Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Example 1: Human Metapneumovirus and Respiratory Syncytial Virus
3. Example 2: Escherichia coli
4. Example 3: Cryptosporidium spp. and Giardia duodenalis
5. Gaps in Knowledge and Future Perspectives
- Three out of four (76%) of the forty-three studies considered in Table 1 were carried out in habituated populations, 12% were carried out in both habituated and non-habituated populations, and only 7% were carried out in non-habituated populations (this status was unknown for the remaining 5% of the surveys). Therefore, there is an obvious lack of knowledge on human-borne diseases affecting wild non-habituated great apes, which are precisely the most unprotected communities.
- There is a clear bias on geographical representativeness, as 12 studies (28%) were conducted in Uganda: 7 in habituated gorillas, 3 in habituated chimpanzees, 3 in both habituated and non-habituated gorillas, and none in non-habituated great apes (Table 1), while there are no studies in several chimpanzee- and gorilla-harbouring countries, such as Nigeria, Equatorial Guinea, Liberia, Sierra Leona, and Guinea Conakry.
- Most available studies tend to focus on the very same ape communities over time. This is the case for Ivory Coast, where virtually all investigations on infectious diseases affecting chimpanzees have been carried out in habituated groups at the Taï National Park (Table 1). Only a single study was conducted on non-habituated chimpanzees at the Comoé National Park [59].
- At the global level, it is unknown what percentage of the current great ape communities has been studied, since obtaining a reliable population census (in both Africa and Asia) is a hard task (Table S1). This difficulty is accentuated in countries with greater political instability, such as the Democratic Republic of the Congo, whose forests represent half of the total area of tropical rainforest in Africa and provide shelter for two species of gorilla, two subspecies of the common chimpanzee, and the bonobo. The Democratic Republic of the Congo has wanted to imitate the very lucrative ecotourism industry developed in Rwanda and, to a lesser extent, in Uganda, but its instability is a major obstacle to successfully achieving this goal [121]. This instability translates into a scarcity of studies on the welfare of gorillas and chimpanzees due to the intrinsic complications involved in working under these conditions.
- Ideally, species conservation should be based on good knowledge of the population size of the species and the threats to its survival (such as infectious diseases) throughout its geographic range [1]. Therefore, it is very difficult to estimate the extent to which human-borne diseases pose an actual threat to wild great ape populations when we do not know what we are trying to protect.
- Direct sampling for diagnostic testing is not possible except under very specific circumstances in habituated animals (e.g., chemical immobilisation for clinical or surgical treatment). Non-invasively collected faecal samples often remain the only alternative available [39]. However, faecal material may not be optimal for the detection of several pathogens. Additionally, fresh faecal samples from non-habituated apes may be difficult to obtain since they are collected opportunistically.
- Improving the accuracy and reliability of current estimates of abundance, geographical distribution, and existing habituated and non-habituated great ape groups, both at national and international levels.
- Providing a better account of the actual burden of infectious diseases in habituated animals within the total population and assessing the potential risk of disease transmission from habituated apes to unhabituated ones.
- Improving networking capabilities among research groups working in the field, so generated information (e.g., census data) can be deposited in publicly accessible repositories. At present, information generated by small research investigations in locally conducted projects does not always reach the general scientific community.
- Molecular typing surveys at the sub-genotype/strain level are greatly needed. Ideally, such studies should be carried out under the One Health umbrella and include human, animal, and environmental (surface water, pastures, or green leaves) samples. Under the appropriate design, this information is essential to characterise transmission dynamics and accurately demonstrate the occurrence and directionality of zoonotic events.
- Research should be expanded to non-habituated great ape communities, as these populations typically inhabit the most encroached environments and are therefore more vulnerable to environmental threats, including human-borne infectious diseases.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wich, S.A.; Singleton, I.; Nowak, M.G.; Utami Atmoko, S.S.; Nisam, G.; Arif, S.M.; Putra, R.H.; Ardi, R.; Fredriksson, G.; Usher, G.; et al. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). Sci. Adv. 2016, 2, e1500789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, J.S.; Graham, B.; Bocksberger, G.; Maisels, F.; Williamson, E.A.; Wich, S.; Sop, T.; Amarasekaran, B.; Barca, B.; Barrie, A.; et al. Predicting range shifts of African apes under global change scenarios. Divers. Distrib. 2021, 27, 1663–1679. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species. Version 2016-3. 2016. Available online: http://iucnredlist.org (accessed on 6 July 2022).
- International Union for Conservation of Nature. Four out of Six Great Apes One Step away from Extinction—IUCN Red List. 2016. Available online: https://www.iucn.org/news/species/201609/four-out-six-great-apes-one-step-away-extinction-%E2%80%93-iucn-red-list (accessed on 6 July 2022).
- Dunay, E.; Apakupakul, K.; Leard, S.; Palmer, J.L.; Deem, S.L. Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth 2018, 15, 148–162. [Google Scholar] [CrossRef]
- Oates, J.F. Is the chimpanzee, Pan troglodytes, an endangered species? It depends on what “endangered” means. Primates 2006, 47, 102–112. [Google Scholar] [CrossRef]
- The Jane Goodall Institute UK. Available online: https://www.janegoodall.org.uk/chimpanzees/chimpanzee-central/15-chimpanzees/chimpanzee-central/22-state-of-the-wild-chimpanzee (accessed on 6 July 2022).
- International Union for Conservation of Nature and Institut Congolais Pour La Conservation de la Nature. Bonobo (Pan paniscus) Conservation Strategy 2012–2022. Available online: http://www.primate-sg.org/ (accessed on 6 July 2022).
- International Union for Conservation of Nature, Species Survival Commission. The Ape Populations, Environments and Surveys (A.P.E.S.) Database 2016. Available online: http://www.primate-sg.org/apes/ (accessed on 6 July 2022).
