Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveys and Ethnoveterinary Remedies Identification
2.2. Plant Extract Preparation and Analysis
2.3. Animals, Faecal Sampling, and Ethnoveterinary Remedies Administration
- Treated group 1 (TG1) treated per OS (P.O. i.e., oral administration) with 50 mL of P. granatum macerate as single dose;
- Treated group 2 (TG2) treated with 50 mL/P.O. of A. campestris macerate as single dose;
- Treated group 3 (TG3) treated with 50 mL/P.O. of S. caprea macerate as single dose;
- Control group (CG) untreated.
2.4. Parasitological Studies and Evaluation Anthelmintic Efficacy
3. Results
3.1. Surveys and Ethnoveterinary Remedy Identification and Characterization
3.2. Parasitological Studies and Anthelmintic Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Paraskevopoulou, C.; Theodoridis, A.; Johnson, M.; Ragkos, A.; Arguile, L.; Smith, L.; Vlachos, D.; Arsenos, G. Sustainability assessment of goat and sheep farms: A comparison between european countries. Sustainability 2020, 12, 3099. [Google Scholar] [CrossRef] [Green Version]
- Pandya, A.J.; Ghodke, K.M. Goat and sheep milk products other than cheeses and yoghurt. Small Rumin. Res. 2007, 68, 193–206. [Google Scholar] [CrossRef]
- Noll, D.; Lauk, C.; Gaube, V.; Wiedenhofer, D. Caught in a Deadlock: Small Ruminant Farming on the Greek Island of Samothrace. The Importance of Regional Contexts for Effective EU Agricultural Policies. Sustainability 2020, 12, 762. [Google Scholar] [CrossRef] [Green Version]
- Castagna, F.; Palma, E.; Cringoli, G.; Bosco, A.; Nisticò, N.; Caligiuri, G.; Britti, D.; Musella, V. Use of complementary natural feed for gastrointestinal nematodes control in sheep: Effectiveness and benefits for animals. Animals 2019, 9, 1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Hoste, H.; Sotiraki, S.; Landau, S.Y.; Jackson, F.; Beveridge, I. Goat–nematode interactions: Think differently. Trends Parasitol. 2010, 26, 376–381. [Google Scholar] [CrossRef]
- Rinaldi, L.; Veneziano, V.; Cringoli, G. Dairy goat production and the importance of gastrointestinal strongyle parasitism. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 745–746. [Google Scholar] [CrossRef]
- Musella, V.; Catelan, D.; Rinaldi, L.; Lagazio, C.; Cringoli, G.; Biggeri, A. Covariate selection in multivariate spatial analysis of ovine parasitic infection. Prev. Vet. Med. 2011, 99, 69–77. [Google Scholar] [CrossRef]
- Bosco, A.; Kießler, J.; Amadesi, A.; Varady, M.; Hinney, B.; Ianniello, D.; Maurelli, M.P.; Cringoli, G.; Rinaldi, L. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasit. Vectors 2020, 13, 457. [Google Scholar] [CrossRef]
- Vineer, H.R.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; de Waal, T.; Hendrickx, G. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Rose, H.; Rinaldi, L.; Bosco, A.; Mavrot, F.; De Waal, T.; Skuce, P.; Charlier, J.; Torgerson, P.R.; Hertzberg, H.; Hendrickx, G.; et al. Widespread anthelmintic resistance in European farmed ruminants: A systematic review. Vet. Rec. 2015, 176, 546. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, L.; Morgan, E.R.; Bosco, A.; Coles, G.C.; Cringoli, G. The maintenance of anthelmintic efficacy in sheep in a Mediterranean climate. Vet. Parasitol. 2014, 203, 139–143. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef]
- Silva, J.J.M.d.; Campanharo, S.C.; Paschoal, J.A.R. Ethnoveterinary for food-producing animals and related food safety issues: A comprehensive overview about terpenes. Compr. Rev. Food Sci. Food Saf. 2021, 20, 48–90. [Google Scholar] [CrossRef]
- Martin, M.; Mathias, E.; McCorkle, C.M. Ethnoveterinary Medicine: An Annotated Bibliography of Community Animal Healthcare; ITDG Publishing: London, UK, 2001; ISBN 1853395226. [Google Scholar]
