Next Article in Journal
Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035
Previous Article in Journal
Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis
Previous Article in Special Issue
The Phylogeny and Taxonomy of Cryptothecia (Arthoniaceae, Ascomycota) and Myriostigma (Arthoniaceae, Ascomycota), including Three New Species and Two New Records from China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota)

1
Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China
2
The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
3
Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
J. Fungi 2024, 10(6), 423; https://doi.org/10.3390/jof10060423
Submission received: 24 January 2024 / Revised: 11 June 2024 / Accepted: 12 June 2024 / Published: 14 June 2024
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny 2.0)

Abstract

:
This study aims to report three new species of Conoideocrella and Moelleriella from Yunnan Province, Southwestern China. Species of Conoideocrella and Moelleriella parasitize scale insects (Coccidae and Lecaniidae, Hemiptera) and whiteflies (Aleyrodidae, Hemiptera). Based on the phylogenetic analyses of the three-gene nrLSU, tef-1α, and rpb1, it showed one new record species (Conoideocrella tenuis) and one new species (Conoideocrella fenshuilingensis sp. nov.) in the genus Conoideocrella, and two new species, i.e., Moelleriella longzhuensis sp. nov. and Moelleriella jinuoana sp. nov. in the genus Moelleriella. The three new species were each clustered into separate clades that distinguished themselves from one another. All of them were distinguishable from their allied species based on their morphology. Morphological descriptions, illustrations, and comparisons of the allied taxa of the four species are provided in the present paper. In addition, calculations of intraspecific and interspecific genetic distances were performed for Moelleriella and Conoideocrella.

1. Introduction

In the family Clavicipitaceae, there are some genera that have been found to parasitize scale insects or whiteflies, such as Aschersonia Mont., Dussiella Pat., Helicocollum Luangsaard, Mongkols., Noisrip. & Thanak, Hyperdermium J.F. White, R.F. Sullivan, Bills & Hywel-Jones, Hypocrella Sacc., Moelleriella Bres., Orbiocrella D. Johnson, G.H. Sung, Hywel-Jones & Spatafora, Regiocrella Chaverri & K.T. Hodge, and Samuelsia P. Chaverri & K.T. Hodge [1,2,3,4,5]. Among them, Aschersonia, Hypocrella, and Moelleriella are relatively old genera and have more species. A taxonomic revision was undertaken by Chaverri et al. (2008) for the species formerly belonging to Hypocrella Sacc. s. l. (anamorph Aschersonia Mont. s. l.). They used three-gene phylogenetic analyses and morphological characters to classify Hypocrella Sacc. s. l. into Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia (anamorph aschersonia-like) [3]. Moelleriella was distinguished from Hypocrella s. str. and Samuelsia by the fact that their ascospores can be disarticulated at the septa within the ascus, whereas those of the latter two cannot [3].
The genus Moelleriella was erected by Bresadola in 1896 to accommodate the type species M. sulphurea, which is currently regarded as a synonym of M. phyllogena (Mont.) P. Chaverri & K.T. Hodge (basionym Hypocrella phyllogena (Mont.) Speg.) [3]. There are currently 65 species in this genus, all of which have brightly colored stromata; obpyriform to subglobose perithecia; cylindrical asci; filiform multiseptate ascospores that disarticulate at the septa inside the ascus; and aschersonia-like anamorphs with fusoid conidia (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 11 December 2023 [6]). Among them, there are 30 species from the New World and 35 species from the Old World (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 29 August 2023 [3,6,7,8,9,10,11,12,13,14,15]). In China, four new species have been reported. Two species were reported in Yunnan Province, and another two were reported in Fujian Province [11,13,14,15]. In addition to these new published species, Moelleriella has also been distributed in other provinces in China. However, previous studies have primarily focused on morphology, with few molecular data available in public databases [16,17,18,19].
Torrubiella Boud. species infect a wide range of arthropods, mainly spiders and scale insects [4,20]. The genus currently has about 80 records in the index (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 11 December 2023). However, the fact that the previous studies identified species on the basis of their morphological characteristics resulted in a lack of molecular data for most species of Torrubiella. With the advent of molecular technology and the application of multigene phylogenetic analyses, species identification methods based on phylogenetic analyses combined with morphological characteristics have gradually gained recognition. Johnson et al. (2009) found that previous phylogenetic studies had shown that the genus Torrubiella was not monophyletic, but none of them had attempted to resolve this [4,21,22]. Subsequently, a multigene phylogenetic tree covering 10 species of Torrubiella was constructed by Johnson et al. to determine the phylogenetic position of these species [4]. Phylogenetic analyses showed that these species were distributed in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae [4]. Torrubiella tenuis (Petch) D. Johnson, G.-H. Sung, Hywel-Jones & Spatafora and Torrubiella luteorostrata (Zimm.) D. Johnson, G.H. Sung, Hywel-Jones & Spatafora form a statistically well-supported clade in Clavicipitaceae. Therefore, a new genus, Conoideocrella, was proposed by Johnson et al. to accommodate the species T. tenuis and T. luteorostrata, and T. luteorostrata was designated as the type species [4]. The genus Conoideocrella was named thus for its perithecium with a conical shape that is similar to that of Torrubiella [4]. It currently contains three species, all of which have elongate, conical perithecia and planar stromata [23,24]. Conoideocrella luteorostrata was shown to be distributed in Seychelles, Sri Lanka, Java, Samoa, New Zealand, the far Eastern U.S.S.R., and Thailand [23,25]. Conoideocrella tenuis was known to be distributed in Sri Lanka and Thailand, and C. krungchingensis was known only to be in Thailand [23,24,25]. All three species have been reported to be able to parasitize scale insects [23,24].
Entomopathogenic fungi are widely distributed in China, and Yunnan Province is one of the richest provinces in China in terms of biodiversity. In this study, we collected some specimens with macro-morphological similarities to Moelleriella and Conoideocrella during an investigation of entomopathogenic fungi in Yunnan. A three-gene phylogenetic analysis revealed two new species of Moelleriella, one new species, and one known species of Conoideocrella. Conoideocrella tenuis is a recently newly recorded species in China.