- Nater, A.; Mattle-Greminger, M.P.; Nurcahyo, A.; Nowak, M.G.; de Manuel, M.; Desai, T.; Groves, C.; Pybus, M.; Sonay, T.B.; Roos, C.; et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 2017, 27, 3487–3498.e10. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, T.L.; Gillespie, T.R.; Rwego, I.B.; Estoff, E.L.; Chapman, C.A. Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg. Infect. Dis. 2008, 14, 1375–1382. [Google Scholar] [CrossRef]
- Zimmerman, D.M.; Mitchell, S.L.; Wolf, T.M.; Deere, J.R.; Noheri, J.B.; Takahashi, E.; Cranfield, M.R.; Travis, D.A.; Hassell, J.M. Great ape health watch: Enhancing surveillance for emerging infectious diseases in great apes. Am. J. Primatol. 2022, 84, e23379. [Google Scholar] [CrossRef]
- Kamorudeen, R.T.; Adedokun, K.A.; Olarinmoye, A.O. Ebola outbreak in West Africa, 2014–2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response. J. Infect. Public Health 2020, 13, 956–962. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Protecting Great Apes and Their Habitats. Available online: https://en.unesco.org/themes/biodiversity/great-apes (accessed on 6 July 2022).
- Robbins, M.M.; Gray, M.; Fawcett, K.A.; Nutter, F.B.; Uwingeli, P.; Mburanumwe, I.; Kagoda, E.; Basabose, A.; Stoinski, T.S.; Cranfield, M.R.; et al. Extreme conservation leads to recovery of the Virunga mountain gorillas. PLoS ONE 2011, 6, e19788. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Roy, J.; Vigilant, L.; Fawcett, K.; Basabose, A.; Cranfield, M.; Uwingeli, P.; Mburanumwe, I.; Kagoda, E.; Robbins, M. Genetic census reveals increased but uneven growth of a critically endangered mountain gorilla population. Biol. Conserv. 2013, 158, 230–238. [Google Scholar] [CrossRef]
- Butynski, T.M.; Kalina, J. Gorilla tourism: A critical look. In Conservation of Biological Resources; Blackwell Science: Oxford, UK, 1998; pp. 280–300. [Google Scholar]
- Köndgen, S.; Kühl, H.; N’Goran, P.K.; Walsh, P.D.; Schenk, S.; Ernst, N.; Biek, R.; Formenty, P.; Mätz-Rensing, K.; Schweiger, B.; et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 2008, 18, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Homsy, J. Ape tourism and human diseases: How close should we get? A critical review of the rules and regulations governing park management and tourism for the wild mountain gorilla, Gorilla gorilla berengei. In Report of a Consultancy for the International Gorilla Conservation Programme; 1999; Available online: http://www.primate-sg.org/storage/pdf/Homsy.pdf (accessed on 11 July 2022).
- Woodford, M.H.; Butynski, T.M.; Karesh, W.B. Habituating the great apes: The disease risks. Oryx 2002, 36, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Cater, E. Ecotourism in the third world—Problems and prospects for sustainability. In Ecotourism: A Sustainable Option? Cater, E., Lowman, G., Eds.; John Wiley and Sons: Chichester, UK, 1995; pp. 69–86. [Google Scholar]
- Wolfe, N.D.; Escalante, A.A.; Karesh, W.B.; Kilbourn, A.; Spielman, A.; Lal, A.A. Wild primate populations in emerging infectious disease research: The missing link? Emerg. Infect. Dis. 1998, 4, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Butynski, T.M. Africa’s great apes. In Great Apes and Humans: The Ethics of Coexistence; Beck, B.B., Stoinski, T.S., Hutchins, M., Maple, T.L., Norton, B., Rowan, A., Stevens, E.F., Arluke, A., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2001; pp. 3–56. [Google Scholar]
- Kalema-Zikusoka, G.; Rubanga, S.; Ngabirano, A.; Zikusoka, L. Mitigating impacts of the COVID-19 pandemic on gorilla conservation: Lessons from Bwindi Impenetrable Forest, Uganda. Front. Public Health 2021, 9, 655175. [Google Scholar] [CrossRef] [PubMed]
- Leendertz, F.H.; Lankester, F.; Guislain, P.; Néel, C.; Drori, O.; Dupain, J.; Speede, S.; Reed, P.; Wolfe, N.; Loul, S.; et al. Anthrax in Western and Central African great apes. Am. J. Primatol. 2006, 68, 928–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusey, A.E.; Wilson, M.L.; Anthony Collins, D. Human impacts, disease risk, and population dynamics in the chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. 2008, 70, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Tutin, C.E.G.; Fernandez, M. Responses of wild chimpanzees and gorillas to the arrival of primatologists: Behaviour observed during habituation. In Primate Responses to Environmental Change; Box, H.O., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 187–197. [Google Scholar]
- Blom, A.; Cipolletta, C.; Brunsting, A.M.H.; Prins, H.H.T. Behavioral responses of gorillas to habituation in the Dzanga-Ndoki National Park, Central African Republic. Int. J. Primatol. 2004, 25, 179. [Google Scholar] [CrossRef]
