadon, D.P.; Bayly, W.M. Effects of feeding coenzyme Q10-Ubiquinol on plasma coenzyme Q10 concentrations and semen quality in stallions. J. Equine Vet. Sci. 2021, 96, 103303. [Google Scholar] [CrossRef]
- Hogarth, C.A.; Griswold, M.D. The key role of vitamin A in spermatogenesis. J. Clin. Investig. 2010, 120, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.; Yang, W. Functions of essential nutrition for high quality spermatogenesis. Adv. Biosci. Biotechnol. 2011, 2, 182–197. [Google Scholar] [CrossRef]
- Contri, A.; De Amicis, I.; Molinari, A.; Faustini, M.; Gramenzi, A.; Robbe, D.; Carluccio, A. Effect of dietary antioxidant supplementation on fresh semen quality in stallion. Theriogenology 2011, 75, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Deichsel, K.; Palm, F.; Koblischke, P.; Budik, S.; Aurich, C. Effect of a dietary antioxidant supplementation on semen quality in pony stallions. Theriogenology 2008, 69, 940–945. [Google Scholar] [CrossRef]
- Palacios, P.D.; Ortiz, I.; Dorado, J.; Hidalgo, M.; Díaz, J.R.G.; Gambini, A. Effect of zinc supplementation on the quality of cooled, stored equine sperm. Anim. Prod. Sci. 2024, 64, AN24005. [Google Scholar] [CrossRef]
- Vélez, I.C.; Restrepo-Betancur, G.; Rojano, B.A.; Henao-Salazar, L.; Leon, S.; Puerta, M.C.; Úsuga-Suárez, A. Effect of a dietary antioxidant supplementation on semen characteristics of the Colombian horse. J. Equine Vet. Sci. 2023, 125, 104620. [Google Scholar] [CrossRef]
- Mirnamniha, M.; Faroughi, F.; Tahmasbpour, E.; Ebrahimi, P.; Beigi Harchegani, A. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. Rev. Environ. Health 2019, 34, 339–348. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, L.; Shang, Y.; Huang, P.; Miao, L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development 2013, 140, 2103–2107. [Google Scholar] [CrossRef] [PubMed]
- Vyvial, M.; Horáčková, E.; Sedlinská, M.; Jánová, E.; Krisová, Š.; Mráčková, M. Determination of selected components in seminal plasma of donkey stallions and their correlation to semen quality parameters. Acta Vet. Brno 2020, 88, 377–384. [Google Scholar] [CrossRef]
- Kalashnikov, V.; Zaitsev, A.; Atroschenko, M.; Zavyalov, O.; Frolov, A.; Kurilkina, M.Y. Influence of the concentrations of essential and toxic elements in the blood serum on the indicators of sperm quality in Arabian purebred stallions. BIO Web Conf. 2022, 42, 01019. [Google Scholar] [CrossRef]
- Pesch, S.; Bergmann, M.; Bostedt, H. Determination of some enzymes and macro-and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology 2006, 66, 307–313. [Google Scholar] [CrossRef]
- Brinsko, S.P.; Varner, D.D.; Love, C.C.; Blanchard, T.L.; Day, B.C.; Wilson, M.E. Effect of feeding a DHA-enriched nutriceutical on the quality of fresh, cooled and frozen stallion semen. Theriogenology 2005, 63, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Martin-Rosset, W.; Burton, J.; Crandell, K. Equine Nutrition: INRA Nutrient Requirements, Recommended Allowances and Feed Tables; Wageningen Academic Publishers Wageningen: Wageningen, The Netherlands, 2015. [Google Scholar]
- Wolkmer, P.; Stumm, A.M.; Borges, L.F.; Ferreira, E.P.; Favaretto, B.; Siqueira, L.C. Plasma lipid peroxidation as a marker for seminal oxidative stress in stallion. J. Agric. Sci. 2024, 11, 401. [Google Scholar] [CrossRef]
- Garmsir, A.K.; Shahneh, A.Z.; Nouri, H. Does Fish Oil Supplementation Improve Fresh and Chilled Sperm Quality of Miniature Caspian Stallion. In Proceedings of the 1st International Conference on New Ideas in Agriculture, Isfahan, Iran, 26 January 2014. [Google Scholar]