2. Materials and Methods

2.1. Fungal Collection and Isolation

The specimens were collected from Bampo village, Jinuo Township, Jinghong City, and the Fenshuiling National Nature Reserve, Jinping County, Yunnan Province, China. In fields, whole leaves with stromata were collected, and some bark from branches with stromata was chipped off with a pocket knife. Then they were placed in sterilized plastic boxes and brought to the laboratory. The detailed procedure to obtain axenic cultures in this study was described in Yang et al. [15]. After the isolation of pure cultures, they were transplanted to PDA slant and grown for 10 days before being stored at 4 °C. The specimens were deposited in the Yunnan Herbal Herbarium (YHH) of Yunnan University, China. The strains were deposited at the Yunnan Fungal Culture Collection (YFCC) of Yunnan University, China.

2.2. Morphological Observations

Because of the small size of the stromata, a dissecting microscope (SZ61, Olympus Corporation, Tokyo, Japan) was used to observe their macro-morphological characteristics and measure them. The stromata were sectioned with a thickness of 30~40 µm for observations of their micro-morphological features using a HM525NX freezing microtome (Thermo Fisher Scientific, Waltham, MA, USA). The sections were placed on slides dripping with water or lactic acid in cotton blue. The observations were made and measurements were taken using a light microscope (Olympus BX53, Olympus Corporation, Tokyo, Japan). In order to observe and record the color and texture of the colonies, several new plates were transferred from the purified colonies and incubated in a 25 °C incubator for three weeks. The growth rate of colonies was used according to the method of Liu and Hodge [26] and was categorized as follows: fast growing (30–35 mm in diameter), moderately growing (20–30 mm in diameter), and slow growing (<20 mm in diameter).

