Comparison of Three Different Balanced Sedative-Anaesthetic Protocols in Captive Baboons (Papio hamadryas)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-a | Alveolar-arterial gradient |
a/A ratio | Alveolar-arterial ratio |
ANOVA | Analysis of variance |
BE | Base excess |
BUN | Blood urea nitrogen |
Ca++ | Calcium ion |
Cl− | Chloride ion |
DAP | Diastolic arterial pressure |
ETCO 2 | End-tidal carbon dioxide |
GEE | Generalized Estimating Equations |
HCO3− | Bicarbonate |
HCT | Haematocrit |
Hgb | Haemoglobin |
HR | Heart rate |
IM | Intramuscolar |
IV | Intravenous |
K+ | Potassium ion |
KDM | Ketamine-dexmedetomidine-methadone combination |
KDM_G | Ketamine-dexmedetomidine-methadone group |
MAP | Mean arterial pressure |
MDM | Midazolam-dexmedetomidine-methadone combination |
MDM_G | Midazolam-dexmedetomidine-methadone group |
Na+ | Sodium ion |
NHPs | Non-human primates |
PaCo2 | Partial pressure of arterial carbon dioxide |
PaO2 | Partial pressure of arterial oxygen |
pH | Potential of hydrogen |
RR | Respiratory rate |
SAP | Systolic arterial pressure |
SC | Subcutaneous |
SpO2 | Peripheral oxygen saturation |
T | Rectal body temperature |
T0 | Intubation time |
TZD | Tiletamine-zolazepam-dexmedetomidine combination |
TZD_G | Tiletamine-zolazepam-dexmedetomidine group |
References
- Molinaro, H.G.; Minier, D.; Jaffe, K.E. Using Social Network Analysis to Inform on the Process of One-Male-Unit Formation of Hamadryas Baboons (Papio hamadryas) in Captivity. Zoo Biol. 2022, 41, 108–121. [Google Scholar] [CrossRef]
- Keet, D.F.; Kriek, N.P.; Bengis, R.G.; Grobler, D.G.; Michel, A. The Rise and Fall of Tuberculosis in a Free-Ranging Chacma Baboon Troop in the Kruger National Park. Onderstepoort J. Vet. Res. 2000, 67, 115–122. [Google Scholar]
- Hotchkiss, C.E.; Young, M.A. Comparative Risk of Human Injury/Exposure While Collecting Blood from Sedated and Unsedated Nonhuman Primates. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 371–376. [Google Scholar] [CrossRef]
- McConnell, E.E.; Basson, P.A.; de Vos, V.; Myers, B.J.; Kuntz, R.E. A Survey of Diseases among 100 Free-Ranging Baboons (Papio ursinus) from the Kruger National Park. Onderstepoort J. Vet. Res. 1974, 41, 97–167. [Google Scholar] [PubMed]
- Association of Primate Veterinarians Guidelines for Nonhuman Primates Restraint. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 315–319.
- Wallace, P.Y.; Asa, C.S.; Agnew, M.; Cheyne, S.M. A Review of Population Control Methods in Captive-Housed Primates. Anim. Welf. 2016, 25, 7–20. [Google Scholar] [CrossRef]
- Olberg, R.-A.; Sinclair, M. Monkeys and Gibbons. In Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd ed.; West, G., Heard, D., Caulkett, N., Eds.; Wiley Blackwell: Ames, IA, USA, 2014; pp. 561–572. ISBN 9780813811833. [Google Scholar]
- Woolfson, M.W.; Foran, J.A.; Freedman, H.M.; Moore, P.A.; Shulman, L.B.; Schnitman, P.A. Immobilization of Baboons (Papio anubis) Using Ketamine and Diazepam. Lab. Anim. Sci. 1980, 30, 902–904. [Google Scholar]