- Doran-Sheehy, D.M.; Derby, A.M.; Greer, D.; Mongo, P. Habituation of western gorillas: The process and factors that influence it. Am. J. Primatol. 2007, 69, 1354–1369. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.; Chartier, Y.; Pessoa-Silva, C.L.; Jensen, P.; Li, Y.; Seto, W.H. (Eds.) Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Grützmacher, K.S.; Köndgen, S.; Keil, V.; Todd, A.; Feistner, A.; Herbinger, I.; Petrzelkova, K.; Fuh, T.; Leendertz, S.A.; Calvignac-Spencer, S.; et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth 2016, 13, 499–510. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Cranfield, M.R. Coprophagy and intestinal parasites: Implications to human-habituated mountain gorillas (Gorilla gorilla beringei) of the Virunga Mountains and Bwindi Impenetrable Forest. Primate Conserv. 2003, 19, 58–64. [Google Scholar]
- Janatova, M.; Albrechtova, K.; Petrzelkova, K.J.; Dolejska, M.; Papousek, I.; Masarikova, M.; Cizek, A.; Todd, A.; Shutt, K.; Kalousova, B.; et al. Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Vet. Microbiol. 2014, 171, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Negrey, J.D.; Reddy, R.B.; Scully, E.J.; Phillips-Garcia, S.; Owens, L.A.; Langergraber, K.E.; Mitani, J.C.; Emery Thompson, M.; Wrangham, R.W.; Muller, M.N.; et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microb. Infect. 2019, 8, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Bermejo, M.; Rodríguez-Teijeiro, J.D.; Illera, G.; Barroso, A.; Vilà, C.; Walsh, P.D. Ebola outbreak killed 5000 gorillas. Science 2006, 314, 1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wevers, D.; Metzger, S.; Babweteera, F.; Bieberbach, M.; Boesch, C.; Cameron, K.; Couacy-Hymann, E.; Cranfield, M.; Gray, M.; Harris, L.A.; et al. Novel adenoviruses in wild primates: A high level of genetic diversity and evidence of zoonotic transmissions. J. Virol. 2011, 85, 10774–10784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medkour, H.; Castaneda, S.; Amona, I.; Fenollar, F.; André, C.; Belais, R.; Mungongo, P.; Muyembé-Tamfum, J.J.; Levasseur, A.; Raoult, D.; et al. Potential zoonotic pathogens hosted by endangered bonobos. Sci. Rep. 2021, 11, 6331. [Google Scholar] [CrossRef] [PubMed]
- Patrono, L.V.; Samuni, L.; Corman, V.M.; Nourifar, L.; Röthemeier, C.; Wittig, R.M.; Drosten, C.; Calvignac-Spencer, S.; Leendertz, F.H. Human coronavirus OC43 outbreak in wild chimpanzees, Côte d´Ivoire, 2016. Emerg. Microb. Infect. 2018, 7, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazet, J.A.K.; Genovese, B.N.; Harris, L.A.; Cranfield, M.; Noheri, J.B.; Kinani, J.F.; Zimmerman, D.; Bahizi, M.; Mudakikwa, A.; Goldstein, T.; et al. Human respiratory syncytial virus detected in mountain gorilla respiratory outbreaks. EcoHealth 2020, 17, 449–460. [Google Scholar] [CrossRef]
- Kaur, T.; Singh, J.; Tong, S.; Humphrey, C.; Clevenger, D.; Tan, W.; Szekely, B.; Wang, Y.; Li, Y.; Alex Muse, E.; et al. Descriptive epidemiology of fatal respiratory outbreaks and detection of a human-related metapneumovirus in wild chimpanzees (Pan troglodytes) at Mahale Mountains National Park, Western Tanzania. Am. J. Primatol. 2008, 70, 755–765. [Google Scholar] [CrossRef]
- Köndgen, S.; Schenk, S.; Pauli, G.; Boesch, C.; Leendertz, F.H. Noninvasive monitoring of respiratory viruses in wild chimpanzees. EcoHealth 2010, 7, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Patrono, L.V.; Pléh, K.; Samuni, L.; Ulrich, M.; Röthemeier, C.; Sachse, A.; Muschter, S.; Nitsche, A.; Couacy-Hymann, E.; Boesch, C.; et al. Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nat. Microbiol. 2020, 5, 955–965. [Google Scholar] [CrossRef]
- Melin, A.D.; Janiak, M.C.; Marrone, F., 3rd; Arora, P.S.; Higham, J.P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 2020, 3, 641. [Google Scholar] [CrossRef] [PubMed]
- Ahuka-Mundeke, S.; Lunguya-Metila, O.; Mbenzo-Abokome, V.; Butel, C.; Inogwabini, B.I.; Omasombo, V.; Muyembe-Tamfum, J.J.; Georgiev, A.V.; Muller, M.N.; Ndjango, J.N.; et al. Genetic diversity of STLV-2 and interspecies transmission of STLV-3 in wild-living bonobos. Virus Evol. 2016, 2, vew011. [Google Scholar] [CrossRef] [PubMed]
- Nizeyi, J.B.; Innocent, R.B.; Erume, J.; Kalema, G.R.; Cranfield, M.R.; Graczyk, T.K. Campylobacteriosis, salmonellosis, and shigellosis in free-ranging human-habituated mountain gorillas of Uganda. J. Wildl. Dis. 2001, 37, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rwego, I.B.; Isabirye-Basuta, G.; Gillespie, T.R.; Goldberg, T.L. Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conserv. Biol. 2008, 22, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.; Gillespie, T.; Rwego, I.; Wheeler, E.; Estoff, E.; Chapmand, C. Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol. Conserv. 2007, 135, 511–517. [Google Scholar] [CrossRef]
- McLennan, M.R.; Mori, H.; Mahittikorn, A.; Prasertbun, R.; Hagiwara, K.; Huffman, M.A. Zoonotic enterobacterial pathogens detected in wild chimpanzees. EcoHealth 2018, 15, 143–147. [Google Scholar] [CrossRef]
- Lawson, B.; Garriga, R.; Galdikas, B.M. Airsacculitis in fourteen juvenile southern Bornean orangutans (Pongo pygmaeus wurmbii). J. Med. Primatol. 2006, 35, 149–154. [Google Scholar] [CrossRef]
