Prevalence of Poor Diet Quality and Associated Factors Among Older Adults from the Bagé Cohort Study of Ageing, Brazil (SIGa-Bagé)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farías-Antúnez, S.; Fassa, A.G. Frailty Prevalence and Associated Factors in the Elderly in Southern Brazil, 2014. Epidemiol. Serv. Saude 2019, 28, e2017405. [Google Scholar] [CrossRef] [PubMed]
- Malta, M.B.; Papini, S.J.; Corrente, J.E. Avaliação Da Alimentação de Idosos de Município Paulista–Aplicação Do Índice de Alimenta o Saudável. Cien Saude Colet. 2013, 18, 377–384. [Google Scholar] [PubMed]
- ONU Envelhecimento. Available online: https://unric.org/pt/envelhecimento/ (accessed on 18 December 2024).
- Kaburagi, T.; Hirasawa, R.; Yoshino, H.; Odaka, Y.; Satomi, M.; Nakano, M.; Fujimoto, E.; Kabasawa, K.; Sato, K. Nutritional Status Is Strongly Correlated with Grip Strength and Depression in Community-Living Elderly Japanese. Public Health Nutr. 2011, 14, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Katsas, K.; Mamalaki, E.; Kontogianni, M.D.; Anastasiou, C.A.; Kosmidis, M.H.; Varlamis, I.; Hadjigeorgiou, G.M.; Dardiotis, E.; Sakka, P.; Scarmeas, N.; et al. Malnutrition in Older Adults: Correlations with Social, Diet-Related, and Neuropsychological Factors. Nutrition 2020, 71, 110640. [Google Scholar] [CrossRef]
- ONU. World Population Ageing 2020 Highlights: Living Arrangements of Older Persons. Economic and Social Affairs United Nations, 2020; 1–47. Available online: https://www.amazon.com/World-Population-Ageing-2020-Highlights/dp/9211483476 (accessed on 28 June 2021).
- IBGE Censo: Número de Idosos No Brasil Cresceu 57.4% Em 12 Anos—Secretaria de Comunicação Social. Available online: https://www.gov.br/secom/pt-br/assuntos/noticias/2023/10/censo-2022-numero-de-idosos-na-populacao-do-pais-cresceu-57-4-em-12-anos (accessed on 17 July 2024).
- IBGE Projeções e Estimativas Da População Do Brasil e Das Unidades Da Federação. Available online: https://www.ibge.gov.br/apps/populacao/projecao/index.html?utm_source=portal&utm_medium=popclock&utm_campaign=novo_popclock (accessed on 28 June 2021).
- Nunes, B.P.; Thumé, E.; Facchini, L.A. Multimorbidity in Older Adults: Magnitude and Challenges for the Brazilian Health System Chronic Disease Epidemiology. BMC Public Health 2015, 15, 1172. [Google Scholar] [CrossRef]
- Costa, C.d.S.; Flores, T.R.; Wendt, A.; Neves, R.G.; Tomasi, E.; Cesar, J.A.; Bertoldi, A.D.; Ramires, V.V.; Nunes, B.P. Inequalities in Multimorbidity among Elderly: A Population-Based Study in a City in Southern Brazil. Cad. Saude Publica 2018, 34, e00040718. [Google Scholar] [CrossRef]
- Alves, L.C.; Leite, I.D.C.; Machado, C.J. Conceituando e Mensurando a Incapacidade Funcional Da População Idosa: Uma Revisão de Literatura. Cien. Saude Colet. 2008, 13, 1199–1207. [Google Scholar] [CrossRef]