2.3. DNA Extraction, PCR, and Sequencing

The specimens were washed with 75% alcohol, and the genomic DNA was extracted using the Genomic DNA Purification Kit (Qiagen GmbH, Hilden, Germany). The DNA of the cultures was extracted using cetyltrimethyl ammonium bromide (CTAB) following the procedure described by Liu et al. [26]. Three genes (nrLSU, tef-1α, and rpb1) were sequenced, and the following primer pairs were used for PCR amplification. LR5 (5′-ATCCTGAGGGAAACTTC-3′) and LR0R (5′-GTACCCGCTGAACTTAAGC-3′) were used to amplify the nuclear ribosomal large subunit (nrLSU) [27,28]. EF1α-EF (5′-GCTCCYGGHCAYCGTGAYTTYAT-3′) and EF1α-ER (5′-ATGACACCRACRGCRACRGTYTG-3′) were used to amplify the translation elongation factor 1α (tef-1α) [22,29]. RPB1-5′F (5′-CAYCCWGGYTTYATCAAGAA-3′) and RPB1-5′R (5′-CCNGCDATNTCRTTRTCCATRTA-3′) were used to amplify the largest subunits of RNA polymerase II (rpb1) [22,29]. The polymerase chain reaction (PCR) matrix and the PCR reactions were performed as described by Wang et al. [30]. A BIORAD T100TM thermal cycler (BIO-RAD Laboratories, Hercules, CA, USA) was used to perform amplification reactions. Then the PCR products were sequenced by the Beijing Genomics Institute (Chongqing, China).

2.4. Phylogenetic Analyses

Datasets of three genes (nrLSU, tef-1α, and rpb1) used to construct a phylogenetic tree were downloaded from GenBank and combined with the newly generated data in this study. The sequences downloaded were based on previous studies by Mongkolsamrit et al. [24] and Yang et al. [15]. Names, voucher information, and corresponding GenBank accession numbers of the taxa are listed in Table 1. Sequences were aligned, and poorly aligned regions were removed with MEGA v.6.06 [31]. The aligned three-gene sequences were concatenated using Phylosuite v1.2.2 [32]. Phylogenetic analyses were performed using BI and ML methods [33,34]. A maximum likelihood (ML) tree was created using IQ-tree v.2.1.3, and a Bayesian inference (BI) tree was created using MrBayes v.3.2.2 [35,36]. Modelfinder was used to select the best-fitting likelihood model [37]. The optimal model for the ML analyses was the TIM2+F+I+G4 model, with 5000 rapid bootstraps in a single run [38]. The optimal model for the BI analysis was the GTR+F+I+G4 model. The four Markov chain Monte Carlo simulations ran for 2 million generations from a random start tree with a sampling frequency of 100 generations. Twenty-five percent of initial sampled data were discarded as burn-in. Phylogenetic trees were viewed and edited in Figtree v.1.4.3 and visualized in Adobe Illustrator CS6. The interspecies and intraspecies genetic distances for the three genes (tef-1α, rpb1, and nrLSU) in Moelleriella and Conoideocrella were calculated using MEGAE v.6.06. Genetic distances were calculated by selecting the maximum composite likelihood model.