- McGaw, L.J.; Van der Merwe, D.; Eloff, J. In vitro anthelmintic, antibacterial and cytotoxic effects of extracts from plants used in South African ethnoveterinary medicine. Vet. J. 2007, 173, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Githiori, J.B.; Athanasiadou, S.; Thamsborg, S.M. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet. Parasitol. 2006, 139, 308–320. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Githiori, J.; Kyriazakis, I. Medicinal plants for helminth parasite control: Facts and fiction. Animal 2007, 1, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Viegi, L.; Ghedira, K. Preliminary study of plants used in ethnoveterinary medicine in Tunisia and in Italy. Afr. J. Tradit. Complementary Altern. Med. 2014, 11, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.; Vogl, C.R.; Amorena, M.; Hamburger, M.; Walkenhorst, M. Treatment of organic livestock with medicinal plants: A systematic review of European ethnoveterinary research. Complementary Med. Res. 2014, 21, 375–386. [Google Scholar] [CrossRef] [Green Version]
- MaCorkel, C.M. Back to the future lessons from ethnoveterinary research, development extention for studying and applying knowledge. J. Agric. Food Hum. Values Soc. 1995, 22, 52–80. [Google Scholar] [CrossRef]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’italia; Edagricole: Bologna, Italy, 2017; Volume 1, ISBN 8850652429. [Google Scholar]
- Rahmani, A.H.; Alsahli, M.A.; Almatroodi, S.A. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacogn. J. 2017, 9, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Castagna, F.; Britti, D.; Oliverio, M.; Bosco, A.; Bonacci, S.; Iriti, G.; Ragusa, M.; Musolino, V.; Rinaldi, L.; Palma, E. In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep. Pathogens 2020, 9, 1063. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Ejo, M.; Feyera, T.; Regassa, D.; Mummed, B.; Huluka, S.A. In Vitro Anthelmintic Activity of Crude Extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. J. Parasitol. Res. 2020, 2020, 4950196. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, M.A. Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitol. Res. 2013, 112, 2639–2646. [Google Scholar] [CrossRef]
- Conti, F.; Bonacquisti, S.; Scassellati, E. An Annotated Checklist of the Italian Vascular Flora; Palombi: Rome, Italy, 2005. [Google Scholar]
- Dib, I.; Angenot, L.; Mihamou, A.; Ziyyat, A.; Tits, M. Artemisia campestris L.: Ethnomedicinal, phytochemical and pharmacological review. J. Herb. Med. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Abidi, A.; Sebai, E.; Dhibi, M.; Alimi, D.; Rekik, M.; B’chir, F.; Maizels, R.M.; Akkari, H. Chemical analyses and anthelmintic effects of Artemisia campestris essential oil. Vet. Parasitol. 2018, 263, 59–65. [Google Scholar] [CrossRef]
- Tawfeek, N.; Mahmoud, M.F.; Hamdan, D.I.; Sobeh, M.; Farrag, N.; Wink, M.; El-Shazly, A.M. Phytochemistry, Pharmacology and Medicinal Uses of Plants of the Genus Salix: An Updated Review. Front. Pharmacol. 2021, 12, 50. [Google Scholar] [CrossRef]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 127–134. [Google Scholar] [CrossRef]
- Cringoli, G.; Rinaldi, L.; Maurelli, M.P.; Utzinger, J. FLOTAC: New multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat. Protoc. 2010, 5, 503. [Google Scholar] [CrossRef]
- Großbritannien, M.A. Manual of Veterinary Parasitological Laboratory Techniques: 160 S.: Ill; HM Stationery Office: Norwich, UK, 1986. [Google Scholar]
- van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Castagna, F.; Musella, V.; Russo, S.; Poerio, A.; Calabrese, G.; Britti, D. Efficacy of natural anthelimintic product in sheep naturally infected by nematodes and trematodes: Studies in Calabria Region (Souther Italy). In Proceedings of the XXIX Congresso SOIPA-Società Italiana di Parassitologia & European Veterinary College, Bari, Italy, 21–24 June 2016. [Google Scholar]