- Rodrigues, P.G.; de Moura, R.S.; Rocha, L.G.P.; Bottino, M.P.; Nichi, M.; Maculan, R.; Bertechini, A.G.; Souza, J.C. Dietary polyunsaturated fatty acid supplementation improves the quality of stallion cryopreserved semen. J. Equine Vet. Sci. 2017, 54, 18–23. [Google Scholar] [CrossRef]
- Nouri, H.; Shojaeian, K.; Jalilvand, G.; Kohram, H. Effect of feeding pomegranate seed oil as a source of conjugated linolenic acid on Arabian stallion semen quality in cooled and postthawed condition. Reprod. Domest. Anim. 2018, 53, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Garmsir, A.K.; Shahneh, A.Z.; Jalali, S.M.A.; Nouri, H.; Afshar, M. Effects of dietary thyme (Thymus vulgaris) and fish oil on semen quality of miniature Caspian horse. J. Equine Vet. Sci. 2014, 34, 1069–1075. [Google Scholar] [CrossRef]
- Souza, R.S.; Machado, W.M.; França, C.S.d.; Mugabe, L.C.; Pinheiro, E.E.G.; Carneiro, I.d.M.B.; Rocha, L.F.; Barbosa, L.P. Docosahexaenoic acid in diluent for goat semen cryopreservation. Anim. Reprod. 2021, 18, e20210027. [Google Scholar] [CrossRef]
- Elhordoy, D.; Cazales, N.; Costa, G.; Estévez, J. Effect of dietary supplementation with DHA on the quality of fresh, cooled and frozen stallion semen. Anim. Reprod. Sci. 2008, 107, 319. [Google Scholar] [CrossRef]
- Freitas, M.L.; de Oliveira, R.A. Nutraceutical in male reproduction. Braz. J. Vet. Med. 2018, 40, e220118. [Google Scholar] [CrossRef]
- Aparicio, I.M.; Rojo-Domínguez, P.; Castillejo-Rufo, A.; Peña, F.J.; Tapia, J.A. The autophagy marker LC3 is processed during the sperm capacitation and the acrosome reaction and translocates to the acrosome where it colocalizes with the acrosomal membranes in horse spermatozoa. Int. J. Mol. Sci. 2023, 24, 937. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, J.; Lu, W. Regulation of semen quality by fatty acids in diets, extender, and semen. Front. Vet. Sci. 2023, 10, 1119153. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.E.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Usuga, A.; Rojano, B.; Restrepo, G. Effect of seminal plasma components on the quality of fresh and cryopreserved stallion semen. J. Equine Vet. Sci. 2017, 58, 103–111. [Google Scholar] [CrossRef]
- Nery, I.H.; Araujo Silva, R.A.; Souza, H.M.; Arruda, L.C.; Monteiro, M.M.; Seal, D.C.; Silva, G.R.; Silva, T.M.; Carneiro, G.F.; Batista, A.M. Effects of l-carnitine on equine semen quality during liquid storage. Biopreserv. Biobanking 2020, 18, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; El-Maaty, A.M.A.; Rawash, Z.M. Comparative blood and seminal plasma oxidant/antioxidant status of Arab stallions with different ages and their relation to semen quality. Asian Pac. J. Reprod. 2016, 5, 428–433. [Google Scholar] [CrossRef]
- Mongioi, L.; Calogero, A.E.; Vicari, E.; Condorelli, R.A.; Russo, G.I.; Privitera, S.; Morgia, G.; La Vignera, S. The role of carnitine in male infertility. Andrology 2016, 4, 800–807. [Google Scholar] [CrossRef]
- Campos, G.A.; Garcia, V.F.; Freitas-Dell’Aqua, C.P.; Segabinazzi, L.G.; Maciel, L.F.; Alvarenga, M.A.; Papa, F.O.; Dell’Aqua, J.A., Jr. Sodium caseinate and cholesterol improve bad cooler stallion fertility. J. Equine Vet. Sci. 2020, 93, 103201. [Google Scholar] [CrossRef]