3. Results

3.1. Sequencing and Phylogenetic Analyses

Three-gene (nrLSU, tef-1α, and rpb1) sequences were generated from eight specimens and two living cultures (see Table 1). Three-gene sequences of 129 samples from 14 genera in the family Clavicipitaceae were used for the ML and BI phylogenetic analyses. Pleurocordyceps aurantiaca MFLUCC 17-2113 and Pleurocordyceps marginaliradians MFLU 17-1582 were used as the outgroups. The concatenated three-gene sequences contained 2726 bp (nrLSU: 935 bp, tef-1α: 1024 bp, and rpb1: 767 bp). Both the ML and BI analyses exhibited nearly consistent overall topologies. The results of the phylogenetic analysis showed three highly supported clades, viz., the Pulvinate clade (BP = 100%, PP = 1), the Globose clade (BP = 100%, PP = 1), and the Effuse clade (BP = 100%, PP = 1) (Figure 1). The Effuse clade was segregated into two sister clades, subclade I and subclade II. Moelleriella contains the Effuse clade and the Globose clade. Two new species of Moelleriella were distributed in the Effuse clade (M. longzhuensis) and the Globose clade (M. jinuoana). Three samples of M. longzhuensis were clustered closely with M. rhombispora (M. Liu & K.T. Hodge) M. Liu & P. Chaverri and formed a monophyletic clade in the Effuse clade with a high level of statistical support (BP = 100%, PP = 1). Three samples of M. jinuoana formed a monophyletic clade in the Globose clade with a high level of statistical support (BP = 91%, PP = 0.8). The genus Conoideocrella was clustered with Orbiocrella and had a new species (C. fenshuilingensis) and one known species (C. tenuis). Two samples of C. fenshuilingensis formed a monophyletic clade in Conoideocrella with a high level of statistical support (BP = 100%, PP = 1).
The genetic distances calculated based on the three genes (nrLSU, tef-1α, and rpb1) among interspecies and intraspecies in Moelleriella and Conoideocrella are shown in Tables S1–S6. The intraspecific genetic distances for nrLSU, tef-1α, and rpb1 in Moelleriella were 0–0.0276, 0–0.0428, and 0–0.0168, respectively. The interspecific genetic distances for nrLSU, tef-1α, and rpb1 between the known species and M. longzhuensis were 0.03–0.08, 0.09–0.16, and 0.08–0.24, respectively, and those between the known species and M. jinuoana were 0.04–0.08, 0.10–0.15, and 0.15–0.25, respectively. In Conoideocrella, the intraspecific genetic distances of nrLSU, tef-1α, and rpb1 were 0–0.0028, 0–0.0052, and 0.0019–0.0027, respectively, and the genetic distances between C. fenshuilingensis and the known species were 0.01–0.02, 0.06–0.09, and 0.08, respectively.
DICHOTOMOUS KEYS TO CONOIDEOCRELLA SPECIES
1a.Stromata flattened pulvinate to discoid, planar, pulvinate, almost planar.............................................................................2
1b.Stromata scutate or hemi-globose....................................................................................................................C. fenshuilingensis
2a.Perithecia < 600 µm long................................................................................................................................................................3
2b.Perithecia > 600 µm long.........................................................................................................................................C. luteorostrata
3a.Stromata pale yellow, orange to reddish brown; Asci < 180 µm long; Conidia 8–15 × 2–4 μm...............................................
...................................................................................................................................................................................C. krungchingensis
3b.Stromata white to orangish-pink; Asci > 180 µm long; Conidia 6.1–12.5 × 1.3–2.3 μm............................................................
...................................................................................................................................................................................................C. tenuis
DICHOTOMOUS KEYS TO MOELLERIELLA SPECIES
Based on teleomorphic characters
1a.Part-ascospores > 16 µm long.……................................................................................................................................................2
1b.Part-ascospores < 16 µm long…..…...............................................................................................................................................3
2a.Perithecia embedded in stroma and scattered.............................................................................................................................4
2b.Perithecia embedded in top part of stroma, number perithecia per stroma > 30................................................M. phyllogena
3a.Part-ascospores with rounded, blunt, or acute ends...................................................................................................................5
3b.Part-ascospores with truncated ends.................................................................................................................................M. flava
4a.Part-ascospores ventricose cylindrical or curved with rounded ends and usually inflated in the middle; Part-ascospores
< 20 µm long.......................................................................................................................................................................M. basicystis
4b.Part-ascospores ventricose cylindrical or curved with rounded ends and usually inflated in the middle; Part-ascospores
> 20 µm long.....................................................................................................................................................................M. umbospora
5a.Stromata not thin-umbonate..........................................................................................................................................................6
5b.Stromata thin-umbonate, raised, with globose to subglobose base...............................................................M. chiangmaiensis
6a.Part-ascospores 5–10 µm long........................................................................................................................................................7
6b.Part-ascospores 7–16 µm long........................................................................................................................................................8
7a.Stromata size < 2 mm.......................................................................................................................................................................9
7b.Stromata size > 2 mm.....................................................................................................................................................................10
8a.Part-ascospores < 3.5 µm width....................................................................................................................................................18
8b.Part-ascospores > 3.5 µm width.................................................................................................................................M. colliculosa
9a.Stromata surface roughened..........................................................................................................................................M. castanea
9b.Stromata surface not roughened..................................................................................................................................................11
10a.Stromata suface tomentose...............................................................................................................................................M. nivea
10b.Stromata suface smooth..............................................................................................................................................................15
11a.Stromata yellowish white to white, pale yellow......................................................................................................................12
11b.Stromata greyish yellow or reddish brown or dark brown almost black.............................................................................13
12a.Stromata globose with head markedly constricted at base....................................................................................................14
12b.Stromata pulvinate, base slightly constricted.....................................................................................................M. zhongdongii
13a.Stromata greyish yellow and reddish brown...........................................................................................................M. epiphylla
13b.Stromata dark brown almost black.......................................................................................................................M. guaranitica