- Kalaiselvan, R.; Mohanta, G.P.; Madhusudan, S.; Manna, P.K.; Manavalan, R. Enhancement of bioavailability and anthelmintic efficacy of albendazole by solid dispersion and cyclodextrin complexation techniques. Die Pharm. Int. J. Pharm. Sci. 2007, 62, 604–607. [Google Scholar]
- Cruz-Arévalo, J.; Sánchez, J.E.; González-Cortázar, M.; Zamilpa, A.; Andrade-Gallegos, R.H.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L. Chemical composition of an anthelmintic fraction of Pleurotus eryngii against eggs and infective larvae (L3) of Haemonchus contortus. Biomed Res. Int. 2020, 2020, 4138950. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Devi, P.U. In-Vitro Anthelmintic Activity of Methanolic and Aqueous Extracts of Achyranthes aspera linn. (Amaranthaceae) Stems. Int. J. Pharm. Sci. 2013, 3, 181–184. [Google Scholar]
- Ndjonka, D.; Abladam, E.D.; Djafsia, B.; Ajonina-Ekoti, I.; Achukwi, M.D.; Liebau, E. Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J. Helminthol. 2014, 88, 481–488. [Google Scholar] [CrossRef]
- Escareño-Díaz, S.; Alonso-Díaz, M.A.; de Gives, P.M.; Castillo-Gallegos, E.; Von Son-de Fernex, E. Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode Cooperia punctata. Vet. Parasitol. 2019, 274, 108909. [Google Scholar] [CrossRef]
- Khan, I.; Rahman, H.; Abd El-Salam, N.M.; Tawab, A.; Hussain, A.; Khan, T.A.; Khan, U.A.; Qasim, M.; Adnan, M.; Azizullah, A. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC Complementary Altern. Med. 2017, 17, 247. [Google Scholar] [CrossRef]
- Garcia-Bustos, J.F.; Sleebs, B.E.; Gasser, R.B. An appraisal of natural products active against parasitic nematodes of animals. Parasit. Vectors 2019, 12, 306. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, M.A.; Thagfan, F.A.; Abdel-moniem, S.H.; Al-Shaebi, E.M.; Abdel-Gaber, R.; Al-Quraishy, S. Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi J. Biol. Sci. 2019, 26, 1223–1226. [Google Scholar] [CrossRef]
- Mondal, H.; Hossain, H.; Awang, K.; Saha, S.; Mamun-Ur-Rashid, S.; Islam, M.K.; Rahman, M.; Jahan, I.A.; Rahman, M.M.; Shilpi, J.A. Anthelmintic activity of ellagic acid, a major constituent of Alternanthera sessilis against Haemonchus contortus. Pak. Vet. J. 2015, 35, 58–62. [Google Scholar]
- Figueiredo, B.N.S.; Sato, M.O.; Moura, L.T.S.; Mariano, S.M.B.; Alvim, T.d.C.; Soares, I.M.; Kawai, S.; Ascêncio, S.D.; Santos, H.D.; Paiva, J.A. Preliminary Report on the Effect of Savanna Plants Leucaena leucocephala, Parkia platycephala and Senna alata against Eggs and Immature Stages of Trichostrongylid Nematodes In Vitro. Pathogens 2020, 9, 986. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef]
- Jackson, F.; Miller, J. Alternative approaches to control—Quo vadit? Vet. Parasitol. 2006, 139, 371–384. [Google Scholar] [CrossRef]
- Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef]
- Calzetta, L.; Pistocchini, E.; Leo, A.; Roncada, P.; Ritondo, B.L.; Palma, E.; di Cave, D.; Britti, D. Anthelminthic medicinal plants in veterinary ethnopharmacology: A network meta-analysis following the PRISMA-P and PROSPERO recommendations. Heliyon 2020, 6, e03256. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Lucia, L.M. Ethnobotanical remarks on central and southern Italy. J. Ethnobiol. Ethnomed. 2007, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Piluzza, G.; Virdis, S.; Serralutzu, F.; Bullitta, S. Uses of plants, animal and mineral substances in Mediterranean ethno-veterinary practices for the care of small ruminants. J. Ethnopharmacol. 2015, 168, 87–99. [Google Scholar] [CrossRef]
- Menale, B.; Muoio, R. Use of medicinal plants in the south-eastern area of the partenio regional park (Campania, southern Italy). J. Ethnopharmacol. 2014, 153, 297–307. [Google Scholar] [CrossRef]