- van Dorland, A.; Janett, F.; Bruckmaier, R.; Wach-Gygax, L.; Jeannerat, E.; Bollwein, H.; Sieme, H.; Burger, D. Herbal yeast product, Equi-Strath®, alters the antioxidant status of stallion semen. Anim. Reprod. Sci. 2019, 208, 106119. [Google Scholar] [CrossRef] [PubMed]
- D’Anza, E.; Albarella, S.; Galdiero, G.; Tafuri, S.; Del Prete, C.; Cocchia, N.; Ciani, F.; Mastellone, V.; Pasolini, M.P.; Carotenuto, D. DNA fragmentation and morphometric studies in sperm of stallions supplemented with maca (Lepidium meyenii). Zygote 2021, 29, 325–330. [Google Scholar] [CrossRef]
- Bazzano, M.; Fanelli, D.; Marchegiani, A.; Scollo, C.; Laus, F.; Rota, A.; Camillo, F. Effects of Dietary Supplement Containing Lepidyum Meyenii, Laminaria and Equisetum Extracts on Equine Frozen Semen. In Proceedings of the Abstract Book-19th International Congresso of Animal Reproduction, Bologna, Italy, 26–30 June 2022; p. 215. [Google Scholar]
- Fusaro, I.; Parrillo, S.; Buonaiuto, G.; Prasinou, P.; Gramenzi, A.; Bucci, R.; Cavallini, D.; Carosi, A.; Carluccio, A.; De Amicis, I. Effects of hemp-based polyunsaturated fatty acid supplementation on membrane lipid profiles and reproductive performance in Martina Franca jacks. Front. Vet. Sci. 2025, 12, 1553218. [Google Scholar] [CrossRef]
- Goedde, L.D. Effects of Feeding a Yeast-based Supplement Containing Docosahexaenoic Acid (DHA) from a Heterotrophically Grown Microalgae, Vitamin E, and Selenium on Stallion Sperm Motion Characteristics. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2016. [Google Scholar]
- Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Sithole, S.M.; Chokoe, T.C.; Ramukhithi, F.V. Dietary supplementing South African indigenous rams with flaxseed oil and ascorbic acid improves cryopreserved semen quality and in vitro fertility. Trop. Anim. Health Prod. 2024, 56, 200. [Google Scholar] [CrossRef]
- Ezazi, H.; Abdi-Benemar, H.; Taghizadeh, A.; Khalili, B.; Seifdavati, J.; Jafaroghli, M.; Elghandour, M.M.; Salem, A.Z. The influence of dietary sunflower oil, rich in n-6 polyunsaturated fatty acids, in combination with vitamin C on ram semen parameters, sperm lipids and fertility. J. Sci. Food Agric. 2019, 99, 3803–3810. [Google Scholar] [CrossRef]
- Attia, Y.; Hussein, A.; Tag El-Din, A.; Qota, E.; Abed El-Ghany, A.; El-Sudany, A. Improving productive and reproductive performance of dual-purpose crossbred hens in the tropics by lecithin supplementation. Trop. Anim. Health Prod. 2009, 41, 461–475. [Google Scholar] [CrossRef]
- Attia, Y.; Kamel, K. Semen quality, testosterone, seminal plasma biochemical and antioxidant profiles of rabbit bucks fed diets supplemented with different concentrations of soybean lecithin. Animal 2012, 6, 824–833. [Google Scholar] [CrossRef]
- Shabani, S.; Mehri, M.; Shirmohammad, F.; Sharafi, M. Enhancement of sperm quality and fertility-related parameters in Hubbard grandparent rooster fed diets supplemented with soybean lecithin and vitamin E. Poult. Sci. 2022, 101, 101635. [Google Scholar] [CrossRef] [PubMed]
- Andreazzi, M.A.; Scapinello, C.; Moraes, G.; Faria, H.; Michelan, A.C.; Georg, P.C. Avaliação da qualidade do sêmen em coelhos alimentados com rações contendo diferentes fontes de óleos vegetais. Acta Sci. Anim. Sci. 2004, 26, 87–93. [Google Scholar] [CrossRef]
- Rodenas, C.E.O.; Murgas, L.D.S.; Maciel, M.P.; Ferraz, J.M.; Ribeiro, M.C.; Bertechini, A.G.; Freitas, R.T.F.d.; Fialho, E.T. Características seminais de galos alimentados com rações suplementadas com diferentes óleos e níveis de vitamina E. Ciência Agrotecnol. 2005, 29, 160–167. [Google Scholar] [CrossRef]