14a.Hypothallus present...................................................................................................................................................M. disjuncta
14b.Hypothallus absent...................................................................................................................................................M. boliviensis
15a.Stromata obconical........................................................................................................................................................M. cornuta
15b.Stromata globose or subglose....................................................................................................................................................16
16a.Stromata buff to pale greenish.............................................................................................................................M. gaertneriana
16b.Stromata brownish orange, greyish brown, bark brown almost black.................................................................................17
17a.Stromata subglose...........................................................................................................................................................M. palmae
17b.Stromata globose............................................................................................................................................................M. globosa
18a.Part-ascospores not ventricose...................................................................................................................................................19
18b.Part-ascospores ventricose with rounded or acute ends...................................................................................M. rhombispora
19a.Part-ascospores fusoid................................................................................................................................................................20
19b.Part-ascospores cylindrical with round or blunt ends............................................................................................................21
20a.Stromata surface tomentose.......................................................................................................................................................22
20b.Stromata surface not tomentose................................................................................................................................................23
21a.Perithecia embedded in stroma, scattered...............................................................................................................................26
21b.Perithecia in gregarious but well-separated tubercles or gregarious tubercles..................................................................27
22a.Perithecia in gregarious but well-separated tubercles.........................................................................................M. simaoensis
22b.Perithecia embedded in stroma, scattered..............................................................................................................M. puerensis
23a.Part-ascospores > 3 µm width...................................................................................................................................M. turbinata
23b.Part-ascospores < 3 µm width...................................................................................................................................................24
24a.Stromata yellowish white to white, pale yellow.....................................................................................................................25
24b.Stromata yellow....................................................................................................................................................M. macrostroma
25a.Hypothallus present.........................................................................................................................................................M. libera
25b.Hypothallus absent........................................................................................................................................................M. evansii
26a.Part-ascospores < 2 µm width......................................................................................................................................M. sinensis
26b.Part-ascospores > 2 µm width....................................................................................................................................................28
27a.Hypothallus present...................................................................................................................................................................29
27b.Hypothallus absent.....................................................................................................................................................M. nanensis
28a.Stromata thin pulvinate with pronounced tubercles or pulvinate with sloping side, tubercles half-embedded................
...............................................................................................................................................................................................M. sloaneae
28b.Stromata flat pulvinate.......................................................................................................................................M. phukhiaoensis
29a.Stromata pulvinate with sloping sides or base slightly constricted.......................................................................M. ochracea
29b.Stromata flat pulvinate...............................................................................................................................................................30
30a.Stromata white, pale yellow to orange...........................................................................................................M. chumphonensis
30b.Stromata white....................................................................................................................................................................M. alba
Based on anamorphic characters
1a.Conidia > 4 µm width......................................................................................................................................................................2
1b.Conidia < 4 µm width......................................................................................................................................................................3
2a.Conidiomata number fewer than ten.............................................................................................................................................4
2b.Conidiomata number more than ten..............................................................................................................................................5
3a.Conidia < 6 µm long.........................................................................................................................................................................7
3b.Conidia > 6 µm long.........................................................................................................................................................................8
4a.Conidiomata locules simple depressions of surface without distinct rims.............................................................M. epiphylla
4b.Conidiomata locules pezizoid......................................................................................................................................M. turbinata
5a.Conidiomata scattered in stroma.....................................................................................................................................M. globosa
5b.Conidiomata circular in stroma......................................................................................................................................................6
6a.Conidia ventricose with acute ends.............................................................................................................................M. basicystis
6b.Conidia ventricose almost rhomboid with acute ends............................................................................................M. umbospora
7a.Stromata greyish brown; thick pulvinate, obconical pulvinate.................................................................................M. castanea
7b.Stromata pale yellow; discoid with distinct stud shape..................................................................................M. pongdueatensis
8a.Conidiomata scattered or circular in stroma................................................................................................................................9
