Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production
Abstract
:1. Introduction
Jatropha curcas Plant
2. Materials and Methods
3. Jatropha Meal a Biofeed and Its Production
3.1. Jatropha Meal as a Novel Biofeed
3.2. Production Method of Jatropha Meal
4. Bioactive Compounds in Jatropha Meal and Their Potential
4.1. Phenolics
4.2. Flavonoids
4.3. Saponins
4.4. Phytic Acid
4.5. Lectins
4.6. Trypsin Inhibitors
4.7. Phorbol Esters
4.8. Jatropha Meal Phorbol Esters
4.9. Jatropha Oil Fatty Acids Composition
5. Alleviation of Bioactive Compounds in Jatropha Meal
5.1. Physical Processing
5.2. Chemical Processing
5.3. Biological Processing
6. In Vitro Digestibility of Jatropha Meal
7. Toxicity and Biological Activity
7.1. Animal Trials
7.2. Animal Cell Models
7.3. Detoxification Methods for Jatropha Meal
7.4. Effects of Detoxified Jatropha on Animal Health
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carels, N. Jatropha curcas: A Review. Adv. Bot. Res. 2009, 50, 39–86. [Google Scholar]
- Monteiro, M.V.B.; Bevilaqua, C.M.L.; Morais, S.M.; Machado, L.K.A.; Camurça-Vasconcelos, A.L.F.; Campello, C.C.; Ribeiro, W.L.C.; Mesquita, M.d.A. Anthelmintic activity of Jatropha curcas L. seeds on Haemonchus contortus. Vet. Parasitol. 2011, 182, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Herrera, J.; Siddhuraju, P.; Francis, G.; Davila-Ortiz, G.; Becker, K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. J. Food Chem. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Jukka, M.; Al, H.; Daniel, T.; Sue, P.; Chris, M.; Ronald, V.C.S.; Soo, C.L. Historical Analysis and Projection of Oil Palm Plantation Expansion on Peatland in Southeast Asia. Available online: https://theicct.org/publications/historical-analysis-and-projection-oil-palm-plantation-expansion-peatland-southeast (accessed on 1 February 2012).
- Makkar, H.P.S.; Becker, K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur. J. Lipid Sci. Technol. 2009, 111, 773–787. [Google Scholar] [CrossRef]
- Ghosh, S.; Bitra, V.S.; S Dasi, D.; Godugula, V. Detoxification of Jatropha kernel meal to utilize it as aqua-feed. J. Sci. Food Agric. 2021, 101, 5089–5096. [Google Scholar] [CrossRef]
- Cheftel, J.C. Emerging Risks Related to Food Technology. In Advances in Food Protection; Springer: Dordrecht, The Netherlands, 2011; pp. 223–254. [Google Scholar]
- Koivunen, J.; Aaltonen, V.; Peltonen, J. Protein kinase C (PKC) family in cancer progression. Cancer Lett. 2006, 235, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, Y.; Tang, H.; Zhao, H.; Chen, X.; Tian, G.; Liu, G.; Cai, J.; Jia, G. Bio-detoxification of Jatropha curcas L. cake by a soil-borne Mucor circinelloides strain using a zebrafish survival model and solid-state fermentation. J. Appl. Microbiol. 2021, 130, 852–864. [Google Scholar] [CrossRef]
- Vollmann, J.; Rajcan, I. Oil Crops; Springer: New York, NY, USA, 2009. [Google Scholar]
- Gallegos-Tintore, S.; Torres-Fuentes, C.; Martinez-Ayala, A.L.; Solorza-Feria, J.; Alaiz, M.; Giron-Calle, J.; Vioque, J. Antioxidant and chelating activity of Jatropha curcas L. protein hydrolysates. J. Sci. Food Agric. 2011, 91, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Lihua, Z.; Fang, Y.; Fang, C. In Vitro Bacteriostasis of Jatropha Curcas L. Extract Against Chicken Escherichia Coli and Staphlococcus aureus. Chin. Poult. Sci. 2004, 8, 35–37. [Google Scholar]
- Abdel-Shafy, S.; Nasr, S.; Abdel-Rahman, H.; Habeeb, S. Effect of various levels of dietary Jatropha curcas seed meal on rabbits infested by the adult ticks of Hyalomma marginatum marginatum I. Animal performance, anti-tick feeding and haemogram. Trop. Anim. Health Prod. 2010, 43, 347–357. [Google Scholar] [CrossRef]
- Nasr, S.M.; Abdel-Shafy, S.; Abdel-Rahman, H.H.; Habeeb, S.M. Effect of dietary Jatropha curcas seed meal on rabbits infested by adult ticks of Hyalomma marginatum marginatum. Toxicol. Environ. Chem. 2011, 93, 1693–1708. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Are Jatropha curcas phorbol esters degraded by rumen microbes? J. Sci. Food Agric. 2010, 90, 1562–1565. [Google Scholar] [CrossRef]