- Passalacqua, N.G.; De Fine, G.; Guarrera, P.M. Contribution to the knowledge of the veterinary science and of the ethnobotany in Calabria region (Southern Italy). J. Ethnobiol. Ethnomed. 2006, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Musolino, V.; Gliozzi, M.; Bombardelli, E.; Nucera, S.; Carresi, C.; Maiuolo, J.; Mollace, R.; Paone, S.; Bosco, F.; Scarano, F. The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in non-alcoholic fatty liver disease. J. Tradit. Complementary Med. 2020, 10, 268–274. [Google Scholar] [CrossRef]
- Lepore, S.M.; Morittu, V.M.; Celano, M.; Trimboli, F.; Oliverio, M.; Procopio, A.; Di Loreto, C.; Damante, G.; Britti, D.; Bulotta, S. Oral administration of oleuropein and its semisynthetic peracetylated derivative prevents hepatic steatosis, hyperinsulinemia, and weight gain in mice fed with high fat cafeteria diet. Int. J. Endocrinol. 2015, 2015, 431453. [Google Scholar] [CrossRef] [Green Version]
- Mollace, V.; Sacco, I.; Janda, E.; Malara, C.; Ventrice, D.; Colica, C.; Visalli, V.; Muscoli, S.; Ragusa, S.; Muscoli, C. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia 2011, 82, 309–316. [Google Scholar] [CrossRef]
- Vincenzo, M.; Micaela, G.; Federica, S.; Bosco, F.; Miriam, S.; Saverio, N.; Cristina, C.; Stefano, R.; Zito, M.C.; Jessica, M. Bergamot Polyphenols Improve Dyslipidemia and Pathophysiological Features in a Mouse Model of Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2020, 10, 2565. [Google Scholar]
- Passalacqua, N.G.; Guarrera, P.M.; De Fine, G. Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia 2007, 78, 52–68. [Google Scholar] [CrossRef]
- Tagarelli, G.; Tagarelli, A.; Piro, A. Folk medicine used to heal malaria in Calabria (southern Italy). J. Ethnobiol. Ethnomed. 2010, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Lupia, A.; Lupia, C.; Lupia, R. Etnobotanica in Calabria. In Viaggio Alla Scoperta di Antichi Saperi Intorno al Mondo Delle Piante; Rubbettino Editore: Soveria Mannelli, Italy, 2018. [Google Scholar]
- Leporatti, M.L.; Impieri, M. Ethnobotanical notes about some uses of medicinal plants in Alto Tirreno Cosentino area (Calabria, Southern Italy). J. Ethnobiol. Ethnomed. 2007, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Maruca, G.; Spampinato, G.; Turiano, D.; Laghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). Genet. Resour. Crop Evol. 2019, 66, 1027–1040. [Google Scholar] [CrossRef]
- Musarella, C.M.; Paglianiti, I.; Cano-Ortiz, A.; Spampinato, G. Indagine etnobotanica nel territorio del Poro e delle Preserre calabresi (Vibo Valentia, S-Italia). Atti Della Soc. Toscana Sci. Nat. Mem. Ser. B 2019, 126, 13–28. [Google Scholar]
- Caloiero, T.; Buttafuoco, G.; Coscarelli, R.; Ferrari, E. Spatial and temporal characterization of climate at regional scale using homogeneous monthly precipitation and air temperature data: An application in Calabria (southern Italy). Hydrol. Res. 2015, 46, 629–646. [Google Scholar] [CrossRef]
- Coscarelli, R.; Caloiero, T. Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region). J. Hydrol. 2012, 416, 145–156. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Climatol. 2011, 31, 44–56. [Google Scholar] [CrossRef]
- Sreekumar, S.; Sithul, H.; Muraleedharan, P.; Azeez, J.M.; Sreeharshan, S. Pomegranate fruit as a rich source of biologically active compounds. Biomed Res. Int. 2014, 2014, 686921. [Google Scholar] [CrossRef] [PubMed]
- Ahad, S.; Tanveer, S.; Malik, T.A.; Nawchoo, I.A. Anticoccidial activity of fruit peel of Punica granatum L. Microb. Pathog. 2018, 116, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Al-Mathal, E.M.; Alsalem, A.M. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum. Exp. Parasitol. 2012, 131, 350–357. [Google Scholar] [CrossRef]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 53, 461–467. [Google Scholar] [CrossRef]
- Tariq, K.A.; Tantry, M.A. Preliminary Studies on Plants with Anthelmintic Properties in Kashmir—The North-West Temperate Himalayan Region of India. Chin. Med. 2012, 3, 20079. [Google Scholar] [CrossRef] [Green Version]