- Palacios, G.; Lowenstine, L.J.; Cranfield, M.R.; Gilardi, K.V.; Spelman, L.; Lukasik-Braum, M.; Kinani, J.F.; Mudakikwa, A.; Nyirakaragire, E.; Bussetti, A.V.; et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. 2011, 17, 711–713. [Google Scholar] [CrossRef]
- Hockings, K.J.; Mubemba, B.; Avanzi, C.; Pleh, K.; Düx, A.; Bersacola, E.; Bessa, J.; Ramon, M.; Metzger, S.; Patrono, L.V.; et al. Leprosy in wild chimpanzees. Nature 2021, 598, 652–656. [Google Scholar] [CrossRef]
- Coscolla, M.; Lewin, A.; Metzger, S.; Maetz-Rennsing, K.; Calvignac-Spencer, S.; Nitsche, A.; Dabrowski, P.W.; Radonic, A.; Niemann, S.; Parkhill, J.; et al. Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg. Infect. Dis. 2013, 19, 969–976. [Google Scholar] [CrossRef]
- Wolf, T.M.; Sreevatsan, S.; Travis, D.; Mugisha, L.; Singer, R.S. The risk of tuberculosis transmission to free-ranging great apes. Am. J. Primatol. 2014, 76, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Grützmacher, K.S.; Keil, V.; Metzger, S.; Wittiger, L.; Herbinger, I.; Calvignac-Spencer, S.; Mätz-Rensing, K.; Haggis, O.; Savary, L.; Köndgen, S.; et al. Human respiratory syncytial virus and Streptococcus pneumoniae onfection in wild bonobos. EcoHealth 2018, 15, 462–466. [Google Scholar] [CrossRef]
- Chi, F.; Leider, M.; Leendertz, F.; Bergmann, C.; Boesch, C.; Schenk, S.; Pauli, G.; Ellerbrok, H.; Hakenbeck, R. New Streptococcus pneumoniae clones in deceased wild chimpanzees. J. Bacteriol. 2007, 189, 6085–6088. [Google Scholar] [CrossRef] [Green Version]
- Köndgen, S.; Calvignac-Spencer, S.; Grützmacher, K.; Keil, V.; Mätz-Rensing, K.; Nowak, K.; Metzger, S.; Kiyang, J.; Lübke-Becker, A.; Deschner, T.; et al. Evidence for human Streptococcus pneumoniae in wild and captive chimpanzees: A potential threat to wild populations. Sci. Rep. 2017, 7, 14581. [Google Scholar] [CrossRef] [PubMed]
- Levréro, F.; Gatti, S.; Gautier-Hion, A.; Ménard, N. Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am. J. Phys. Anthropol. 2007, 132, 568–575. [Google Scholar] [CrossRef]
- Gillespie, T.R.; Lonsdorf, E.V.; Canfield, E.P.; Meyer, D.J.; Nadler, Y.; Raphael, J.; Pusey, A.E.; Pond, J.; Pauley, J.; Mlengeya, T.; et al. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 2010, 143, 534–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köster, P.C.; Lapuente, J.; Dashti, A.; Bailo, B.; Muadica, A.S.; González-Barrio, D.; Calero-Bernal, R.; Ponce-Gordo, F.; Carmena, D. Enteric protists in wild western chimpanzees (Pan troglodytes verus) and humans in Comoé National Park, Côte d’Ivoire. Primates 2022, 63, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Köster, P.C.; Renelies-Hamilton, J.; Dotras, L.; Llana, M.; Vinagre-Izquierdo, C.; Prakas, P.; Sneideris, D.; Dashti, A.; Bailo, B.; Lanza, M.; et al. Molecular detection and characterization of intestinal and blood parasites in wild chimpanzees (Pan troglodytes verus) in Senegal. Animals 2021, 11, 3291. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.N.; Miller, W.A.; Cranfield, M.R.; Ramer, J.; Hassell, J.; Noheri, J.B.; Conrad, P.A.; Gilardi, K.V. Giardia in mountain gorillas (Gorilla beringei beringei), forest buffalo (Syncerus caffer), and domestic cattle in Volcanoes National Park, Rwanda. J. Wildl. Dis. 2014, 50, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Nizeyi, J.B.; Mwebe, R.; Nanteza, A.; Cranfield, M.R.; Kalema, G.R.; Graczyk, T.K. Cryptosporidium sp. and Giardia sp. infections in mountain gorillas (Gorilla gorilla beringei) of the Bwindi Impenetrable National Park, Uganda. J. Parasitol. 1999, 85, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Kalema-Zikusoka, G.; Rubanga, S.; Mutahunga, B.; Sadler, R. Prevention of Cryptosporidium and Giardia at the human/gorilla/livestock interface. Front. Public Health 2018, 6, 364. [Google Scholar] [CrossRef] [PubMed]
- Mynářová, A.; Foitová, I.; Kváč, M.; Květoňová, D.; Rost, M.; Morrogh-Bernard, H.; Nurcahyo, W.; Nguyen, C.; Supriyadi, S.; Sak, B. Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in wild, semi-wild and captive orangutans (Pongo abelii and Pongo pygmaeus) in Sumatra and Borneo, Indonesia. PLoS ONE 2016, 11, e0152771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, M.B.; Travis, D.; Lonsdorf, E.V.; Lipende, I.; Roellig, D.M.; Collins, A.; Kamenya, S.; Zhang, H.; Xiao, L.; Gillespie, T.R. Epidemiology and molecular characterization of Cryptosporidium spp. in humans, wild primates, and domesticated animals in the Greater Gombe Ecosystem, Tanzania. PLoS Neglect. Trop. Dis. 2015, 9, e0003529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sak, B.; Petrželková, K.J.; Květoňová, D.; Mynářová, A.; Pomajbíková, K.; Modrý, D.; Cranfield, M.R.; Mudakikwa, A.; Kváč, M. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda. PLoS ONE 2014, 9, e109751. [Google Scholar] [CrossRef] [Green Version]
- Graczyk, T.K.; DaSilva, A.J.; Cranfield, M.R.; Nizeyi, J.B.; Kalema, G.R.; Pieniazek, N.J. Cryptosporidium parvum genotype 2 infections in free-ranging mountain gorillas (Gorilla gorilla beringei) of the Bwindi Impenetrable National Park, Uganda. Parasitol. Res. 2001, 87, 368–370. [Google Scholar] [CrossRef]