- Khafagy, S.M.; Mohamed, Y.A.; Salam, N.A.A.; Mahmoud, Z.F. Phytochemical study of Jatropha curcas. Planta Med. 1977, 31, 274–277. [Google Scholar] [CrossRef]
- Manpong, P.; Douglas, S.; Douglas, P.; Pongamphai, S.; Teppaitoon, W. Preliminary investigation of gallic acid extraction from Jatropha curcas Linn. leaves using supercritical carbon dioxide with methanol co-solvent. J. Food Process. Eng. 2009, 34, 1408–1418. [Google Scholar] [CrossRef]
- El Diwani, G.; El Rafie, S.; Hawash, S. Antioxidant activity of extracts obtained from residues of nodes leaves stem and root of Egyptian Jatropha curcas. Afr. J. Pharm. Pharmacol. 2009, 3, 521–530. [Google Scholar]
- Makkar, H.P.S.; Aderibigbe, A.O.; Becker, K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 1998, 62, 207–215. [Google Scholar] [CrossRef]
- Joshi, C.; Mathur, P.; Khare, S.K. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 2011, 102, 4815–4819. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.L.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 2008, 144, 212–227. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Molan, A.L.; Meagher, L.P.; Kolb, B.; Foo, L.Y.; Lane, G.A.; Attwood, G.A.; Fraser, K.; Tavendale, M. Variation in antimicrobial action of proanthocyanidins from Dorycnium rectum against rumen bacteria. Phytochemistry 2004, 65, 2485–2497. [Google Scholar] [CrossRef] [PubMed]
- Zuhainis Saad, W.; Abdullah, N.; Alimon, A.R.; Ho, Y.W. Effects of phenolic monomers on the enzymes activities and volatile fatty acids production of Neocallimastix frontalis B9. Anaerobe 2008, 14, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Hiura, T.; Hashidoko, Y.; Kobayashi, Y.; Tahara, S. Effective degradation of tannic acid by immobilized rumen microbes of a sika deer (Cervus nippon yesoensis) in winter. Anim. Feed Sci. Technol. 2010, 155, 1–8. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids Health Benefits and Their Molecular Mechanism. Mini Rev. Med. Chem. 2011, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
- De Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Kay, C.D. The future of flavonoid research. Br. J. Nutr. 2010, 104, S91–S95. [Google Scholar] [CrossRef]
- Cushnie, T.; Lamb, A. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Benavente-Garcia, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Broudiscou, L.P.; Lassalas, B. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reprod. Nutr. Dev. 2000, 40, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, M.D.M.; Heredia, F.; Crespo, F.J.; Balcells, J. Mixture of citric flavonoids to improve ruminal fermentation. U.S. Patent 8,377,487, 19 February 2013. [Google Scholar]
- Griner, E.M.; Kazanietz, M.G. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 2007, 7, 281–294. [Google Scholar] [CrossRef]
- Park, I.C.; Park, M.J.; Rhee, C.H.; Lee, J.I.; Choe, T.B.; Jang, J.J.; Lee, S.H.; Hong, S.I. Protein kinase C activation by PMA rapidly induces apoptosis through caspase-3/CPP32 and serine protease (s) in a gastric cancer cell line. Int. J. Oncol. 2001, 18, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123–124 (Pt 1), 403–419. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Sidhuraju, P.; Becker, K. Plant Secondary Metabolites; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2007. [Google Scholar]
- Osbourn, A.; Goss, R.J.M.; Field, R.A. The saponins—Polar isoprenoids with important and diverse biological activities. Nat. Prod. Rep. 2011, 28, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Rochfort, S.; Parker, A.J.; Dunshea, F.R. Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.Q.; Liu, J.X.; Lu, Y.; Zhu, W.Y.; Denman, S.E.; McSweeney, C.S. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 2008, 47, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-L.; Liu, J.-X.; Ye, J.-A.; Wu, Y.-M.; Guo, Y.-Q. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 2005, 120, 333–339. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Reddy, N.; Sathe, S. Food Phytates; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Tsukatani, T.; Suenaga, H.; Higuchi, T.; Akao, T.; Ishiyama, M.; Ezoe, K.; Matsumoto, K. Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J. Microbiol. Methods 2008, 75, 109–116. [Google Scholar] [CrossRef]