- Barbosa-Silva, T.G.; Bielemann, R.M.; Gonzalez, M.C.; Menezes, A.M.B. Prevalence of Sarcopenia among Community-Dwelling Elderly of a Medium-Sized South American City: Results of the COMO VAI? Study. J. Cachexia Sarcopenia Muscle 2016, 7, 136–143. [Google Scholar] [CrossRef]
- Chen, W.; Okumiya, K.; Wada, T.; Sakamoto, R.; Imai, H.; Ishimoto, Y.; Kimura, Y.; Fukutomi, E.; Fujisawa, M.; Shih, H.-I.; et al. Social Cohesion and Health in Old Age: A Study in Southern Taiwan. Int. Psychogeriatr. 2015, 27, 1903–1911. [Google Scholar] [CrossRef]
- Beard, J.R.; Bloom, D.E. Towards a Comprehensive Public Health Response to Population Ageing. Lancet 2015, 385, 658. [Google Scholar] [CrossRef]
- Pereira, B.P.; Bortolotto, C.C.; Tomasi, E.; Gonzalez, M.C.; Gomes, A.P.; Gonçalves, H.; Bielemann, R.M. Consumo Alimentar e Multimorbidade Entre Idosos Não Institucionalizados de Pelotas, 2014: Estudo Transversal. Epidemiol. Serv. Saúde 2020, 29, e2019050. [Google Scholar] [CrossRef] [PubMed]
- Avila-Funes, J.A.; Gray-Donald, K.; Payette, H. Association of Nutritional Risk and Depressive Symptoms with Physical Performance in the Elderly: The Quebec Longitudinal Study of Nutrition as a Determinant of Successful Aging (NuAge). J. Am. Coll. Nutr. 2008, 27, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.P.; Oliveira Bierhals, I.; Gonçalves Soares, A.L.; Hellwig, N.; Tomasi, E.; Formoso Assunção, M.C.; Gonçalves, H. Interrelatioship between Diet Quality and Depressive Symptoms in Elderly. J. Nutr. Health Aging 2018, 22, 387–392. [Google Scholar] [CrossRef]
- de Assumpção, D.; Domene, S.M.Á.; Fisberg, R.M.; de Azevedo Barros, M.B. Diet Quality and Associated Factors among the Elderly: A Population-Based Study in Campinas, São Paulo State, Brazil. Cad. Saude Publica 2014, 30, 1680–1694. [Google Scholar] [CrossRef]
- da Silva, F.P.; Dallepiane, L.B.; Kirsten, V.R.; Kirchner, R.M. Compliance in Food Consumption of Young and Long-Lived Elderly of a City in Southern Brazil. Nutr. Hosp. 2016, 33, 37–42. [Google Scholar]
- BRASIL. Ministério da Saúde Cadernos de Atenção Básica: Envelhecimento e Saúde Da Pessoa Idosa; 2006; Volume 2, ISBN 9788533414044. [Google Scholar]
- André, B.; Canhão, H.; Espnes, G.A.; Ferreira Rodrigues, A.M.; Gregorio, M.J.; Nguyen, C.; Sousa, R.; Grønning, K. Is There an Association between Food Patterns and Life Satisfaction among Norway’s Inhabitants Ages 65 Years and Older? Appetite 2017, 110, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, R.A.; de Souza, L.B.; Corrente, J.E. Tooth Loss and Its Relationship with Protein Intake by Elderly Brazilians—A Structural Equation Modelling Approach. Gerodontology 2018, 35, 51–58. [Google Scholar] [CrossRef]
- Thumé, E.; Kessler, M.; Machado, K.P.; Nunes, B.P.; Volz, P.M.; Wachs, L.S.; Soares, M.U.; Saes, M.O.; Duro, S.M.; Dilélio, A.S.; et al. Cohort Study of Ageing from Bagé (SIGa-Bagé), Brazil: Profile and Methodology. BMC Public. Health 2021, 21, 1089. [Google Scholar] [CrossRef]
- Gomes, A.P.; Soares, A.L.G.; Gonçalves, H. Baixa Qualidade Da Dieta de Idosos: Estudo de Base Populacional No Sul Do Brasil. Cien. Saude Colet. 2016, 21, 3417–3428. [Google Scholar] [CrossRef]