- Nizeyi, J.B.; Sebunya, D.; Dasilva, A.J.; Cranfield, M.R.; Pieniazek, N.J.; Graczyk, T.K. Cryptosporidiosis in people sharing habitats with free-ranging mountain gorillas (Gorilla gorilla beringei), Uganda. Am. J. Trop. Med. Hyg. 2002, 66, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Stuart, P.; Yalcindag, E.; Ali, I.K.M.; Pecková, R.; Nurcahyo, W.; Morrogh-Bernard, H.; Foitová, I. Entamoeba histolytica infections in wild and semi-wild orangutans in Sumatra and Kalimantan. Am. J. Primatol. 2020, 82, e23124. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Bosco-Nizeyi, J.; Ssebide, B.; Thompson, R.C.; Read, C.; Cranfield, M.R. Anthropozoonotic Giardia duodenalis genotype (assemblage) A infections in habitats of free-ranging human-habituated gorillas, Uganda. J. Parasitol. 2002, 88, 905–909. [Google Scholar] [CrossRef] [Green Version]
- Sak, B.; Petrzelkova, K.J.; Kvetonova, D.; Mynarova, A.; Shutt, K.A.; Pomajbikova, K.; Kalousova, B.; Modry, D.; Benavides, J.; Todd, A.; et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS ONE 2013, 8, e71840. [Google Scholar] [CrossRef]
- Mapua, M.I.; Fuehrer, H.P.; Petrželková, K.J.; Todd, A.; Noedl, H.; Qablan, M.A.; Modrý, D. Plasmodium ovale wallikeri in Western lowland gorillas and humans, Central African Republic. Emerg. Infect. Dis. 2018, 24, 1581–1583. [Google Scholar] [CrossRef] [Green Version]
- Graczyk, T.K.; Lowenstine, L.J.; Cranfield, M.R. Capillaria hepatica (Nematoda) infections in human-habituated mountain gorillas (Gorilla gorilla beringei) of the Parc National de Volcans, Rwanda. J. Parasitol. 1999, 85, 1168–1170. [Google Scholar] [CrossRef]
- Pafčo, B.; Kreisinger, J.; Čížková, D.; Pšenková-Profousová, I.; Shutt-Phillips, K.; Todd, A.; Fuh, T.; Petrželková, K.J.; Modrý, D. Genetic diversity of primate strongylid nematodes: Do sympatric nonhuman primates and humans share their strongylid worms? Mol. Ecol. 2019, 28, 4786–4797. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Mudakikwa, A.B.; Cranfield, M.R.; Eilenberger, U. Hyperkeratotic mange caused by Sarcoptes scabiei (Acariformes: Sarcoptidae) in juvenile human-habituated mountain gorillas (Gorilla gorilla beringei). Parasitol. Res. 2001, 87, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Kalema-Zikusoka, G.; Kock, R.A.; Macfie, E.J. Scabies in free-ranging mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Vet. Rec. 2002, 150, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Bosco-Nizeyi, J.; da Silva, A.J.; Moura, I.N.; Pieniazek, N.J.; Cranfield, M.R.; Lindquist, H.D. A single genotype of Encephalitozoon intestinalis infects free-ranging gorillas and people sharing their habitats in Uganda. Parasitol. Res. 2002, 88, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef]
- Montaner Ramón, A.; Martínez Faci, C.; Martínez de Zabarte Fernández, J.M.; Ros Arnal, I. Characteristics of human metapneumovirus infection, is it important the age? Enferm. Infecc. Microbiol. Clin. 2017, 35, 59–60. [Google Scholar] [CrossRef]
- Schweon, S.J. El virus respiratorio sincitial: Más que una infección pediátrica. Nursing 2016, 33, 59–60. [Google Scholar] [CrossRef]
- Morris, J.A.; Blount, R.E.; Savage, R.E. Recovery of cytopathogenic agent from chimpanzees with Coryza. Exp. Biol. Med. 1956, 92, 544–549. [Google Scholar] [CrossRef]
- Mathai, V.; Das, A.; Bailey, J.A.; Breuer, K. Airflows inside passenger cars and implications for airborne disease transmission. Sci. Adv. 2021, 7, eabe0166. [Google Scholar] [CrossRef]
- Lonsdorf, E.V.; Travis, D.; Pusey, A.E.; Goodall, J. Using retrospective health data from the Gombe chimpanzee study to inform future monitoring efforts. Am. J. Primatol. 2006, 68, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.; Lonsdorf, E.V.; Wilson, M.L.; Schumacher-Stankey, J.; Goodall, J.; Pusey, A.E. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. 2008, 70, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Cranfield, M.R. Mountain gorilla research: The risk of disease transmission relative to the benefit from the perspective of ecosystem health. Am. J. Primatol. 2008, 70, 751–754. [Google Scholar] [CrossRef]
- Hastings, B.E.; Kenny, D.; Lowenstine, L.J.; Foster, J.W. Mountain gorillas and measles: Ontogeny of a wildlife vaccination program. In Proceedings of the American Association of Zoo Veterinarians Annual Meeting, Calgary, AB, Canada, 29 September–3 October 1991; American Association of Zoo Veterinarians: Jacksonville, Florida, USA, 1991; pp. 198–205. [Google Scholar]
- Spelman, L.H.; Gilardi, K.V.; Lukasik-Braum, M.; Kinani, J.F.; Nyirakaragire, E.; Lowenstine, L.J.; Cranfield, M.R. Respiratory disease in mountain gorillas (Gorilla beringei beringei) in Rwanda, 1990–2010: Outbreaks, clinical course, and medical management. J. Zoo Wildl. Med. 2013, 44, 1027–1035. [Google Scholar] [CrossRef]
- African Wildlife Foundation. Available online: https://www.awf.org/blog/mountain-gorilla-tourism-drives-economic-growth-and-conservation (accessed on 6 July 2022).