- Lan, G.Q.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. In vitro and in vivo enzymatic dephosphorylation of phytate in maize–soya bean meal diets for broiler chickens by phytase of Mitsuokella jalaludinii. Anim. Feed Sci. Technol. 2010, 158, 155–164. [Google Scholar] [CrossRef]
- Chu, H.-M.; Guo, R.-T.; Lin, T.-W.; Chou, C.-C.; Shr, H.-L.; Lai, H.-L.; Tang, T.-Y.; Cheng, K.-J.; Selinger, B.L.; Wang, A.H.J. Structures of Selenomonas ruminantium Phytase in Complex with Persulfated Phytate: DSP Phytase Fold and Mechanism for Sequential Substrate Hydrolysis. Structure 2004, 12, 2015–2024. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.L. Lectins: Analytical tools from nature. In Lectins: Analytical Technologies; Elsevier Science BV: Amsterdam, The Netherlands, 2007; pp. 1–13. [Google Scholar]
- Huisman, J.; Tolman, G.H. Antiutritional Factors in The Plant Proteins of Diets for Non-ruminants. Recent Adv. Animal Nutr. 1992, 68, 101–110. [Google Scholar]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Jatropha Toxicity—A Review. J. Toxicol. Environ. Health Part B 2010, 13, 476–507. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Baintner, K.; Duncan, S.H.; Stewart, C.S.; Pusztai, A. Binding and degradation of lectins by components of rumen liquor. J. Appl. Microbiol. 1993, 74, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.P.P.; Queiróz, J.H.; Oliveira, M.G.A.; Piovesan, N.D.; Peluzio, M.C.G.; Costa, N.M.B.; Moreira, M.A. Effects of heating on protein quality of soybean flour devoid of Kunitz inhibitor and lectin. Food Chem. 2008, 107, 649–655. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K.; Sporer, F.; Wink, M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. 1997, 45, 3152–3157. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, G.; Wang, H.; Ng, T. Isolation and Characterization of a Kunitz-Type Trypsin Inhibitor with Antiproliferative Activity from Gymnocladus chinensis (Yunnan Bean) Seeds. Protein J. 2011, 30, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Becker, K. Nutritional Studies on Rats and Fish (carp Cyprinus carpio) Fed Diets Containing Unheated and Heated Jatropha curcas Meal of a Non-Toxic Provenance. Plant. Foods Hum. Nutr. 1999, 53, 183–192. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S.; Francis, G.; Becker, K. Phorbol Esters: Structure, Biological Activity, and toxicity in Animals. Int. J. Toxicol. 2007, 26, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Kazanietz, M.G. Targeting protein kinase C and “non-kinase” phorbol ester receptors: Emerging concepts and therapeutic implications. Biochim. Biophys. Acta—Proteins Proteom. 2005, 1754, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.; Magimaidas, A.; Casado-Medrano, V.; Kazanietz, M.G. Protein kinase C in cancer: The top five unanswered questions. Mol. Carcinog. 2017, 56, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Marengo, B.; De Ciucis, C.; Ricciarelli, R.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Protein kinase C: An attractive target for cancer therapy. Cancers 2011, 3, 531–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Caino, M.C.; von Burstin, V.A.; Oliva, J.L.; Kazanietz, M.G. Phorbol Ester–Induced Apoptosis and Senescence in Cancer Cell Models. Methods Enzymol. 2008, 446, 123–139. [Google Scholar] [PubMed]
- Muanda, F.N.; Dicko, A.; Soulimani, R. Assessment of polyphenolic compounds, in vitro antioxidant and anti-inflammation properties of Securidaca longepedunculata root barks. Comptes Rendus Biol. 2010, 333, 663–669. [Google Scholar] [CrossRef]
- Lee, K.-H.; Ab. Aziz, F.H.; Syahida, A.; Abas, F.; Shaari, K.; Israf, D.A.; Lajis, N.H. Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities. Eur. J. Med. Chem. 2009, 44, 3195–3200. [Google Scholar] [CrossRef]
- Abdel-Hafez, A.; Nakamura, N.; Hattori, M. Biotransformation of Phorbol by Human Intestinal Bacteria. Chem. Pharm. Bull. 2002, 50, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.; Zahir, Z.A.; Khalid, M.; Nazli, F.; Arshad, M. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant. Physiol. Biochem. 2013, 63, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Oskoueian, E.; Abdullah, N.; Noura, R.; Ebrahimi, M.; Ahmad, S.; Shakeri, M. Mode of action of Jatropha curcas phorbol esters in bovine kidney cells. Biocatal. Agric. Biotechnol. 2019, 17, 514–524. [Google Scholar] [CrossRef]