- Lalhmingchhuanmawii, K.; Veerakumari, L.; Raman, M. Anthelmintic activity of Punica granatum ethanol extract against paramphistomes in infected sheep. J. Res. Anim. Sci. 2014, 2, 79–86. [Google Scholar]
- Vidal, M.L.; Martins, I.; Boeloni, J.; Bolzan, T.; Severi, J.A. EFICÁCIA DE EXTRATOS VEGETAIS DE Punica granatum L. NO CONTROLE in vitro DE OVOS E ADULTOS DE Fasciola hepatica. Enciclopédia Biosf. 2019, 16. [Google Scholar] [CrossRef]
- Tariq, K.A. Anthelmintics and emergence of anthelmintic resistant nematodes in sheep: Need of an integrated nematode management. J. Anim. Sci. 2017, 2, 13–19. [Google Scholar]
- Veerakumari, L. Botanical anthelmintics. Asian J. Sci. Technol. 2015, 6, 1881–1894. [Google Scholar]
Group | Day | Haemonchus (%) | Trichostrongylus (%) | Teladorsagia (%) | Chabertia (%) |
---|---|---|---|---|---|
TG1 P. granatum | D0 | 43 | 25 | 26 | 6 |
D7 | 37 | 20 | 34 | 9 | |
D14 | 41 | 22 | 31 | 6 | |
D21 | 40 | 24 | 28 | 8 | |
TG2 A. campestris | D0 | 40 | 29 | 27 | 4 |
D7 | 42 | 27 | 30 | 1 | |
D14 | 38 | 29 | 21 | 12 | |
D21 | 36 | 28 | 33 | 3 | |
TG3 S. caprea | D0 | 45 | 23 | 31 | 1 |
D7 | 37 | 28 | 32 | 3 | |
D14 | 42 | 26 | 28 | 4 | |
D21 | 40 | 29 | 24 | 7 | |
GG untreated | D0 | 41 | 21 | 31 | 7 |
D7 | 38 | 29 | 32 | 1 | |
D14 | 41 | 30 | 28 | 1 | |
D21 | 42 | 25 | 28 | 5 |
Groups | D0 | D7 | D14 | D21 | |||
---|---|---|---|---|---|---|---|
EPG Mean (SD) | EPG Mean (SD) | FECR % | EPG Mean (SD) | FECR % | EPG Mean (SD) | FECR % | |
TG1 (P. granatum group) | 363.6 (±117) | 199.7 (±74) | 50.2 | 281.6 (±91) | 44.3 | 357.7 (±82) | 40.4 |
TG2 (A. campestris group) | 341.3 (±141) | 319.2 (±126) | 20.4 | 454.8 (±141) | 9.8 | 576.0 (±154) | 4.3 |
TG3 (S. caprea group) | 354.8 (±134) | 400.4 (±139) | 0.1 | 504.0 (±137) | 5 | 599.7 (±121) | 0.3 |
GG (Untreated group) | 340.8 (±100) | 400.9 (±124) | - | 504.4 (±157) | - | 601.8 (±181) | - |
m/z Theoretical | m/z Measured | Analyte | Previously Described Anthelmintic Properties |
---|---|---|---|
149.0092 | 149.0081 | Tartaric acid (C4H5O6) | Castagna et al. [25]; Kalaiselvan et al. [37] |
181.0718 | 181.0711 | Mannitol (C6H1306) | Castagna et al. [25]; Cruz-Arévalo et al. [38] |
193.0354 | 193.0347 | Glucuronic acid (C9 H9 O7) | Castagna et al. [25]; Kumar et al. [39] |
481.0697 | 481.0626 | 2,3-(S)-hexahydroxyphenyl-D-glucose (C20H17O14) | Castagna et al. [25] |
169.0142 | 169.0134 | Gallic acid (C7H5O5) | Castagna et al. [25]; Ndjonka et al. [40]; Escareño-Díaz et al. [41] |
288.9990 | 288.9992 | Phelligridin J (C13H5O8) | Castagna et al. [25]; |
469.0049 | 469.0050 | Valoneic acid dilattone (C21H9O13) | Castagna et al. [25]; Khan et al. [42] |
197.0455 | 197.0449 | Syringic acid (C9H9O5) | Castagna et al. [25]; Garcia-Bustos et al. [43]; Dkhil et al. [44] |
300.9990 | 300.9991 | Ellagic acid (C14H5O8) | Castagna et al. [25]; Mondal et al. [45]; Figueiredo et al. [46] |
447.0642 | 447.0573 | Ducheside A (C20H15O12) | Castagna et al. [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep. Vet. Sci. 2021, 8, 237. https://doi.org/10.3390/vetsci8100237
Castagna F, Piras C, Palma E, Musolino V, Lupia C, Bosco A, Rinaldi L, Cringoli G, Musella V, Britti D. Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep. Veterinary Sciences. 2021; 8(10):237. https://doi.org/10.3390/vetsci8100237
Chicago/Turabian StyleCastagna, Fabio, Cristian Piras, Ernesto Palma, Vincenzo Musolino, Carmine Lupia, Antonio Bosco, Laura Rinaldi, Giuseppe Cringoli, Vincenzo Musella, and Domenico Britti. 2021. "Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep" Veterinary Sciences 8, no. 10: 237. https://doi.org/10.3390/vetsci8100237
APA StyleCastagna, F., Piras, C., Palma, E., Musolino, V., Lupia, C., Bosco, A., Rinaldi, L., Cringoli, G., Musella, V., & Britti, D. (2021). Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep. Veterinary Sciences, 8(10), 237. https://doi.org/10.3390/vetsci8100237