- Ahmed, O.; Lehloenya, K.; Mphaphathi, M.; Hassen, A. Effect of Acacia mearnsii tannin extract supplementation on reproductive performance and oxidative status of South African Mutton Merino rams. Animals 2021, 11, 3266. [Google Scholar] [CrossRef]
- de Carvalho, F.E.; Ferraz, J.B.S.; Pedrosa, V.B.; Matos, E.C.; Eler, J.P.; Silva, M.R.; Guimarães, J.D.; Bussiman, F.; Silva, B.C.; Mulim, H.A. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genom. 2025, 26, 26. [Google Scholar] [CrossRef]
- Dementieva, N.V.; Dysin, A.P.; Shcherbakov, Y.S.; Nikitkina, E.V.; Musidray, A.A.; Petrova, A.V.; Mitrofanova, O.V.; Plemyashov, K.V.; Azovtseva, A.I.; Griffin, D.K. Risk of sperm disorders and impaired fertility in frozen–thawed bull semen: A genome-wide association study. Animals 2024, 14, 251. [Google Scholar] [CrossRef]
- Khan, M.Z.; Chen, W.; Naz, S.; Liu, X.; Liang, H.; Chen, Y.; Kou, X.; Liu, Y.; Ashraf, I.; Han, Y. Determinant genetic markers of semen quality in livestock. Front. Endocrinol. 2024, 15, 1456305. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Genome-wide association study for semen quality traits in German Warmblood stallions. Anim. Reprod. Sci. 2016, 171, 81–86. [Google Scholar] [CrossRef]
- Gaitskell-Phillips, G.; Martín-Cano, F.E.; Ortiz-Rodríguez, J.M.; Silva-Rodríguez, A.; Gil, M.C.; Ortega-Ferrusola, C.; Peña, F.J. In stallion spermatozoa, superoxide dismutase (cu–Zn)(SOD1) and the Aldo-keto-reductase family 1 member b (AKR1B1) are the proteins most significantly reduced by cryopreservation. J. Proteome Res. 2021, 20, 2435–2446. [Google Scholar] [CrossRef]
- Talluri, T.R.; Kumaresan, A.; Paul, N.; Sinha, M.K.; Ebenezer Samuel King, J.P.; Elango, K.; Sharma, A.; Raval, K.; Legha, R.A.; Pal, Y. High throughput deep proteomic analysis of seminal plasma from stallions with contrasting semen quality. Syst. Biol. Reprod. Med. 2022, 68, 272–285. [Google Scholar] [CrossRef]
- Restrepo, G.; Rojano, B.; Usuga, A. Relationship of cysteine-rich secretory protein-3 gene and protein with semen quality in stallions. Reprod. Domest. Anim. 2019, 54, 39–45. [Google Scholar] [CrossRef]
- Schrimpf, R.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Implication of FKBP 6 for Male Fertility in Horses. Reprod. Domest. Anim. 2015, 50, 195–199. [Google Scholar] [CrossRef]
- Raudsepp, T.; McCue, M.E.; Das, P.J.; Dobson, L.; Vishnoi, M.; Fritz, K.L.; Schaefer, R.; Rendahl, A.K.; Derr, J.N.; Love, C.C. Genome-wide association study implicates testis-sperm specific FKBP6 as a susceptibility locus for impaired acrosome reaction in stallions. PLoS Genet. 2012, 8, e1003139. [Google Scholar] [CrossRef] [PubMed]
- Guasti, P.; Souza, F.; Scott, C.; Papa, P.; Camargo, L.; Schmith, R.; Monteiro, G.; Hartwig, F.; Papa, F. Equine seminal plasma and sperm membrane: Functional proteomic assessment. Theriogenology 2020, 156, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, I.; Munoz, P.M.; Salido, G.; Pena, F.; Tapia, J. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal 2016, 10, 1182–1191. [Google Scholar] [CrossRef]
- Blommaert, D.; Sergeant, N.; Delehedde, M.; Jouy, N.; Mitchell, V.; Franck, T.; Donnay, I.; Lejeune, J.-P.; Serteyn, D. Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: Promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology 2019, 131, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Novak, S.; Smith, T.; Paradis, F.; Burwash, L.; Dyck, M.; Foxcroft, G.; Dixon, W. Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 2010, 74, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, K.; Hamann, H.; Stock, K.; Klewitz, J.; Martinsson, G.; Distl, O.; Sieme, H. Evaluation of ACE, SP17, and FSHB as candidates for stallion fertility in Hanoverian warmblood horses. Anim. Reprod. Sci. 2011, 126, 200–206. [Google Scholar] [CrossRef]