- Gomperts, B.D.; Tatham, P.E.R.; Kramer, I.M. Signal Transduction; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Hatton, J.P.; Gaubert, F.; Cazenave, J.-P.; Schmitt, D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J. Cell. Biochem. 2002, 87, 39–50. [Google Scholar] [CrossRef]
- Amemiya, T.; Kambe, T.; Fukumori, R.; Kubo, T. Role of protein kinase Cβ in phorbol ester-induced c-fos gene expression in neurons of normotensive and spontaneously hypertensive rat brains. Brain Res. 2005, 1040, 129–136. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kundu, J.K.; Hwang, D.-M.; Na, H.-K.; Surh, Y.-J. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-κB and AP-1: IκB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 2007, 28, 1491–1498. [Google Scholar] [CrossRef] [Green Version]
- Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep. 2001, 18, 674–688. [Google Scholar]
- Chumkaew, P.; Karalai, C.; Ponglimanont, C.; Chantrapromma, K. Antimycobacterial activity of phorbol esters from the fruits of Sapium indicum. J. Nat. Prod. 2003, 66, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Mittelbach, M. Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J. Nat. Prod. 2002, 65, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Devappa, R.K.; Liu, J.-X.; Lv, J.-M.; Makkar, H.P.S.; Becker, K. Toxicity of Jatropha curcas phorbol esters in mice. Food Chem. Toxicol. 2010, 48, 620–625. [Google Scholar] [CrossRef]
- Saetae, D.; Suntornsuk, W. Antifungal activities of ethanolic extract from Jatropha curcas seed cake. J. Microbiol. Biotechnol. 2010, 20, 319–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Biodegradation of Jatropha curcas phorbol esters in soil. J. Sci. Food Agric. 2010, 90, 2090–2097. [Google Scholar] [CrossRef]
- Horiuchi, T.; Sugimura, T. Presence of tumor promoters in the seed oil of Jatropha curcas L. from Thailand. Jpn. J. Cancer Res. 1987, 78, 223–236. [Google Scholar] [PubMed]
- Sinha, P.; Islam, M.A.; Negi, M.S.; Tripathi, S.B. Changes in oil content and fatty acid composition in Jatropha curcas during seed development. Ind. Crop. Prod. 2015, 77, 508–510. [Google Scholar] [CrossRef]
- Aransiola, E.F.; Daramola, M.O.; Ojumu, T.V.; Aremu, M.O.; Layokun, S.K.; Solomon, B.O. Nigerian Jatropha curcas oil seeds: Prospect for biodiesel production in Nigeria. Int. J. Renew. Energy Res. IJRER 2012, 2, 317–325. [Google Scholar]
- Makkar, H.P.S.; Becker, K.; Schmook, B. Edible provenance of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. J. Plant. Foods Hum. Nutr. 1998, 52, 31–36. [Google Scholar] [CrossRef]
- Aregheore, E.M.; Becker, K.; Makkar, H.P.S. Detoxification of a toxic variety of jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. S. Pac. J. Nat. Sci. 2003, 21, 50–56. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Niu, L.; Wang, X.; Lu, X. Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal. J. Agric. Food Chem. 2011, 59, 4040–4044. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Makkar, H.; Becker, K. Dietary inclusion of detoxified Jatropha curcas kernel meal: Effects on growth performance and metabolic efficiency in common carp, Cyprinus carpio L. Fish. Physiol. Biochem. 2010, 36, 1159–1170. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Zhao, Y.n.; Liu, H.; Liu, J.; Makkar, H.P.S.; Becker, K. Effects of replacing soybean meal by detoxified Jatropha curcas kernel meal in the diet of growing pigs on their growth, serum biochemical parameters and visceral organs. Anim. Feed Sci. Technol. 2011, 170, 141–146. [Google Scholar] [CrossRef]
- Harter, T.; Buhrke, F.; Kumar, V.; Focken, U.; Makkar, H.P.S.; Becker, K. Substitution of fish meal by Jatropha curcas kernel meal: Effects on growth performance and body composition of white leg shrimp (Litopenaeus vannamei). Aquac. Nutr. 2011, 17, 542–548. [Google Scholar] [CrossRef]