- White, G.L.; Cummings, J.F. A Comparison of Ketamine and Ketamine-Xylazine in the Baboon. Vet. Med. Small Anim. Clin. 1979, 74, 392–394, 396. [Google Scholar]
- Langoi, D.L.; Mwethera, P.G.; Abelson, K.S.P.; Farah, I.O.; Carlsson, H.E. Reversal of Ketamine/Xylazine Combination Anesthesia by Atipamezole in Olive Baboons (Papio anubis). J. Med. Primatol. 2009, 38, 404–410. [Google Scholar] [CrossRef]
- Lee, V.K.; Flynt, K.S.; Haag, L.M.; Taylor, D.K. Comparison of the Effects of Ketamine, Ketamine-Medetomidine, and Ketamine-Midazolam on Physiologic Parameters and Anesthesia-Induced Stress in Rhesus (Macaca mulatta) and Cynomolgus (Macaca fascicularis) Macaques. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 57–63. [Google Scholar]
- Reiners, J.K.; Gregersen, H.A. How to Plan and Provide General Anesthesia for a Troop of 98 Hamadryas Baboons (Papio hamadryas) for Contraceptive and Preventative Health Interventions. Am. J. Vet. Res. 2024, 87, ajvr.23.12.0274. [Google Scholar] [CrossRef]
- Ansah, O.B.; Raekallio, M.; Vainio, O. Comparison of Three Doses of Dexmedetomidine with Medetomidine in Cats Following Intramuscular Administration. J. Vet. Pharmacol. Ther. 1998, 21, 380–387. [Google Scholar] [CrossRef]
- Lee, S. Dexmedetomidine: Present and Future Directions. Korean J. Anesth. 2019, 72, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, A.; Rao, G.D.J.; George, R.S.; Leela, V.; Bharathidasan, M.; William, B.J. Dexmedetomidine, Ketamine and Isoflurane Anaesthesia in Bonnet Macaques (Macaca radiata). Pharma Innov. J. 2019, 8, 1–5. [Google Scholar]
- Selmi, A.; Morumbi, U.A.; Lins, B.; Morumbi, U.A. Comparison of Medetomidine-Ketamine Anesthesia in Golden Headed Lion Tamarins. Can. Vet. J. 2014, 45, 481–485. [Google Scholar]
- Lee, J.; Hong, S.; Lee, S.; Kim, Y.; Kim, M. Immobilization with Ketamine HCl and Tiletamine-Zolazepam in Cynomolgus Monkeys. J. Vet. Sci. 2003, 4, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Fahlman, A.; Bosi, E.J.; Nyman, G. Reversible Anesthesia of Southeast Asian Primates with Medetomidine, Zolazepam, and Tiletamine. J. Zoo. Wildl. Med. 2006, 37, 558–561. [Google Scholar] [CrossRef]
- Scardia, A.; Laricchiuta, P.; Stabile, M.; Acquafredda, C.; Lacitignola, L.; Uva, A.; Crovace, A.; Staffieri, F. Use of Laryngeal Mask and Anesthetic Management in Hamadryas Baboons (Papio hamadryas) Undergoing Laparoscopic Salpingectomy—A Case Series. Vet. Sci. 2023, 10, 158. [Google Scholar] [CrossRef]
- Kimura, T.; Koike, T.; Matsunaga, T.; Sazi, T.; Hiroe, T.; Kubota, M. Evaluation of a Medetomidine-Midazolam Combination for Immobilizing and Sedating Japanese Monkeys (Macaca fuscata). J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 33–38. [Google Scholar] [PubMed]
- Fagundes, N.; Castro, M.L.; Silva, R.A.; De Lima, M.P.A.; Braga, C.S.; Dos Santos, E.A.R.; Oliveira, M.A.; Mattoso, C.R.S.; Pimenta, E.L.M.; Beier, S.L. Comparison of Midazolam and Butorphanol Combined with Ketamine or Dexmedetomidine for Chemical Restraint in Howler Monkeys (Alouatta guariba clamitans) for Vasectomy. J. Med. Primatol. 2020, 49, 179–187. [Google Scholar] [CrossRef]