- Hosaka, K. A single flu epidemic killed at least 11 chimps. Pan Afr. News 1995, 2, 3–4. [Google Scholar]
- Hanamura, S.; Kiyono, M.; Lukasik-Braum, M.; Mlengeya, T.; Fujimoto, M.; Nakamura, M.; Nishida, T. Chimpanzee deaths at Mahale caused by a flu-like disease. Primates 2008, 49, 77–80. [Google Scholar] [CrossRef]
- Sherman, J.; Unwin, S.; Travis, D.A.; Oram, F.; Wich, S.A.; Jaya, R.L.; Voigt, M.; Santika, T.; Massingham, E.; Seaman, D.J.I.; et al. Disease risk and conservation implications of orangutan translocations. Front. Vet. Sci. 2021, 8, 749547. [Google Scholar] [CrossRef] [PubMed]
- Beutin, L. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Wasteson, Y. Zoonotic Escherichia coli. Acta Vet. Scand. Suppl. 2001, 95, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Trabulsi, L.R.; Keller, R.; Tardelli Gomes, T.A. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 2002, 8, 508–513. [Google Scholar] [CrossRef]
- Riley, L.W. Distinguishing pathovars from nonpathovars: Escherichia coli. Microbiol. Spectr. 2020, 8. [Google Scholar] [CrossRef]
- Espinosa, L.; Gray, A.; Duffy, G.; Fanning, S.; McMahon, B.J. A scoping review on the prevalence of Shiga-toxigenic Escherichia coli in wild animal species. Zoonoses Public Health 2018, 65, 911–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Lee, M.S.; Kim, J.H. Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front. Cell Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Wrangham, R.W.; Clark, A.P.; Isabirye-Basuta, G. Female social relationships and social organization of Kibale Forest chimpanzees. In Topics in Primatology: Human Origins; Nishida, T., McGrew, W.C., Marler, P., Pickford, M., de Waal, F.B.M., Eds.; University of Tokyo Press: Tokyo, Japan, 1992; pp. 81–98. [Google Scholar]
- Rwego, I.B.; Gillespie, T.R.; Isabirye-Basuta, G.; Goldberg, T.L. High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J. Clin. Microbiol. 2008, 46, 3187–3191. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Mbehang Nguema, P.P.; Onanga, R.; Ndong Atome, G.R.; Obague Mbeang, J.C.; Mabika Mabika, A.; Yaro, M.; Lounnas, M.; Dumont, Y.; Zohra, Z.F.; Godreuil, S.; et al. Characterization of ESBL-producing enterobacteria from fruit bats in an unprotected area of Makokou, Gabon. Microorganisms 2020, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Mbehang Nguema, P.P.; Onanga, R.; Ndong Atome, G.R.; Tewa, J.J.; Mabika Mabika, A.; Muandze Nzambe, J.U.; Obague Mbeang, J.C.; Bitome Essono, P.Y.; Bretagnolle, F.; Godreuil, S. High level of intrinsic phenotypic antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese national parks. PLoS ONE 2021, 16, e0257994. [Google Scholar] [CrossRef]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef] [Green Version]
- Brynildsrud, O.; Tysnes, K.R.; Robertson, L.J.; Debenham, J.J. Giardia duodenalis in primates: Classification and host specificity based on phylogenetic analysis of sequence data. Zoonoses Public Health 2018, 65, 637–647. [Google Scholar] [CrossRef]
- Widmer, G.; Köster, P.C.; Carmena, D. Cryptosporidium hominis infections in non-human animal species: Revisiting the concept of host specificity. Int. J. Parasitol. 2020, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—A 50 year perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Guérin, A.; Striepen, B. The biology of the intestinal intracellular parasite Cryptosporidium. Cell Host Microbe 2020, 28, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.C.; Paredez, A.R. Alternative cytoskeletal landscapes: Cytoskeletal novelty and evolution in basal excavate protists. Curr. Opin. Cell Biol. 2013, 25, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Squire, S.A.; Ryan, U. Cryptosporidium and Giardia in Africa: Current and future challenges. Parasites Vectors 2017, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, Z.; Karim, M.R.; Zhang, L. Detection of human intestinal protozoan parasites in vegetables and fruits: A review. Parasit Vectors 2020, 13, 380. [Google Scholar] [CrossRef]
- Ma, J.Y.; Li, M.Y.; Qi, Z.Z.; Fu, M.; Sun, T.F.; Elsheikha, H.M.; Cong, W. Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. Sci. Total Environ. 2022, 806, 150562. [Google Scholar] [CrossRef]
- Robertson, L.J.; Johansen, Ø.H.; Kifleyohannes, T.; Efunshile, A.M.; Terefe, G. Cryptosporidium infections in Africa-How important is zoonotic transmission? A review of the evidence. Front. Vet. Sci. 2020, 7, 575881. [Google Scholar] [CrossRef]
- Dixon, B.R. Giardia duodenalis in humans and animals—Transmission and disease. Res. Vet. Sci. 2021, 135, 283–289. [Google Scholar] [CrossRef]
- Salzer, J.S.; Rwego, I.B.; Goldberg, T.L.; Kuhlenschmidt, M.S.; Gillespie, T.R. Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. J. Parasitol. 2007, 93, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kiulia, N.M.; Mwenda, J.M.; Nyachieo, A.; Taylor, M.B.; Zhang, X.; Xiao, L. Cyclospora papionis, Cryptosporidium hominis, and human-pathogenic Enterocytozoon bieneusi in captive baboons in Kenya. J. Clin. Microbiol. 2011, 49, 4326–4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodager, J.R.; Parsons, M.B.; Wright, P.C.; Rasambainarivo, F.; Roellig, D.; Xiao, L.; Gillespie, T.R. Complex epidemiology and zoonotic potential for Cryptosporidium suis in rural Madagascar. Vet. Parasitol. 2015, 207, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Ryan, U.; Xiao, L.; Feng, Y. Zoonotic giardiasis: An update. Parasitol. Res. 2021, 120, 4199–4218. [Google Scholar] [CrossRef]
- Labes, E.M.; Hegglin, D.; Grimm, F.; Nurcahyo, W.; Harrison, M.E.; Bastian, M.L.; Deplazes, P. Intestinal parasites of endangered orangutans (Pongo pygmaeus) in Central and East Kalimantan, Borneo, Indonesia. Parasitology 2010, 137, 123–135. [Google Scholar] [CrossRef] [Green Version]
- United Nations News. Global Perspective Human Stories, UN Works to Protect Great Apes, Habitat, Amid Ongoing Instability in DR Congo. November 7 2013. Available online: https://news.un.org/en/story/2013/11/454912-feature-un-works-protect-great-apes-habitat-amid-ongoing-instability-dr-congo (accessed on 6 July 2022).