- Lipschitz, D.A. Screening for Nutritional Status in the Elderly. Prim. Care Clin. Off. Pract. 1994, 21, 55–67. [Google Scholar] [CrossRef]
- Montes, M.C.; Bortolotto, C.C.; Tomasi, E.; Gonzalez, M.C.; Barbosa-Silva, T.G.; Domingues, M.R.; Bielemann, R.M. Strength and Multimorbidity among Community-Dwelling Elderly from Southern Brazil. Nutrition 2020, 71, 110636. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Sheikh, J.I. 9/Geriatric Depression Scale (GDS) Recent Evidence and Development of a Shorter Version. Clin. Gerontol. A Guide Assess. Interv. 2015, 7115, 165–173. [Google Scholar] [CrossRef]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for Logistic Regression in Cross-Sectional Studies: An Empirical Comparison of Models That Directly Estimate the Prevalence Ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Gregório, M.J.; Sousa, R.D.; Dias, S.S.; Santos, M.J.; Mendes, J.M.; Coelho, P.S.; Branco, J.C.; Canhão, H. Challenges of Ageing in Portugal: Data from the EpiDoC Cohort. Acta Med. Port. 2018, 31, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.F.d.S.; Vale, D.; Bezerra, M.S.; de Lima, K.C.; Roncalli, A.G.; de Oliveira Lyra, C. Padrões Alimentares de Idosos No Brasil: Pesquisa Nacional de Saúde, 2013. Cien Saude Colet 2020, 25, 1091–1102. [Google Scholar] [CrossRef]
- Araújo, J.G.C.d.; de Arruda, I.K.G.; Diniz, A.D.S.; Rocha, L.P.; De Andrade Silva, S.R. Qualidade Da Dieta De Idosos No Brasil. Estud. Interdiscip. Sobre O Envelhec. 2021, 26, 2. [Google Scholar] [CrossRef]
- Meller, F.d.O.; Manosso, L.M.; Schäfer, A.A. The Influence of Diet Quality on Depression among Adults and Elderly: A Population-Based Study. J. Affect. Disord. 2021, 282, 1076–1081. [Google Scholar] [CrossRef]
- De Assumpção, D.; Domene, S.M.Á.; Fisberg, R.M.; Canesqui, A.M.; Barros, M.B.D.A. Differences between Men and Women in the Quality of Their Diet: A Study Conducted on a Population in Campinas, São Paulo, Brazil. Ciência Saúde Coletiva 2017, 22, 347–358. [Google Scholar] [CrossRef]
- Fernandes, M.P.; Bielemann, R.M.; Fassa, A.G. Factors Associated with the Quality of the Diet of Residents of a Rural Area in Southern Brazil. Rev. Saude Publica 2018, 52, 6s. [Google Scholar] [CrossRef]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Butterworth, P. Does Reverse Causality Explain the Relationship between Diet and Depression? J. Affect. Disord. 2015, 175, 248–250. [Google Scholar] [CrossRef]
- Jacka, F.N.; Mykletun, A.; Berk, M.; Bjelland, I.; Tell, G.S. The Association between Habitual Diet Quality and the Common Mental Disorders in Community-Dwelling Adults: The Hordaland Health Study. Psychosom. Med. 2011, 73, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, W.; Wang, H.; Bai, Y.; Zhang, F.; Lu, W. Association between Healthy Eating and Depression Symptoms among Chinese Older Adults: A Cross-Sectional Study Based on the Chinese Longitudinal Healthy Longevity Survey. Prev. Med. Rep. 2024, 38, 102616. [Google Scholar] [CrossRef]