8b.Conidiomata arrangement in the central of stroma...................................................................................................................10
9a.Stromata flat pulvinate, dark orange to golden yellow.....................................................................................M. phukhiaoensis
9b.Stromata not as above....................................................................................................................................................................11
10a.Conidia < 16.5 µm long................................................................................................................................................................24
10b.Conidia > 16.5 µm long......................................................................................................................................M. chumphonensis
11a.Conidia > 3 µm width...................................................................................................................................................................12
11b.Conidia < 3 µm width...................................................................................................................................................................13
12a.Stromata dark brown, black.....................................................................................................................................M. guaranitica
12b.Stromata yellowish white to white, pale yellow.....................................................................................................M. phyllogena
13a.Conidia ventricose...................................................................................................................................................M. rhombispora
13b.Conidia fusoid...............................................................................................................................................................................14
14a.Conidia > 2 µm width...................................................................................................................................................................15
14b.Conidia < 2 µm width...................................................................................................................................................................16
15a.Conidiomata circular in stroma..................................................................................................................................M. disjuncta
15b.Conidiomata scattered in stroma................................................................................................................................................17
16a.Conidiomata circular in stroma........................................................................................................................................M. libera
16b.Conidiomata scattered in stroma................................................................................................................................................20
17a.Conidiomata fewer than ten....................................................................................................................................................... 18
17b.Conidiomata more than ten.........................................................................................................................................................19
18a.Stromata yellowish white to white, pale yellow...................................................................................................M. madidiensis
18b.Stromata yellow, orange yellow to orange.................................................................................................................M. jinuoana
19a.Stromata yellow......................................................................................................................................................M. macrostroma
19b.Stromata yellowish white to white, pale yellow........................................................................................................M. sloaneae
20a.Cultural on PDA compact, leathery............................................................................................................................M. ochracea
20b.Cultural on PDA compact, floccose/tomentose........................................................................................................................21
21a.Stromata yellowish white to white, pale yellow.......................................................................................................................22
21b.Stromata brown..................................................................................................................................................M. thanathonensis
22a.Stromata tuberculate, thick pulvinate, obconical pulvinate..............................................................................M. zhongdongii
22b.Stromata flat or raised, globose to subglobose.........................................................................................................................23
23a.Paraphyses present in conidioma....................................................................................................................M. chiangmaiensis
23b.Paraphyses absent in conidioma................................................................................................................................M. nanensis
24a.Paraphyses present in conidioma...............................................................................................................................................25
24b.Paraphyses absent in conidioma................................................................................................................................................26
25a.Stromata yellowish white to white, pale yellow.......................................................................................................................27
25b.Stromata whitish to pale brown.......................................................................................................................M. chumphonensis
26a.Conidiomata more than ten.........................................................................................................................................................29
26b.Conidiomata fewer than ten........................................................................................................................................................30
27a.Stromata thin pulvinate, almost effuse......................................................................................................................................28
27b.Stromata flat to umbonate, globose to subglobose....................................................................................................M. sinensis
28a.Conidia 8.8–14 × 1.6–3 μm........................................................................................................................................M. simaoensis
28b.Conidia 9.7–13.4 × 1.3–2.3 μm...................................................................................................................................M. puerensis
29a.Stromata scutate (a hemisphaerical central region abruptly attenuating and extending to the edge)..................................
..................................................................................................................................................................................................M. evansii
29b.Stromata flat to umbonate, globose to subglobose...................................................................................M. kanchanaburiensis
30a.Stromata yellowish white to white, whitish to pale yellow, pale yellow, yellow................................................................31
30b.Stromata white.....................................................................................................................................................................M. alba
31a.Conidia < 2 µm width..................................................................................................................................................................32
31b.Conidia > 2 µm width...........................................................................................................................................M. longzhuensis
32a.Stromata flat or raised, globose to subglobose; conidia 9–14 × 1–2 μm........................................................................M. flava
32b.Stromata flat to umbonate, subglobose; conidia 7–10 × 1–2 μm...................................................................................M. nivea