- Bueno, V.L.C.; Bastos, H.B.d.A.; Centeno, L.A.; Kretzmann Filho, N.A.; Mattos, R.C.; Rechsteiner, S.F. PLCζ, WBP2NL and TNF-α expression in spermatozoa is associated with stallion fertility and seminal quality? Anim. Reprod. 2024, 21, e20230088. [Google Scholar] [CrossRef]
- Giesecke, K.; Hamann, H.; Stock, K.; Woehlke, A.; Sieme, H.; Distl, O. Evaluation of SPATA1-associated markers for stallion fertility. Anim. Genet. 2009, 40, 359–365. [Google Scholar] [CrossRef]
- Gmel, A.I.; Burger, D.; Neuditschko, M. A novel QTL and a candidate gene are associated with the progressive motility of Franches-Montagnes stallion spermatozoa after thaw. Genes 2021, 12, 1501. [Google Scholar] [CrossRef]
- Doty, A.; Buhi, W.; Benson, S.; Scoggin, K.; Pozor, M.; Macpherson, M.; Mutz, M.; Troedsson, M. Equine CRISP3 modulates interaction between spermatozoa and polymorphonuclear neutrophils. Biol. Reprod. 2011, 85, 157–164. [Google Scholar] [CrossRef]
- Fedorka, C.; Scoggin, K.; Squires, E.; Ball, B.; Troedsson, M. Expression and localization of cysteine-rich secretory protein-3 (CRISP-3) in the prepubertal and postpubertal male horse. Theriogenology 2017, 87, 187–192. [Google Scholar] [CrossRef]
- Hamann, H.; Jude, R.; Sieme, H.; Mertens, U.; Töpfer-Petersen, E.; Distl, O.; Leeb, T. A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses. Anim. Genet. 2007, 38, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Doty, A.L.; Miller, L.M.; Fedorka, C.E.; Troedsson, M.H. The role of equine seminal plasma derived cysteine rich secretory protein 3 (CRISP3) in the interaction between polymorphonuclear neutrophils (PMNs) and populations of viable or dead spermatozoa, and bacteria. Theriogenology 2024, 219, 22–31. [Google Scholar] [CrossRef]
- Bell, E.L.; Nagamori, I.; Williams, E.O.; Del Rosario, A.M.; Bryson, B.D.; Watson, N.; White, F.M.; Sassone-Corsi, P.; Guarente, L. SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development 2014, 141, 3495–3504. [Google Scholar] [CrossRef] [PubMed]
- Seifert, E.L.; Caron, A.Z.; Morin, K.; Coulombe, J.; He, X.H.; Jardine, K.; Dewar-Darch, D.; Boekelheide, K.; Harper, M.E.; McBurney, M.W. SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J. 2012, 26, 555–566. [Google Scholar] [CrossRef]
- Usuga, A.; Rojano, B.A.; Restrepo, G. Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reprod. Fertil. Dev. 2018, 30, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Schrimpf, R.; Dierks, C.; Martinsson, G.; Sieme, H.; Distl, O. Genome-wide association study identifies phospholipase C zeta 1 (PLCz1) as a stallion fertility locus in Hanoverian warmblood horses. PLoS One. 2014, 9, e109675. [Google Scholar] [CrossRef]
- Ghallab, A.M.; Shahat, A.M.; Fadl, A.M.; Ayoub, M.M.; Moawad, A.R. Impact of supplementation of semen extender with antioxidants on the quality of chilled or cryopreserved Arabian stallion spermatozoa. Cryobiology 2017, 79, 14–20. [Google Scholar] [CrossRef]
- El-Sharkawy, A.A.; Hattab, S.A.; Ghanema, I.I.; El-Garhy, M.N.; Soliman, M.K.; El-Badry, D.A. Effect of Different Semen Extenders on Post-Thawing Activity of Arabian Stallion Spermatozoa. Alex. J. Vet. Sci. 2016, 51, 178. [Google Scholar]