- Katole, S.; Saha, S.K.; Sastry, V.R.B.; Lade, M.H.; Prakash, B. Intake, blood metabolites and hormonal profile in sheep fed processed Jatropha (Jatropha curcas) meal. Anim. Feed Sci. Technol. 2011, 170, 21–26. [Google Scholar] [CrossRef]
- Pandey, A.; Larroche, C. Current Developments in Solid-State Fermentation; Springer: New York, NY, USA, 2008. [Google Scholar]
- De Barros, C.R.M.; Ferreira, L.M.M.; Nunes, F.M.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.V.; Cone, J.W.; Marques, G.S.M.; Rodrigues, M.A.M. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. Eng. Life Sci. 2011, 11, 107–110. [Google Scholar] [CrossRef]
- Aderibigbe, A.O.; Makkar, H.P.S.; Becker, K. Chemical composition and effect of heat on organic matter and nitrogen degradability and some anti nutritional components of Jatropha meal. Anim. Feed Sci. Technol. 1997, 67, 223–243. [Google Scholar] [CrossRef]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Nutritional, Biochemical, and Pharmaceutical Potential of Proteins and Peptides from Jatropha: Review. J. Agric. Food Chem. 2010, 58, 6543–6555. [Google Scholar] [CrossRef]
- Oliveira, M.D.L.; Andrade, C.A.S.; Santos-Magalhães, N.S.; Coelho, L.C.B.B.; Teixeira, J.A.; Carneiro-da-Cunha, M.G.; Correia, M.T.S. Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett. Appl. Microbiol. 2008, 46, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Nithiyanantham, S.; Siddhuraju, P.; Francis, G. Potential of Jatropha curcas as a Biofuel, Animal Feed and Health Products. J. Am. Oil Chem. Soc. 2012, 89, 961–972. [Google Scholar] [CrossRef]
- Adam, S.E.I.; Magzoub, M. Toxicity of Jatropha curcas for goats. Toxicology 1975, 4, 388–389. [Google Scholar] [CrossRef]
- Ahmed, O.M.M.; Adam, S.E.I. Toxicity of Jatropha curcas in sheep and goats. Res. Vet. Sci. 1979, 27, 89–96. [Google Scholar] [CrossRef]
- Lin, J.; Yan, F.; Tang, L.; Chen, F. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol. Sin. 2003, 24, 241–246. [Google Scholar]
- Ali, A.S.; Ali, S.; El-Rayes, B.F.; Philip, P.A.; Sarkar, F.H. Exploitation of protein kinase C: A useful target for cancer therapy. Cancer Treat. Rev. 2009, 35, 1–8. [Google Scholar] [CrossRef]
- Aiyelaagbe, O.O.; Hamid, A.A.; Fattorusso, E.; Taglialatela-Scafati, O.; Schröder, H.C.; Müller, W.E.G. Cytotoxic activity of crude extracts as well as of pure components from Jatropha species, plants used extensively in African traditional medicine. Evidence-Based Complement. Altern. Med. 2011, 2011, 134954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Makkar, H.; Becker, K. Detoxified Jatropha curcas kernel meal as a dietary protein source: Growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquac. Nutr. 2011, 17, 313–326. [Google Scholar] [CrossRef]
- Makkar, H.P.; Kumar, V.; Becker, K. Use of detoxified Jatropha kernel meal and protein isolate in diets of farm animals. In Biofuel Co-Products as Livestock Feed; FAO: Rome, Italy, 2012; Volume 351. [Google Scholar]
- Patra, A.K.; Amasheh, S.; Aschenbach, J.R. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3237–3266. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Sunflower | Palm Kernel | Soybean | Palm | Jatropha curcas |
---|---|---|---|---|---|
Oleic (%) | 21.1 | 15.4 | 23.4 | 39.2 | 44.7 |
Linoleic (%) | 66.2 | 2.4 | 53.2 | 10.1 | 32.8 |
Palmitic (%) | None | 8.4 | 11.0 | 44.0 | 14.2 |
Stearic (%) | 4.5 | 2.4 | 4.0 | 4.5 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oskoueian, E.; Oskoueian, A.; Shakeri, M.; Jahromi, M.F. Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production. Vet. Sci. 2021, 8, 179. https://doi.org/10.3390/vetsci8090179
Oskoueian E, Oskoueian A, Shakeri M, Jahromi MF. Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production. Veterinary Sciences. 2021; 8(9):179. https://doi.org/10.3390/vetsci8090179
Chicago/Turabian StyleOskoueian, Ehsan, Arshin Oskoueian, Majid Shakeri, and Mohammad Faseleh Jahromi. 2021. "Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production" Veterinary Sciences 8, no. 9: 179. https://doi.org/10.3390/vetsci8090179
APA StyleOskoueian, E., Oskoueian, A., Shakeri, M., & Jahromi, M. F. (2021). Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production. Veterinary Sciences, 8(9), 179. https://doi.org/10.3390/vetsci8090179