- Brainard, B.; Darrow, E.J. Sedation and Anesthesia in the Great Apes—An Overview. In Proceedings of the American the 45th Association of Zoo Veterinarians Conference, Salt Lake City, UT, USA, 28 September 2013; pp. 26–35. [Google Scholar]
- Bäckström, L.C. A Novel Protocol for Anaesthesia of Chacma Baboons. Master’s Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2020. [Google Scholar]
- Nussmeier, N.A.; Benthuysen, J.L.; Steffey, E.P.; Anderson, J.H.; Carstens, E.E.; Eisele, J.H.J.; Stanley, T.H. Cardiovascular, Respiratory, and Analgesic Effects of Fentanyl in Unanesthetized Rhesus Monkeys. Anesth. Analg. 1991, 72, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Liguori, A.; Morse, W.H.; Bergman, J. Respiratory Effects of Opioid Full and Partial Agonists in Rhesus Monkeys. J. Pharmacol. Exp. Ther. 1996, 277, 462–472. [Google Scholar] [CrossRef]
- Kishioka, S.; Paronis, C.A.; Lewis, J.W.; Woods, J.H. Buprenorphine and Methoclocinnamox: Agonist and Antagonist Effects on Respiratory Function in Rhesus Monkeys. Eur. J. Pharmacol. 2000, 391, 289–297. [Google Scholar] [CrossRef]
- Caramalac, S.M.; Souza, A.F.d.; Caramalac, S.M.; Albuquerque, V.B.d.; Azuaga, L.B.d.S.; Frazílio, F.d.O. Comparative Study between Ketamine-S-Dexmedetomidine and Ketamine-S-Midazolam-Methadone in the Anesthesia of Capuchin Monkeys (Sapajus apella). Ciênc. Rural 2022, 52, e20200823. [Google Scholar] [CrossRef]
- Bertrand, H.G.M.J.; Ellen, Y.C.; O’Keefe, S.; Flecknell, P.A. Comparison of the Effects of Ketamine and Fentanyl-Midazolam-Medetomidine for Sedation of Rhesus Macaques (Macaca mulatta). BMC Vet. Res. 2016, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Biancani, B.; Carosi, M.; Capasso, M.; Rossi, G.; Tafuri, S.; Ciani, F.; Cotignoli, C.; Zinno, F.; Venturelli, E.; Galliani, M.; et al. Assessment of Oxidative Stress and Biometric Data in a Captive Colony of Hamadryas Baboons (Papio hamadryas Linnaeus, 1758) at the Ravenna Zoo Safari (Italy). Vet. Sci. 2025, 12, 466. [Google Scholar] [CrossRef]
- Grubb, T.; Sager, J.; Gaynor, J.S.; Montgomery, E.; Parker, J.A.; Shafford, H.; Tearney, C. 2020 AAHA Anesthesia and Monitoring Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2020, 56, 59–82. [Google Scholar] [CrossRef]
- Hopper, K.; Powell, L.L. Basics of Mechanical Ventilation for Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 955–969. [Google Scholar] [CrossRef]
- Dick, E.J.; Owston, M.A.; David, J.M.; Sharp, R.M.; Rouse, S.; Hubbard, G.B. Mortality in Captive Baboons (Papio Spp.): A-23-Year Study. J. Med. Primatol. 2014, 43, 169–196. [Google Scholar] [CrossRef]
- Palomba, N.; Vettorato, E.; De Gennaro, C.; Corletto, F. Peripheral Nerve Block Versus Systemic Analgesia in Dogs Undergoing Tibial Plateau Levelling Osteotomy: Analgesic Efficacy and Pharmacoeconomics Comparison. Vet. Anaesth. Analg. 2020, 47, 119–128. [Google Scholar] [CrossRef]