- Lai, J.S.; Cheng, G.H.L.; Chong, Y.S.; Chong, M.F.F.; Koh, W.P. Longitudinal Dietary Trajectories With Cognitive and Psychosocial Well-Being in Chinese Adults Aged 85 Years and Older in Singapore. Innov. Aging 2023, 7, 1–23. [Google Scholar] [CrossRef]
- Kim, E.; Cho, B.Y.; Kim, M.K.; Yang, Y.J. Association of Diet Quality Score with the Risk of Mild Cognitive Impairment in the Elderly. Nutr. Res. Pract. 2022, 16, 673–684. [Google Scholar] [CrossRef]
- Harbottle, L. The Effect of Nutrition on Older People’s Mental Health. Br. J. Community Nurs. 2019, 24, S12–S16. [Google Scholar] [CrossRef]
- Gomes, A.P.; Bierhals, I.O.; Vieira, L.S.; Soares, A.L.G.; Flores, T.R.; Assunção, M.C.F.; Gonçalves, H. Dietary Patterns of Elderly Brazilians and Associated Determinants: A Population-Based Study in the South of Brazil. Cienc. Saude Coletiva 2020, 25, 1999–2008. [Google Scholar] [CrossRef]
- Mayer, R.F. Associação Entre Variáveis de Estilo de vida e Sociodemográficas com a Condição de Multimorbidade: Evidências Para a população Adulta Brasileira; Pontifícia Universidade Católica de Campinas (PUC-Campinas): Campinas, Brazil, 2023. [Google Scholar]
- Liang, Y.; Song, A.; Du, S.; Guralnik, J.M.; Qiu, C. Trends in Disability in Activities of Daily Living Among Chinese Older Adults, 1997-2006: The China Health and Nutrition Survey. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Ćwirlej-Sozańska, A.B.; Sozański, B.; Wiśniowska-Szurlej, A.; Wilmowska-Pietruszyńska, A. An Assessment of Factors Related to Disability in Adl and Iadl in Elderly Inhabitants of Rural Areas of South-Eastern Poland. Ann. Agric. Environ. Med. 2018, 25, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Costa Filho, A.M.; Mambrini, J.V.d.M.; Malta, D.C.; Lima-Costa, M.F.; Peixoto, S.V. Contribuição Das Doenças Crônicas Na Prevalência Da Incapacidade Para as Atividades Básicas e Instrumentais de Vida Diária Entre Idosos Brasileiros: Pesquisa Nacional de Saúde (2013). Cad. Saude Publica 2018, 34, e00204016. [Google Scholar] [CrossRef]
- Nóbrega, J.C.L.; Medeiros, J.B.; Santos, T.T.d.M.; Alves, S.A.V.; Freitas, J.L.G.d.S.; Silva, J.M.M.; Simões, R.F.M.; de Lima Brito, A.; Weller, M.; de Ferreira Santos, J.L.; et al. Socioeconomic Factors and Health Status Disparities Associated with Difficulty in ADLs and IADLs among Long-Lived Populations in Brazil: A Cross-Sectional Study. Inquiry 2021, 58, 469580211007264. [Google Scholar] [CrossRef]
- Reza, S.; Alam, M.R.; Chowdhury, A.I.; Mamun, M.A.A.; Akhter, M.; Habib, M.A. Assessing Nutritional Status and Functionality in Geriatric Population of Bangladesh: The Hidden Epidemic of Geriatric Malnutrition. Gerontol. Geriatr. Med. 2023, 9, 23337214231172663. [Google Scholar] [CrossRef]
- Schmidt, T.P.; Wagner, K.J.P.; Schneider, I.J.C.; Danielewicz, A.L. Multimorbidity Patterns and Functional Disability in Elderly Brazilians: A Cross-Sectional Study with Data from the Brazilian National Health Survey. Cad. Saude Publica 2020, 36, e00241619. [Google Scholar] [CrossRef] [PubMed]