- Ghallab, A.; Abou-Ahmed, M.M.; Fadl, A.M.; El-Badry, D.A.; Shahat, A.M.; Moawad, A.R. Optimization of the protocol for cryopreservation of Arabian stallion spermatozoa: Effects of centrifugation, semen extenders and cryoprotectants. Cryoletters 2019, 40, 129–138. [Google Scholar] [PubMed]
- LeFrapper, L.; Walston, L.; Whisnant, C. Comparison of various extenders for storage of cooled stallion spermatozoa for 72 hours. J. Equine Vet. Sci. 2010, 30, 200–204. [Google Scholar] [CrossRef]
- Alamaary, M.S.; Ali, M.; Hiew, M.W.H.; Adamu, L.; Peter, I.D. Effects of four extenders on the quality of frozen semen in Arabian stallions. Vet. World 2019, 12, 34. [Google Scholar] [CrossRef]
- Nikitkina, E.; Musidray, A.; Krutikova, A.; Anipchenko, P.; Plemyashov, K.; Shiryaev, G. Efficiency of tris-based extender steridyl for semen cryopreservation in stallions. Animals 2020, 10, 1801. [Google Scholar] [CrossRef]
- Ghadimi, M.; Sharifi, S.D.; Najafi, A.; Mohammadi, H. Gallic acid supplementation partially ameliorates reproductive aging in rooster breeders by improving semen quality, sperm kinetics, hormones, and antioxidant status. Poult. Sci. 2024, 103, 103842. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh-Jahromi, M.; Jafari, F.; Parsanezhad, M.E.; Alaee, S. Evaluation of supplementation of cryopreservation medium with gallic acid as an antioxidant in quality of post-thaw human spermatozoa. Andrologia 2022, 54, e14571. [Google Scholar] [CrossRef]
- Güngör, Ş.; İnanç, M.E.; Avdatek, F.; Türkmen, R.; Taşdemir, U. The effect of gallic acid addition to tris-based extender on frozen bull semen. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 633–639. [Google Scholar]
- Gungor, S.; Inanc, M.E.; Ozturk, C.; Korkmaz, F.; Bastan, I.; Cil, B.; Kastelic, J.P. Gallic and carnosic acids improve quality of frozen-thawed ram spermatozoa. Andrologia 2019, 51, e13393. [Google Scholar] [CrossRef]
- Carneiro, J.A.; Canisso, I.F.; Bandeira, R.; Scheeren, V.; Freitas-Dell’Aqua, C.P.; Alvarenga, M.A.; Papa, F.O.; Dell’Aqua Jr, J.A. Effects of coenzyme Q10 on semen cryopreservation of stallions classified as having good or bad semen freezing ability. Anim. Reprod. Sci. 2018, 192, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Divar, M.R.; Azari, M.; Kafi, M. Nicotinic acid (Niacin) supplementation in cooling and freezing extenders enhances stallion semen characteristics. J. Equine Vet. Sci. 2020, 94, 103236. [Google Scholar] [CrossRef]
- Chelucci, S.; Pasciu, V.; Succu, S.; Addis, D.; Leoni, G.G.; Manca, M.E.; Naitana, S.; Berlinguer, F. Soybean lecithin–based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology 2015, 83, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.S.; Kaka, A.; Channo, A.; Bakhsh, M.; Kalwar, Q.; Sethar, A. Effect of soybean milk and tris egg yolk based extender on semen quality parameters of tharparkar bull. Univ. Sindh J. Anim. Sci. (USJAS) 2022, 6. [Google Scholar] [CrossRef]
- Ramirez-Perez, H.; Guerrero-Netro, H.M.; Torres-Rodríguez, P.; Díaz-Durán, M.; Boeta-Acosta, A.M.; Diaw, M. A combination of taurine and caffeine maintains sperm quality in equine semen during chilled storage. J. Adv. Vet. Anim. Res. 2021, 8, 635. [Google Scholar]
- Aurich, C. Recent advances in cooled-semen technology. Anim. Reprod. Sci. 2008, 107, 268–275. [Google Scholar] [CrossRef]