- Cohen, J. The Concepts of Power Analysis. In Statistical Power Analysis for the Behavioral Sciences; Cohen, J., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 1–18. ISBN 9781626239777. [Google Scholar]
- Cardoso, C.G.; Marques, D.R.; da Silva, T.H.; de Mattos-Junior, E. Cardiorespiratory, Sedative and Antinociceptive Effects of Dexmedetomidine Alone or in Combination with Methadone, Morphine or Tramadol in Dogs. Vet. Anaesth. Analg. 2014, 41, 636–643. [Google Scholar] [CrossRef]
- Canfrán, S.; Bustamante, R.; González, P.; Cediel, R.; Re, M.; de Segura, I.A.G. Comparison of Sedation Scores and Propofol Induction Doses in Dogs after Intramuscular Administration of Dexmedetomidine Alone or in Combination with Methadone, Midazolam, or Methadone plus Midazolam. Vet. J. 2016, 210, 56–60. [Google Scholar] [CrossRef]
- Khan, Z.P.; Ferguson, C.N.; Jones, R.M. Alpha-2 and Imidazoline Receptor Agonists Their Pharmacology and Therapeutic Role. Anaesthesia 1999, 54, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Posner, L.P.; Burns, P. Injectable Anesthetic Agents. In Veterinary Pharmacology and Therapeutics; Riviere, J.E., Papich, M.G., Adams, R.H., Eds.; Wiley-Blackwell: Ames, IA, USA, 2008; pp. 265–299. [Google Scholar]
- Berry, S.H. Injectable Anesthetics. In Veterinary Anesthesia And Analgesia: The Fifth Edition of Lumb and Jones; Grimm, K.A., Lamont, L.A., Tranquilli, W.J., Greene, S.A., Robertson, S.A., Eds.; Wiley Blackwell: Ames, IA, USA, 2015; pp. 277–296. ISBN 9781118526231. [Google Scholar]
- Maclean, J.M.; Phippard, A.F.; Thompson, J.F.; Gillin, A.G.; Horvath, J.S.; Duggin, G.G.; Tiller, D.J. Hemodynamics of Conscious Unrestrained Baboons, Including Cardiac Output. J. Appl. Physiol. 1990, 68, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Tatoyan, S.; Cherkovich, G. The Heart Rate in Monkeys (Baboons and Macaques) in Different Physiological States Recorded by Radiotelemetry. Folia Primatol. 1972, 17, 255–266. [Google Scholar] [CrossRef]
- Murrell, J.C.; Hellebrekers, L.J. Medetomidine and Dexmedetomidine: A Review of Cardiovascular Effects and Antinociceptive Properties in the Dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef]
- Ochi, T.; Nishiura, I.; Tatsumi, M.; Hirano, Y.; Yahagi, K.; Sakurai, Y.; Matsuyama-Fujiwara, K.; Sudo, Y.; Nishina, N.; Koyama, H. Anesthetic Effect of a Combination of Medetomidine-Midazolam-Butorphanol in Cynomolgus Monkeys (Macaca fascicularis). J. Vet. Med. Sci. 2014, 76, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, A.J. Cardiovascular and Respiratory Responses to Ketamine Hydrochloride in the Rhesus Monkey (Macaca mulatta). Lab. Anim. Sci. 1977, 27, 69–71. [Google Scholar]
- Amari, M.; Brioschi, F.A.; Rabbogliatti, V.; Di Cesare, F.; Pecile, A.; Giordano, A.; Moretti, P.; Magnone, W.; Bonato, F.; Ravasio, G. Comparison of Two Injectable Anaesthetic Protocols in Egyptian Fruit Bats (Rousettus aegyptiacus) Undergoing Gonadectomy. Sci. Rep. 2022, 12, 15962. [Google Scholar] [CrossRef]
- Schuurman, H.J.; Smith, H.T.; Cozzi, E. Reference Values for Clinical Chemistry and Clinical Hematology Parameters in Baboons. Xenotransplantation 2004, 11, 511–516. [Google Scholar] [CrossRef]