- Mofrad, M.D.; Namazi, N.; Larijani, B.; Surkan, P.J.; Azadbakht, L. Association of the Elderly Dietary Index with Cardiovascular Disease Risk Factors in Elderly Men: A Cross-Sectional Study. Nutr. Diet. 2019, 76, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Bloom, I.; Edwards, M.; Jameson, K.A.; Syddall, H.E.; Dennison, E.; Gale, C.R.; Baird, J.; Cooper, C.; Sayer, A.A.; Robinson, S. Influences on Diet Quality in Older Age: The Importance of Social Factors. Age Ageing 2017, 46, 277–283. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Y.; Li, J.; Liu, Y.; Zhou, L.; Yu, Y. Association between Healthy Eating Index-2015 and Physical Frailty among the United States Elderly Adults: The National Health and Nutrition Examination Survey (NHANES) 2011–2014. Aging Clin. Exp. Res. 2021, 33, 3245–3255. [Google Scholar] [CrossRef]
- Hengeveld, L.M.; Wijnhoven, H.A.H.; Olthof, M.R.; Brouwer, I.A.; Simonsick, E.M.; Kritchevsky, S.B.; Houston, D.K.; Newman, A.B.; Visser, M. Prospective Associations of Diet Quality with Incident Frailty in Older Adults: The Health, Aging, and Body Composition Study. J. Am. Geriatr. Soc. 2019, 67, 1835–1842. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Gao, X.; Mitchell, D.C.; Wood, G.C.; Still, C.D.; Jensen, G.L. Diet Quality Is Associated With Mortality in Adults Aged 80 Years and Older: A Prospective Study. J. Am. Geriatr. Soc. 2019, 67, 2180–2185. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Liu, M.; Lyu, X.Y.; Tang, R.; Yang, X.; Yin, M.; He, Y. Prevalence of chronic diseases and associate factors on daily activities in male oldest-olds. Zhonghua Liu Xing Bing Xue Za Zhi 2019, 40, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Grønning, K.; Espnes, G.A.; Nguyen, C.; Rodrigues, A.M.F.; Gregorio, M.J.; Sousa, R.; Canhão, H.; André, B. Psychological Distress in Elderly People Is Associated with Diet, Wellbeing, Health Status, Social Support and Physical Functioning—A HUNT3 Study. BMC Geriatr. 2018, 18, 205. [Google Scholar] [CrossRef]
- Rede PENSSAN. II VIGISAN—Inquérito Nacional Sobre Insegurança Alimentar No Contexto Da Pandemia Da COVID-19 No Brasil; 2022; ISBN 9786587504544. Available online: https://pesquisassan.net.br/2o-inquerito-nacional-sobre-inseguranca-alimentar-no-contexto-da-pandemia-da-covid-19-no-brasil/ (accessed on 28 June 2021).
- Neta, J.F.d.F.; Gomes, S.C.; de Oliveira, B.L.C.A.; Henrique, T.d.L.S.; de Freitas, R.W.J.F.; Guedes, N.G.; Pinheiro, A.K.B.; Damasceno, M.M.C. Consumo de Alimentos Marcadores de Uma Alimentação Saudável, Segundo Os Grupos Raciais de Mulheres No Brasil. Cien Saude Colet. 2024, 29, e11762023. [Google Scholar] [CrossRef]
Variables | Total n (%) |
---|---|
Sex | |
Female | 478 (65.7) |
Male | 250 (34.3) |
Age (years) | |
68 a 79 | 504 (69.2) |
80 or more | 224 (30.8) |
Skin color 3 | |
White | 598 (82.6) |