3.2. Taxonomy

Conoideocrella tenuis (Petch) D. Johnson, G.H. Sung, Hywel-Jones & Spatafora, Mycol. Res. 113(3): 286 (2009), Figure 2.
Torrubiella tenuis Petch, Ann. Perad. 7, 323 (1923).
MycoBank No: MB 512029.
Description. Sexual morph: Teleomorphic stromata pulvinate, flattened pulvinate or almost planar, 2–4 mm in diam, white to orangish-pink, tomentose, rather loose internally, surrounded by a broad, fibrillose margin or hypothallus. Perithecia mostly distributed at the margin of the stroma or on the hypothallus, scattered or clustered, color deepens from the bottom to the top, white to pale brown, covered with hyphae up to two-thirds their height in mature perithecia, dozens of perithecia per stroma, elongated flask shape or elongated conic shape, 190–500 × 160–270 μm. Asci cylindrical, eight-spored, 190–480 × 3.3–5.5 μm, caps 2.5–3.5 μm thick. Ascospores whole, filiform, septate. Asexual morph: Not known.
Culture characteristics. Colonies grow slowly on PDA at 25 °C, attaining a diam of 15–17 mm in 21 days, greyish-white to cream-white mycelium at first, turning lilac with age. Colonies are loose on the surface and compact at the bottom. Hyphae smooth, septate, hyaline, 1.1–3.6 µm wide. Hirsutella-like asexual state arises from hyphae, conidiogenous structures with slender base tapering more or less evenly to a neck, hyaline, produced directly on hyphae of the stromatic colonies from ca. 5 wk onwards, 16.3–149.4 × 0.6–2.4 μm, and 0.3–1.3 μm wide at the apex. Conidia hyaline, smooth, fusiform and slightly curved, produced singly or in a group of two at the neck apex, 6.1–12.5 × 1.3–2.3 μm.
Habitat. Parasitic on Aspidiotus destructor on a jungle tree; on a black Aleyrodes on Sarcococca pruniformis; on a scale on Hedyotis lessertianan; on Aleyrodes on Lasianthus walkerianus and Psychotria elongata.
Distribution. Sri Lanka (type locality) and Thailand, China.
Other material examined. China, Yunnan Province, Jinghong City, Jinuo Township, Banpo village, 100°98′ E, 22°06′ N, alt. 1035 m, found on the underside of living leaves of dicotyledonous plants, 2 October 2022. Hong Yu and Zhi-Qin Wang (YHH CTBP221012, YHH CTBP221013, YHH CTBP22109315; YFCC CTBP22109316, living culture). Yunnan Province, Puwen Town, 100°97′ E, 22°52′ N, alt. 1020 m, found on the underside of living leaves of dicotyledonous plants, 3 August 2023, Hong Yu and Zhi-Qin Wang (YHH CTPW2308031; YHH CTPW23089310).
Commentary. The species C. tenuis, formerly in the genus Torrubiella, was reclassified by Johnson et al. [4] to Conoideocrella. In 1923, Petch described the morphological characteristics of T. tenuis, as well as its distribution sites and host insects. But there was no record of the size of the asci or ascospores. Hywel-Jones [23] collected specimens of T. tenuis in Thailand. They recorded the size of the asci and ascospores and isolated pure cultures. In our study, specimens of this species were collected in Yunnan, China, and it was found to be distributed in China. Its macromorphology and micromorphology were generally consistent with those described by Petch and Hywel-Jones and Evens, with one difference being that the materials used in this study extend the perithecium (190–900 × 160–270 μm) and asci (190–500 × 3.3–7.0 μm) size range of this species. Noteworthy, a hirsutella-like asexual state was observed on the stromatic colonies in the present study, which has not yet been observed in other studies. Unfortunately, as in the case of the Thai material, part-spores were not seen in the Chinese collection.
Conoideocrella fenshuilingensis Hong Yu bis, Z.L. Yang, Z.Q. Wang & J.M. Ma, sp. nov. Figure 3.
Mycobank No: 851868.
Etymology. Named after the Fenshuiling National Nature Reserve where the species was collected.
Type. China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve. 103°49′ E, 22°82′ N, alt. 519 m, found on the underside of living leaves of dicotyledonous plants. 24 October 2023, Hong Yu (YHH CFFSL2310002, holotype).