- Williams, A.J. ABC of Oxygen: Assessing and Interpreting Arterial Blood Gases and Acid-Base Balance. BMJ 1998, 317, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Popilskis, S.J.; Lee, D.R.; Elmore, D.B. Anesthesia and Analgesia in Nonhuman Primates. In Anesthesia and Analgesia in Laboratory Animals; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Elsevier: London, UK, 2008. [Google Scholar]
- Harewood, W.J.; Gillin, A.; Hennessy, A.; Armistead, J.; Horvath, J.S.; Tiller, D.J. Biochemistry and Haematology Values for the Baboon (Papio hamadryas): The Effects of Sex, Growth, Development and Age. J. Med. Primatol. 1999, 28, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Arevalo, J.A.; Osmond, A.D.; Leija, R.G.; Curl, C.C.; Tovar, A.P. Lactate in Contemporary Biology: A Phoenix Risen. J. Physiol. 2022, 600, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Hampton, C.E.; Riebold, T.W.; LeBlanc, N.L.; Scollan, K.F.; Mandsager, R.E.; Sisson, D.D. Effects of Intravenous Administration of Tiletamine-Zolazepam, Alfaxalone, Ketamine-Diazepam, and Propofol for Induction of Anesthesia on Cardiorespiratory and Metabolic Variables in Healthy Dogs before and during Anesthesia Maintained with Isoflurane. Am. J. Vet. Res. 2019, 80, 33–44. [Google Scholar] [CrossRef]
- Fiorello, C.V.; Rapoport, G.S.; Rivera, S.; Clauss, T.M.; Brainard, B.M. Comparison of Anesthesia with Fully Reversible Dexmedetomidine-Butorphanol-Midazolam versus Ketamine-Midazolam in Captive Small-Clawed Otters (Aonyx cinereus). J. Am. Vet. Med. Assoc. 2014, 244, 107–114. [Google Scholar] [CrossRef]
TZD_G | KDM_G | MDM_G | ||
---|---|---|---|---|
Age | Juveniles (n) | 5 (29.4%) | 5 (21.7%) | 4 (44.4%) |
Sub-adult (n) | 2 (11.8%) | 2 (8.7%) | 1 (11.2%) | |
Adult (n) | 10 (58.8%) | 16 (69.6%) | 4 (44.4%) | |
Gender | Males (n) | 8 (47.1%) b | 18 (78.3%) a | 3 (33.3%) b |
Females (n) | 9 (52.9%) b | 5 (21.7%) a | 6 (66.7%) b | |
Body weight (kg) | Estimated | 10 (8.5–20) a,b | 20 (10–20) a | 10 (4–10) b |
Actual | 9.1 (6.5–18.1) a,b | 17.8 (8.9–21.1) a | 7.5 (2.9–9.5) b | |
Actual drug dosages (mg/kg) | Tiletamine-zolazepam 3.7 ± 0.6 | Ketamine 6.5 ± 1.3 | Midazolam 2.4 ± 0.6 | |
Methadone 0.21 ± 0.04 | Methadone 0.24 ± 0.06 | |||
Dexmedetomidine 24.8 ± 6.3 | Dexmedetomidine 32.2 ± 6.5 | Dexmedetomidine 72.8 ± 19.5 |
TZD_G | KDM_G | MDM_G | |
---|---|---|---|
Time to seated position | 2.5 min (1.0–3.8) a | 4.0 min (2.8–5.0) a | 3.0 min (2.5–3.5) a |
Time to lateral recumbency | 4.0 min (2.5–6.5) a | 5.0 min (3.0–6.0) a | 5.0 min (4.0–6.5) a |
Sedation score | 20 (20–20) a | 20 (19–20) a | 19 (15–20) b |
Recovery time | 19 min (11.5–30) a | 6 min (4–12) b | 4 (2.5–5) b |
Recovery score | 9 (6–12) a | 0 (0–6) b | 0 (0–0) b |
Parameter | TZD_G | KDM_G | MDM_G |
---|---|---|---|
pH | 7.37 (7.31–7.39) a | 7.40 (7.35–7.43) b | 7.33 (7.31–7.37) a |
PaO2 (mmHg) | 64.5 (62.9–81.5) a | 78.4 (63.9–88.3) a | 65.6 (61.6–68.9) a |
PaCO2 (mmHg) | 55.6 (48.2–61.5) a | 48.4 (44.5–52.3) b | 49.7 (43.1–56.5) a,b |