Black | 76 (10.5) |
Brown | 50 (6.9) |
Marital status 3 | |
With a partner/married | 309 (42.7) |
Without a partner/married | 415 (57.3) |
Lives alone | |
No | 550 (75.6) |
Yes | 178 (24.4) |
Education level (years completed) 3 | |
No education | 161 (22.3) |
Up to 8 | 438 (60.6) |
9 or more | 124 (17.1) |
Income tercile (BRL) 3 | |
1st (≤602.00) | 240 (33.2) |
2nd (606.67–1000.00) | 250 (34.5) |
3rd (≥1010.00) | 234 (32.3) |
Use of dental prothesis 3 | |
No | 178 (24.7) |
Yes | 544 (75.3) |
Difficulty chewing or swallowing | |
No | 649 (89.2) |
Yes | 79 (10.8) |
Needs help with eating 3 | |
No | 692 (95.2) |
Yes | 35 (4.8) |
Needs help with preparing meals 3 | |
No | 588 (81.1) |
Yes | 137 (18.9) |
Multimorbidity 1,3 (≥5 morbidities) | |
No | 383(54.3) |
Yes | 322 (45.7) |
Depressive symptoms 2,3 (GDS ≥ 6) | |
No | 598 (86.5) |
Yes | 93 (13.5) |
Body Mass Index 3 (Lipschitz) | |
Underweight | 109 (16.4) |
Normal weight | 240 (36.1) |
Overweight | 316 (47.5) |
Elderly Dietary Quality Index (EDQ-I) | |
Poor (score ≤ 24) | 302 (41.5) |
Medium (score 25–27) | 205 (28.2) |
High (score ≥ 28) | 221 (30.3) |
Variables | Poor Diet Quality | ||
---|---|---|---|
Prevalence% | Crude PR 1 (95% CI) | Adjusted PR 2 (95% CI) | |
Sex | p < 0.001 | p = 0.007 | |
Female | 37.0 | 1 | 1 |
Male | 50.0 | 1.35 (1.14–1.60) | 1.30 (1.08–1.58) |
Age (years) | p = 0.028 | p = 0.068 | |
68 a 79 | 44.3 | 1.25 (1.02–1.54) | 1.20 (0.99–1.47) |
80 or more | 35.3 | 1 | 1 |
Skin color | p < 0.001 | p = 0.010 | |
White | 38.3 | 1 | 1 |
Black | 54.0 | 1.41 (1.12–1.78) | 1.33 (1.03–1.71) |
Brown | 58.0 | 1.51 (1.17–1.96) | 1.44 (1.08–1.94) |
Marital status | p = 0.589 | - | |
With a partner/married | 42.7 | 1.05 (0.88–1.25) | - |
Without a partner/married | 40.7 | 1 | - |
Lives alone | p = 0.243 | - | |
No | 42.7 | 1.14 (0.92–1.40) | - |
Yes | 37.6 | 1 | - |
Education level (years completed) | p = 0.179 | p = 0.405 | |
No education | 35.4 | 1 | 1 |
Up to 8 | 43.8 | 1.24 (0.98–1.56) | 0.82 (0.65–1.03) |
9 or more | 39.5 | 1.12 (0.83–1.51) | 0.90 (0.69–1.16) |
Income tercile (BRL) | p = 0.023 | p = 0.081 | |
1st (≤602.00) | 47.5 | 1.13 (0.93–1.39) | 1.09 (0.88–1.37) |
2nd (606.67–1000.00) | 35.2 | 0.84 (0.67–1.05) | 0.85 (0.67–1.08) |
3rd (≥1010.00) | 41.9 | 1 | 1 |
Use of dental prosthesis | p = 0.011 | p = 0.135 | |
No | 49.4 | 1.27 (1.06–1.52) | 1.17 (0.95–1.43) |
Yes | 39.0 | 1 | 1 |
Difficulty chewing or swallowing | p = 0.287 | - | |
No | 40.8 | 1 | - |
Yes | 46.8 | 1.15 (0.89–1.48) | - |
Needs help with eating | p = 0.865 | - | |
No | 41.5 | 1.04 (0.68–1.57) | - |
Yes | 40.0 | 1 | - |
Needs help with preparing meals | p = 0.747 | - | |
No | 41.7 | 1.04 (0.83–1.30) | - |
Yes | 40.2 | 1 | - |
Multimorbidity 3 (≥5 morbidities) | p = 0.046 | p = 0.030 | |
No | 44.1 | 1.20 (1.00–1.45) | 1.24 (1.02–1.50) |
Yes | 36.7 | 1 | 1 |
Body Mass Index (Lipschitz) | P = 0.213 | - | |
Underweight | 43.1 | 0.98 (0.76–1.26) | - |
Normal weight | 36.7 | 1 | - |