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Gorilla gorilla Version 2016-3. Available online: https://www.iucnredlist.org/species/9404/136250858 (accessed on 6 July 2022).
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Pan troglodytes Version 2016-3. Available online: https://www.iucnredlist.org/species/15933/129038584 (accessed on 6 July 2022).
- Aebischer, T.; Siguindo, G.; Rochat, E.; Arandjelovic, M.; Heilman, A.; Hickisch, R.; Vigilant, L.; Joost, S.; Wegmann, D. First quantitative survey delineates the distribution of chimpanzees in the Eastern Central African Republic. Biol. Conserv. 2017, 213, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Heinicke, S.; Mundry, R.; Boesch, C.; Amarasekaran, B.; Barrie, A.; Brncic, T.; Brugière, D.; Campbell, G.; Carvalho, J.; Danquah, E.; et al. Advancing conservation planning for western chimpanzees using IUCN SSC A.P.E.S.—The case of a taxon-specific database. Environ. Res. Lett. 2019, 14, 064001. [Google Scholar] [CrossRef]
- Taï Chimpanzee Project, MPI-EVAN. Available online: https://www.eva.mpg.de/primat/research-groups/chimpanzees/field-sites/tai-chimpanzee-project/ (accessed on 6 July 2022).
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Gorilla beringei ssp. graueri Version 2016-3. Available online: https://www.iucnredlist.org/species/39995/102328430 (accessed on 6 July 2022).
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Pan paniscus Version 2016-3. Available online: https://www.iucnredlist.org/species/15932/102331567 (accessed on 6 July 2022).
- Martínez-Íñigo, L.; Baas, P.; Klein, H.; Pika, S.; Deschner, T. Home range size in central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. Primates 2021, 62, 723–734. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Pongo abelii Version 2016-3. Available online: https://www.iucnredlist.org/species/121097935/123797627 (accessed on 6 July 2022).
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Pongo pygmaeus Version 2016-3. Available online: https://www.iucnredlist.org/species/17975/123809220 (accessed on 6 July 2022).
- Plumptre, A.J.; Nixon, S.; Critchlow, R.; Vieilledent, G.; Nishuli, R.; Kirkby, A.; Williamson, E.A.; Hall, J.S.; Kujirakwinja, D. Status of Grauer’s gorilla and chimpanzees in eastern Democratic Republic of Congo. 2015. Available online: https://www.sec.gov/comments/statement-013117/cll2-1626115-137341.pdf (accessed on 6 July 2022).
- Nakamura, M.; Hosaka, K.; Itoh, N.; Zamma, K. Mahale Chimpanzees, 50 Years of Research; Cambridge University Press: Cambridge, UK, 2015; p. 798. [Google Scholar]
- Ugandan Wildlife, Chimpanzee Report 2021; Wildlife Conservation Society: Uganda. Available online: https://uganda.wcs.org/publications.aspx (accessed on 6 July 2022).
- Newton-Fisher, N.E.; Notman, H.; Paterson, J.D.; Reynolds, V. Primates of Western Uganda; Springer: New York, NY, USA, 2006; p. 514. [Google Scholar]
- Loango Gorilla Project. Available online: https://www.eva.mpg.de/primat/research-groups/gorillas/projects/ (accessed on 6 July 2022).
Pathogenic Agent | Human Origin? | Affected Great Ape Species | Human Contact? | Country(ies) | Reference |
---|---|---|---|---|---|
Viruses | |||||
Ebola virus | Unlikely | G.g., P.t. | H | Congo, Gabon | [35] |
Human adenovirus A–F | Probable | G.g., P.p., P.t. | H | Cameroon, Ivory Coast, Democratic Republic of Congo, Gambia, Republic of Congo, Rwanda, Tanzania, Uganda | [36] |
Human adenoviruses B, C, E | Probable | P.p. | H | Democratic Republic of Congo | [37] |
Human coronavirus OC43 | Probable | P.t.v. | H | Ivory Coast | [38] |
Human metapneumovirus | Probable | G.g.b. | H | Rwanda | [39] |
Probable | P.t. | H | Tanzania | [40] | |
Probable | P.t.v. | H | Ivory Coast | [41] | |
Probable | P.t.s. | H | Uganda | [34] | |
Monkeypox virus | Uncertain | P.t.v. | H | Ivory Coast | [42] |
Severe acute respiratory syndrome coronavirus 2 | Probable | G.g., P.p., P.t., P.a. | Unknown | Africa (not specified) | [43] |
T-cell lymphotropic virus 1–4 | Probable | P.p. | H | Democratic Republic of Congo | [44] |
Bacteria | |||||
Campylobacter spp. | Uncertain | G.g.b. | H | Uganda | [45] |
Escherichia coli | Probable | G.g.b. | H, NH | Uganda | [46] |
Uncertain | G.g.g. | H, NH | Central African Republic | [33] | |
Probable | P.t. | H | Uganda | [47] | |
Uncertain | P.t. | H | Uganda | [48] | |
Enterobacter sp. | Unlikely | P.p.w. | H | Indonesia | [49] |
Klebsiella pneumoniae | Unlikely | G.g.b. | H | Rwanda | [50] |
Uncertain | G.g.g. | H, NH | Central African Republic | [33] | |
Unlikely | P.p.w. | H | Indonesia | [49] | |