A-a gradient (mmHg) | 34.7 (21.1–47.2) a | 18.5 (6.7–47.2) b | 32.0 (26.3–52.2) a,b |
a/A ratio (%) | 68.3 (57.9–76.5) a | 81.1 (67.5–93.6) b | 63.7 (49.6–73.0) a,b |
HCO3− (mmol/L) | 30.1 (28.6–32.8) a | 29.9 (27.6–31.5) a | 27.1 (24.1–29.8) a |
Na+ (mmol/L) | 149.0 (147.0–150.0) a | 148.0 (146.0–149.0) a | 149.0 (147.0–151.0) a |
K+ (mmol/L) | 2.7 (2.5–3.3) a | 3.1 (2.9–3.4) a | 3.1 (2.7–3.3) a |
Ca++ (mmol/L) | 1.17 (1.14–1.22) a | 1.15 (1.08–1.25) a | 1.27 (1.16–1.32) a |
Cl− (mmol/L) | 111.0 (105.0–112.0) a | 107.0 (104.0–112.0) a | 111.5 (110.3–112.8) a |
BE (mmol/L) | 3.50 (2.0–6.0) a | 3.90 (2.5–6.0) b | 0.55 (-1.58–2.75) a |
HCT (%) | 38.0 (36.5–43.0) a | 40.0 (38.0–43.0) b | 38.5 (37.3–39.0) a,b |
Hgb (g/dL) * | 13.0 (12.6–14.5) | 13.5 (12.9–14.5) | 13.0 (12.7–14.5) |
Glucose (mmol/L) | 7.5 (6.0–8.0) a | 7.0 (6.0–8.0) a | 8.0 (6.3–8.0) a |
Lactate (mmol/L) | 0.30 (0.30–0.41) a | 0.51 (0.36–0.65) a,b | 0.65 (0.42–2.12) b |
BUN (mg/dL) | 9.0 (7.5–12.0) a | 14.0 (6.0–17.0) a | 12.0 (7.5–14.3) a |
Urea (mmol/L) Creatinine (mg/dL) | 3.3 (2.8–4.4) a 0.54 (0.40–0.75) a | 4.9 (2.6–6.2) a 0.95 (0.69–1.27) b | 4.3 (2.7–5.2) a 0.49 (0.36–0.68) a |
Time Points | T0 | T10 | T20 | T30 | T40 | T50 | T60 | |
---|---|---|---|---|---|---|---|---|
Groups | ||||||||
HR (bpm) | ||||||||
TZD_G | 60 (57–70) a | 62 (55–74.5) a | 59 (56.5–70.5) a | 55 (51.5–66) a | 55 (49–61) a | 58 (51–65) a | 56 (51–64) a | |
KDM_G | 74 (60–79) a | 68 (59–73) a,b | 68 (58–74) a,b | 68 (56.5–72.5) b | 68 (54–70) a,b | 57 (54.5–69) a,b | 64 (53.5–66.5) b | |
MDM_G | 75 (64–86) a | 76 (70–84) a,b | 73 (72.5–81) a,b | 67 (61.5–77) a,b | 64.5 (58.5–66) b | 61 (55–63.5) a,b | 62 (60–62) b | |
RR (bpm) | ||||||||
TZD_G | 21 (13.5–28) a | 23 (14–26.5) a | 21 (16.5–25.5) a | 21 (16–24) a | 20 (17.5–23) a | 22 (15–26) a | 22.5 (20–25.5) a | |
KDM_G | 17 (13–20) a | 18 (14–20) a,b | 17 (14–20) a,b | 17 (14.5–20.5) a,b | 15.5 (13–21) a,b | 16.5 (13.5–23) b | 19 (17–26) a,b | |
MDM_G | 30 (25–35) a | 33 (30–36) a,b | 32 (24.5–35) a,b | 30 (24–33) b | 30.5 (25–35.5) b | 28 (25.5–32) b | 23 (21–23) a,b | |
SAP (mmHg) | ||||||||
TZD_G | 100 (84.5–102) a | 93 (87–101.5) a | 92 (86.5–103.5) a | 93 (90–106.5) a | 91 (79–95.5) a | 93 (78–97) a | 93 (85–100) a | |
KDM_G | 96.5 (91–113) a | 99 (92–106) a,b | 98 (90–115) a,b | 96 (84–116) a,b | 96 (84–102) a,b | 98 (90.5–104.5) b | 105 (98.5–126) a,b | |
MDM_G | 111.5 (90.5–118) a | 96 (89–116) a,b | 87.5 (73–113) a,b | 88 (72.5–100.5) b | 88.5 (85–100) a,b | 94 (86–102) b | 91.5 (83–91.5) b | |
MAP (mmHg) | ||||||||
TZD_G | 71 (57–79.5) a | 70 (65–80.5) a | 73 (63.5–79.5) a | 72 (63.5–81) a | 66.5 (59–76) a | 68 (62.5–75.5) a | 66.5 (59–74) a | |
KDM_G | 72 (65–87.5) a | 73 (65.5–85) a,b | 69 (65–80) a,b | 67 (60.5–82) a,b | 66 (62–77) a,b | 73 (60–80) a,b | 75 (65–91) b | |
MDM_G | 84.5 (70–92) a | 77 (67–86) a,b | 67 (59–82) a,b | 64 (53–74) a,b | 68 (60–79.5) a,b | 75.5 (60–87) b | 73 (55–73) b | |
DAP (mmHg) | ||||||||