Overweight | 44.0 | 0.83 (0.68–1.03) | - |
Depressive symptoms (GDS ≥ 6) | p = 0.008 | p <0.001 4 | |
No | 39.3 | 1 | 1 |
Yes | 52.7 | 1.34 (1.08–1.67) | 1.48 (1.17–1.86) |
Food | Female (n = 408) Prevalence (95% CI) | Male (n = 216) Prevalence (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|
Did Not Consume | 1–3 Days | 4–6 Days | Every Day of the Week | Did Not Consume | 1–3 Days | 4–6 Days | Every Day of the Week | |
Healthy food | ||||||||
Rice with beans or rice with lentils | 5.3 (3.6–7.7) | 14.3 (11.5–17.8) | 13.5 (10.7–16.9) | 66.9 (62.5–71.0) | 2.4 (1.1–5.3) | 6.8 (4.3–10.7) | 19.3 (14.8–24.7) | 71.5 (65.5–76.8) |
Whole foods (wholegrain bread, wholegrain cookies, wholegrain rice or oats) | 52.6 (48.1–57.1) | 13.3 (10.5–16.7) | 10.6 (8.1–13.7) | 23.5 (19.9–27.5) | 65.3 (59.2–71.0) | 15.3 (11.3–20.4) | 2.8 (1.3–5.8) | 16.5 (12.4–21.7) |
Vegetables and greens | 7.9 (5.8–10.8) | 21.6 (18.1–25.5) | 20.1 (16.8–24.0) | 50.3 (45.8–54.8) | 9.2 (6.2–13.5) | 24.1 (19.2–29.8) | 23.7 (18.8–29.4) | 43.0 (36.9–49.2) |
Fruits | 6.1 (4.2–8.6) | 15.2 (12.3–18.8) | 17.3 (14.2–21.0) | 61.4 (56.9–65.6) | 13.3 (9.6–18.1) | 16.5 (12.3–21.6) | 18.9 (14.5–24.2) | 51.4 (45.2–57.6) |
Red meat, chicken, fish or eggs | 2.1 (1.1–3.9) | 9.9 (7.5–13.0) | 16.5 (13.4–20.1) | 71.5 (67.2–75.4) | 0.8 (0.2–3.2) | 7.7 (4.9–11.7) | 16.1 (12.0–21.3) | 75.4 (69.6–80.4) |
Milk, yogurt, or cheese | 10.3 (7.8–13.3) | 15.7 (12.7–19.2) | 11.7 (9.1–14.9) | 62.3 (57.9–66.6) | 16.8 (12.6–22.0) | 16.0 (11.9–21.1) | 12.0 8.5–16.7) | 55.2 (49.0–61.3) |
Unhealthy food | ||||||||
Fried foods | 64.9 (60.5–69.1) | 30.4 (26.5–34.8) | 2.7 (1.6–4.7) | 1.9 (1.0–3.6) | 52.4 (46.2–58.6) | 40.3 (34.4–46.6) | 2.8 (1.3–5.8) | 4.4 (2.5–5.8) |
Candies, sodas and boxed or packaged juices | 34.7 (30.1–39.1) | 31.7 (27.7–36.1) | 10.4 (7.9–13.5) | 23.3 (19.7–27.3) | 30.6 (25.2–36.7) | 35.5 (29.7–41.7) | 13.3 (9.6–18.2) | 20.6 (16.0–26.1) |
Sausages and hams, pickles (gherkins), and canned foods (sardines or canned fruit and vegetables) | 76.6 (72.5–80.2) | 18.6 (15.3–22.3) | 3.8 (2.4–6.0) | 1.1 (0.4–2.5) | 67.3 (61.2–72.9) | 23.4 (18.5–29.1) | 6.9 (4.3–10.8) | 2.4 (1.1–5.3) |
Frozen foods (lasagna, pizza, hamburgers, and nuggets) | 90.1 (87.1–92.5) | 9.3 (7.0–12.2) | 0.6 (0.2–1.9) | - | 88.3 (83.7–91.8) | 11.3 (7.9–15.9) | 0.4 (0.1–2.8) | - |
Snacks (from food trucks or fast-food outlets) | 94.7 (92.3–96.4) | 5.2 (3.6–7.7) | - | - | 93.1 (89.2–95.7) | 6.9 (4.3–10.8) | - | - |
Food | Absence of Depressive Symptoms (n = 536) Prevalence (95% CI) | Presence of Depressive Symptoms (n = 88) Prevalence (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|
Did Not Consume | 1–3 Days | 4–6 Days | Every Day of the Week | Did Not Consume | 1–3 Days | 4–6 Days | Every Day of the Week | |
Healthy food | ||||||||
Rice with beans or rice with lentils | 3.8 (2.6–5.7) | 11.4 (9.1–14.2) | 16.2 (13.5–19.4) | 68.6 (64.7–72.2) | 5.4 (2.2–12.4) | 14.0 (8.2–22.7) | 12.9 (7.4–21.5) | 67.7 (57.5–76.5) |