- Pereira, R.R.; Nogueira, B.G.; Milan, B.; Acacio, B.R.; Freitas-Dell’Aqua, C.P.; Souza, M.I.; Sampaio, B.F. Use low ozone dosages has positive effects on the cooling and cryopreservation of equine semen. J. Equine Vet. Sci. 2022, 108, 103800. [Google Scholar] [CrossRef]
- Moura, T.C.; Arruda, L.C.; Silva, R.A.A.; Silva, R.P.; Oliveira, A.S.; Tobal, L.F.; Batista, A.M.; Carneiro, G.F.; Guerra, M.M. Diluent containing dimethylformamide added with sucrose improves in vitro quality after freezing/thawing stallion sperm. J. Equine Vet. Sci. 2022, 109, 103825. [Google Scholar] [CrossRef]
- van Heule, M.; Verstraete, M.; Blockx, Z.; De Blende, P.; Dini, P.; Daels, P. Slow cooling is beneficial for storage of frozen-thawed equine spermatozoa. J. Equine Vet. Sci. 2022, 118, 104132. [Google Scholar] [CrossRef] [PubMed]
Factors | Affecting Semen-Quality Traits | References |
---|---|---|
Environmental Conditions | Different environmental conditions, such as humidity, temperature, and seasonal changes, cause stress to cells, which, in turn, decreases sperm motility and viability. | [69] |
Collection Techniques | Techniques such as the use of artificial vaginas can influence semen volume, concentration, and the composition of seminal plasma. | [70] |
Bacteria | Bacterial contamination reduces sperm motility and semen shelf life. | [71] |
Cryopreservation | The formation of ice crystals during freezing can harm sperm cells, affecting their head shape and size, and disrupt their movement. | [72,73] |
Oxidative Stress | Oxidative stress leads to membrane damage, DNA fragmentation, and protein degradation in stored semen. | [18] |
Osmotic Stress | Hypertonic media change sperm metabolism, leading to reduced motility and viability. | [74] |
Apoptosis | It causes damage to membranes, leads to DNA fragmentation, and results in the formation of apoptotic bodies, ultimately decreasing sperm fertility. | [20] |
Stallion Age | Semen quality declines in very young (<3 years) and older stallions (>11 years). | [75] |
Centrifugation Parameters | High force and prolonged duration can result in sperm loss when removing the supernatant. | [76] |
Lack of Standardization | Inconsistent laboratory techniques lead to varying assessments of semen quality. | [70] |
Seasonal Effects | Affect motility, membrane integrity, and sperm DNA fragmentation | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Chen, W.; Shi, L.; Wang, M.; Geng, M.; Na, J.; Akhtar, M.F.; Khan, M.Z.; Wang, C. Challenges and Enhancing Strategies of Equine Semen Preservation: Nutritional and Genetic Perspectives. Vet. Sci. 2025, 12, 807. https://doi.org/10.3390/vetsci12090807
Ullah A, Chen W, Shi L, Wang M, Geng M, Na J, Akhtar MF, Khan MZ, Wang C. Challenges and Enhancing Strategies of Equine Semen Preservation: Nutritional and Genetic Perspectives. Veterinary Sciences. 2025; 12(9):807. https://doi.org/10.3390/vetsci12090807
Chicago/Turabian StyleUllah, Abd, Wenting Chen, Limeng Shi, Menghan Wang, Mingyang Geng, Jincheng Na, Muhammad Faheem Akhtar, Muhammad Zahoor Khan, and Changfa Wang. 2025. "Challenges and Enhancing Strategies of Equine Semen Preservation: Nutritional and Genetic Perspectives" Veterinary Sciences 12, no. 9: 807. https://doi.org/10.3390/vetsci12090807
APA StyleUllah, A., Chen, W., Shi, L., Wang, M., Geng, M., Na, J., Akhtar, M. F., Khan, M. Z., & Wang, C. (2025). Challenges and Enhancing Strategies of Equine Semen Preservation: Nutritional and Genetic Perspectives. Veterinary Sciences, 12(9), 807. https://doi.org/10.3390/vetsci12090807