TZD_G | 60 (55.5–70) a | 62 (58–70) a | 66 (55.5–70.5) a | 62 (55.5–67) a | 60 (54–66.5) a | 61 (55.5–65.5) a | 59 (53–63.5) a | |
KDM_G | 61 (54–79) a | 66 (57–75) a,b | 62 (58–73) a,b | 59 (52.5–74) a,b | 57 (53–73) a,b | 68 (52–72.5) a,b | 69 (54.5–76) b | |
MDM_G | 75.5 (61.5–83) a | 70.5 (61–76.5) a,b | 61 (54–74) a,b | 58 (47–65.5) a,b | 63 (52.5–73) b | 66 (51.5–78) b | 66 (49–66) b | |
T (°C) | ||||||||
TZD_G | 34.5 (33.9–35.7) a | 34.2 (33.3–34.9) a | 33.7 (33.1–34.9) a | 33.4 (32.9–34.9) a | 33.2 (32.4–33.6) a | 33.1 (32.2–33.3) a | 32.6 (32.1–33.2) a | |
KDM_G | 36.2 (35–36.8) a | 36.2 (34.8–36.7) a,b | 36 (34.3–36.6) a,b | 36 (34–36.8) a,b | 35.9 (34.9–36.3) a,b | 36 (34.9–36.4) a,b | 35.7 (34.7–36.4) b | |
MDM_G | 35.5 (33.4–35.9) a | 34.4 (32.7–35.8) a,b | 34.9 (32.7–35.8) a,b | 33.8 (32.6–35.2) a,b | 32.5 (32.3–34.8) a,b | 32.5 (32.1–33.9) a,b | 32.5 (32.5–32.5) b | |
EtCO2 | ||||||||
TZD_G | 44 (37–44) a | 41 (38–47) a | 42 (38–46) a | 43.5 (36.5–47) a | 41 (37–45) a | 40 (35–45) a | 46 (38–47) a | |
KDM_G | 41 (36.5–47) a | 39.5 (37–44) a,b | 38 (36–43) a,b | 38 (36–42.5) a,b | 40 (36–44) a,b | 40 (37–43) a,b | 40 (38–42) b | |
MDM_G | 38.5 (38–41) a | 39 (36.5–42) a | 40 (35–43.5) a,b | 41 (37–41.5) a,b | 37 (34.5–39) a,b | 32 (30–36) a,b | 30.5 (28–30.5) b | |
SpO2 | ||||||||
TZD_G | 93 (88.5–97.5) a | 96 (91.5–98) a | 95 (90.5–97.5) a | 96 (93.5–98.5) a | 96 (91–99) a | 97 (94–99.5) a | 93 (89–96) a | |
KDM_G | 95 (91–97) a | 96 (93–100) a | 96 (91–99) a | 95 (93–98.5) a | 96 (94–98) a | 98 (96–99) a | 96 (96–99) a | |
MDM_G | 91.5 (89–96) a | 96 (87–99) a | 97 (91–98) a | 96 (88.5–97.5) a | 94 (92.5–97) a | 92.5 (91–95) a | 91.5 (88–91.5) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amari, M.; Brioschi, F.A.; Cagnardi, P.; Sala, G.; Ferrari, F.; Capasso, M.; Elia, L.; Venturelli, E.; Di Cesare, F.; Zinno, F.; et al. Comparison of Three Different Balanced Sedative-Anaesthetic Protocols in Captive Baboons (Papio hamadryas). Vet. Sci. 2025, 12, 859. https://doi.org/10.3390/vetsci12090859
Amari M, Brioschi FA, Cagnardi P, Sala G, Ferrari F, Capasso M, Elia L, Venturelli E, Di Cesare F, Zinno F, et al. Comparison of Three Different Balanced Sedative-Anaesthetic Protocols in Captive Baboons (Papio hamadryas). Veterinary Sciences. 2025; 12(9):859. https://doi.org/10.3390/vetsci12090859
Chicago/Turabian StyleAmari, Martina, Federica Alessandra Brioschi, Petra Cagnardi, Giulia Sala, Francesco Ferrari, Michele Capasso, Luigi Elia, Elena Venturelli, Federica Di Cesare, Francesco Zinno, and et al. 2025. "Comparison of Three Different Balanced Sedative-Anaesthetic Protocols in Captive Baboons (Papio hamadryas)" Veterinary Sciences 12, no. 9: 859. https://doi.org/10.3390/vetsci12090859
APA StyleAmari, M., Brioschi, F. A., Cagnardi, P., Sala, G., Ferrari, F., Capasso, M., Elia, L., Venturelli, E., Di Cesare, F., Zinno, F., & Ravasio, G. (2025). Comparison of Three Different Balanced Sedative-Anaesthetic Protocols in Captive Baboons (Papio hamadryas). Veterinary Sciences, 12(9), 859. https://doi.org/10.3390/vetsci12090859