Whole foods (wholegrain bread, wholegrain cookies, wholegrain rice or oats) | 55.4 (51.3–59.3) | 14.2 (11.6–17.3) | 8.7 (6.7–11.2) | 22.7 (18.6–25.2) | 64.1 (53.7–73.4) | 16.3 (10.0–25.4) | 4.3 (1.6–11.1) | 15.2 (9.2–24.2) |
Vegetables and greens | 7.4 (5.5–9.8) | 22.6 (19.4–26.2) | 21.3 (18.2–24.7) | 48.7 (44.7–52.8) | 14.1 (8.3–23.0) | 26.1 (18.0–36.1) | 20.7 (13.5–30.3) | 39.1 (29.6–49.6) |
Fruits | 7.7 (5.8–10.1) | 15.2 (12.6–18.3) | 18.6 (15.6–21.9) | 58.5 (54.5–62.4) | 11.8 (6.6–20.2) | 18.3 (11.6–27.6) | 16.1 (9.9–25.2) | 53–8 (43.5–63.7) |
Red meat, chicken, fish or eggs | 1.2 (0.6–2.4) | 8.9 (6.8–11.4) | 15.6 (12.9–18.7) | 74.4 (70.8–77.8) | 3.2 (1.0–9.7) | 9.7 (5.1–17.7) | 21.5 (14.2–31.1) | 65.6 (55.3–74.6) |
Milk, yogurt, or cheese | 12.4 (10.0–15.3) | 16.1 (13.3–19.2) | 11.5 (9.2–14.4) | 60.0 (56.0–63.9) | 14.0 (8.2–22.7) | 19.4 (12.5–28.8) | 9.7 (5.1–17.7) | 57.0 (46.6–66.8) |
Unhealthy food | ||||||||
Fried foods | 60.7 (56.7–64.6) | 33.9 (30.2–37.8) | 2.7 (1.6–4.3) | 2.7 (1.6–4.3) | 59.1 (48.8–68.8) | 33.3 (24.4–43.6) | 4.3 (1.6–11.0) | 3.2 (1.0–9.7) |
Candies, sodas and boxed or packaged juices | 32.7 (29.0–36.5) | 33.7 (30.0–37.6) | 11.7 (9.4–14.6) | 21.9 (18.8–25.4) | 28.0 (19.7–38.0) | 31.2 (22.5–41.4) | 11.8 (6.6–20.2) | 29.0 (20.6–39.2) |
Sausages and hams, pickles (gherkins), and canned foods (sardines or canned fruit and vegetables) | 72.1 (68.3–75.5) | 21.2 (18.1–24.7) | 5.4 (3.8–7.5) | 1.3 (0.6–2.7) | 78.5 (68.9–85.8) | 16.1 (9.9–25.2) | 3.2 (1.0–9.7) | 2.2 (0.5–8.3) |
Frozen foods (lasagna, pizza, hamburgers, and nuggets) | 89.5 (86.7–91.7) | 9.9 (7.7–12.5) | 0.7 (0.3–1.8) | - | 89.2 (81.0–94.2) | 10.8 (5.8–19.0) | - | - |
Snacks (from food trucks or fast-food outlets) | 93.6 (91.4–95.3) | 6.4 (4.7–8.6) | - | - | 96.8 (90.3–99.0) | 3.2 (1.0–9.7) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valério, T.D.; Neves, R.G.; Thumé, E.; Machado, K.P.; Tomasi, E. Prevalence of Poor Diet Quality and Associated Factors Among Older Adults from the Bagé Cohort Study of Ageing, Brazil (SIGa-Bagé). Geriatrics 2025, 10, 44. https://doi.org/10.3390/geriatrics10020044
Valério TD, Neves RG, Thumé E, Machado KP, Tomasi E. Prevalence of Poor Diet Quality and Associated Factors Among Older Adults from the Bagé Cohort Study of Ageing, Brazil (SIGa-Bagé). Geriatrics. 2025; 10(2):44. https://doi.org/10.3390/geriatrics10020044
Chicago/Turabian StyleValério, Tainã Dutra, Rosália Garcia Neves, Elaine Thumé, Karla Pereira Machado, and Elaine Tomasi. 2025. "Prevalence of Poor Diet Quality and Associated Factors Among Older Adults from the Bagé Cohort Study of Ageing, Brazil (SIGa-Bagé)" Geriatrics 10, no. 2: 44. https://doi.org/10.3390/geriatrics10020044
APA StyleValério, T. D., Neves, R. G., Thumé, E., Machado, K. P., & Tomasi, E. (2025). Prevalence of Poor Diet Quality and Associated Factors Among Older Adults from the Bagé Cohort Study of Ageing, Brazil (SIGa-Bagé). Geriatrics, 10(2), 44. https://doi.org/10.3390/geriatrics10020044