Mycobacterium leprae | Unlikely | P.t.v. | H, NH | Ivory Coast, Guinea Bissau | [51] |
Mycobacterium tuberculosis | Unlikely | P.t.v. | H | Ivory Coast | [52] |
Unlikely | Great apes | Unknown | Africa (several countries) | [53] | |
Pseudomonas aeruginosa | Unlikely | P.p.w. | H | Indonesia | [49] |
Salmonella spp. | Uncertain | G.g.b. | H | Uganda | [45] |
Uncertain | P.t. | H | Uganda | [48] | |
Shigella spp. | Uncertain | G.g.b. | H | Uganda | [45] |
Uncertain | P.t. | H | Uganda | [48] | |
Staphylococcus aureus | Uncertain | P.p.w. | H | Indonesia | [49] |
Streptococcus pneumoniae | Uncertain | G.g.b. | H | Rwanda | [50] |
Probable | P.p. | H | Democratic Republic of Congo | [54] | |
Uncertain | P.t.v. | H | Ivory Coast | [55] | |
Probable | P.t.v. | H | Ivory Coast | [56] | |
Treponema pallidum pertenue | Uncertain | G.g.g. | NH | Republic of Congo | [57] |
Parasites (microeukaryotes) | H | ||||
Balantioides coli | Unlikely | P.t.s. | H | Tanzania | [58] |
Blastocystis sp. | Probable | P.t.v. | NH | Ivory Coast | [59] |
Probable | P.t.v. | NH | Senegal | [60] | |
Cryptosporidium spp. | Uncertain | G.g.b. | H | Rwanda | [61] |
Uncertain | G.g.b. | H, NH | Uganda | [62] | |
Uncertain | G.g.b. | H, NH | Uganda | [63] | |
Uncertain | P.a., P.pyg. | H | Indonesia | [64] | |
Cryptosporidium hominis | Probable | P.t.s. | H | Tanzania | [65] |
Probable | P.t.v. | NH | Ivory Coast | [59] | |
Probable | P.t.v. | NH | Senegal | [60] | |
Cryptosporidium meleagridis | Unlikely | G.g.b. | H | Rwanda | [66] |
Cryptosporidium muris | Unlikely | G.g.b. | H | Rwanda | [66] |
Cryptosporidium parvum | Uncertain | G.g.b. | H | Uganda | [67] |
Uncertain | G.g.b. | H | Uganda | [68] | |
Entamoeba histolytica | Very probable | P.t.s. | H | Tanzania | [58] |
Very probable | P.a., P.pyg. | H | Indonesia | [69] | |
Giardia duodenalis | Probable | G.g.b. | H | Rwanda | [61] |
Probable | G.g.b. | H, NH | Uganda | [62] | |
Probable | G.g.b. | H | Uganda | [70] | |
Probable | G.g.g. | H | Central African Republic | [71] | |
Probable | P.p. | H | Democratic Republic of Congo | [37] | |
Probable | P.t.v. | NH | Ivory Coast | [59] | |
Probable | P.t.v. | NH | Senegal | [60] | |
Probable | P.a., P.pyg. | H | Indonesia | [64] | |
Iodamoeba bütschlii | Probable | P.t.s. | H | Tanzania | [58] |
Plasmodium ovale wallikeri | Uncertain | G.g.g. | H | Central African Republic | [72] |
Parasites (helminths) | H | ||||
Abbreviata caucasica | Probable | P.t.s. | H | Tanzania | [58] |
Ascaris sp. | Very probable | P.t.s. | H | Tanzania | [58] |
Bertiella sp. | Unlikely | P.t.s. | H | Tanzania | [58] |
Capillaria hepatica | Probable | G.g.b. | H | Rwanda | [73] |
Dicrocoeliidae | Probable | P.t.s. | H | Tanzania | [58] |
Trichuris sp. | Probable | P.t.s. | H | Tanzania | [58] |
Necator americanus | Probable | G.g.g. | H | Central African Republic | [74] |
Oesophagostomum sp. | Probable | P.t.s. | H | Tanzania | [58] |
Oesophagostomum bifurcum-like | Unlikely | P.p. | H | Democratic Republic of Congo | [37] |
Oesophagostomum stephanostomum | Unlikely | P.p. | H | Democratic Republic of Congo | [37] |
Strongyloides fulleborni | Unlikely | P.t.s. | H | Tanzania | [58] |
Strongyloides stercoralis | Probable | P.p. | H | Democratic Republic of Congo | [37] |
Taenia solium | Unlikely | P.p. | H | Democratic Republic of Congo | [37] |
Parasites (arthropods) | |||||
Sarcoptes scabiei | Probable | G.g.b. | H | Uganda | [75] |
Probable | G.g.b. | H | Uganda | [76] | |
Fungi | H | ||||
Enterocytozoon bieneusi | Probable | G.g.b. | H | Rwanda | [66] |
Encephalitozoon cuniculi | Probable | G.g.b. | H | Rwanda | [66] |
Encephalitozoon intestinalis | Probable | G.g.b. | H | Uganda | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köster, P.C.; Lapuente, J.; Cruz, I.; Carmena, D.; Ponce-Gordo, F. Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Vet. Sci. 2022, 9, 356. https://doi.org/10.3390/vetsci9070356
Köster PC, Lapuente J, Cruz I, Carmena D, Ponce-Gordo F. Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Veterinary Sciences. 2022; 9(7):356. https://doi.org/10.3390/vetsci9070356
Chicago/Turabian StyleKöster, Pamela C., Juan Lapuente, Israel Cruz, David Carmena, and Francisco Ponce-Gordo. 2022. "Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations?" Veterinary Sciences 9, no. 7: 356. https://doi.org/10.3390/vetsci9070356
APA StyleKöster, P. C., Lapuente, J., Cruz, I., Carmena, D., & Ponce-Gordo, F. (2022). Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Veterinary Sciences, 9(7), 356. https://doi.org/10.3390/vetsci9070356