Description. Sexual morph: Teleomorphic stromata scutate or hemi-globose, 3.0–3.4 mm in diam, snow-white, surrounded by a snow-white hypothallus. Perithecia densely distributed on stroma, a few distributed on hypothallus, scattered or clustered, color deepens from the bottom to the top, pale brown to black, dozens of perithecia per mature stroma, covered with hyphae up to two-thirds their height in mature perithecia, elongated flask shape or elongated conic shape, 259–795 × 144–242 μm. Asci cylindrical, eight-spored, 246–685 × 3.8–6.9 μm, caps 1.2–2.3 μm thick. Ascospores whole, filiform, septate. No anamorph was found with these stromata in nature. Asexual morph: Undetermined.
Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera), found on the underside of living leaves of dicotyledonous plants.
Distribution. China, Yunnan Province, Jinping County.
Other Material Examined. China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve. 103°49′ E, 22°82′ N, alt. 519 m, found on the underside of living leaves of dicotyledonous plants. 24 October 2023, Hong Yu and Zhi-Qin Wang (YHH CFFSL2310003, YHH CFFSL2310004, YHH CFFSL2310005, YHH CFFSL2310006, YHH CFFSL2310007, YHH CFFSL2310008, YHH CFFSL2310009, YHH CFFSL2310010, YHH CFFSL2310011, paratype).
Commentary. The phylogenetic analyses revealed that two samples of C. fenshuilingensis were grouped together and formed a separate clade in the genus Conoideocrella. Currently, only three species of Conoideocrella have been reported [4,24]. Conoideocrella fenshuilingensis was similar to the other three species in its elongated, conical perithecium and cylindrical asci. However, C. fenshuilingensis was particularly easy to distinguish from other species by the location of the perithecia on the stromata. Its perithecia was almost always grown on a hemispherical stroma, while that of C. krungchingensis was grown on a slight weft of hyphae, and that of C. luteorostrata was more commonly grown on the hypothallus [23,24]. Although the perithecium of C. tenuis was usually on the thicker part of the stroma, C. fenshuilingensis can be distinguished from C. tenuis by its hemispherical stroma, while C. tenuis has a flattened pulvinate or almost planar stroma [23].
Moelleriella jinuoana Hong Yu bis, Z.L. Yang, Z.Q. Wang & J.M. Ma, sp. nov. Figure 4.
Mycobank No: 851869.
Etymology. Moelleriella jinuoana was named after the Jinuo nationality, one of the 56 ethnic groups in China.
Type. China, Yunnan Province, Jinghong City, Jinuo Township, Banpo village, 100°98′ E, 22°06′ N, alt. 1046 m, found on trunks of dicotyledonous plants. 26 October 2023, Hong Yu (YHH MJBP2309031, holotype; YFCC MJBP23099451, ex-holotype living culture).
Description. Sexual morph: Not known. Asexual morph: Anamorphic stromata on natural substrate globose, surface smooth, yellow, orangish-yellow to orange, 1.2–2.3 mm diam, often with narrow hypothallus. Hyphae of stromata form compact textura epidermoidea. Conidiomata simple depressions of surface, producing grayish-yellow copious slime, several conidiomata per stroma, U-shaped or irregular shape, 110–373 × 181–286 μm. Phialides formed in a thick, compact palisade or cylindrical shape, 11.8–29.5 × 1–1.9 μm. Conidia unicellular, hyaline, smooth, fusoid with rounded ends, 8–11.5 × 2.1–2.9 μm. No praphyses were observed.
Culture characteristics. Colonies on PDA slow-growing, attaining a diam of 9–11 mm in 21 days at 25 °C. Stromatic colonies compact pulvinate, surface wrinkled, pale orange to orange. Conidial masses usually abundant, orange. Reverse of colony brownish.
Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera) or whiteflies (Aleyrodidae, Sternorrhyncha, Hemiptera), on trunks of dicotyledonous plants.
Distribution. China, Yunnan Province, Jinghong City.
Other Material examined. China, Yunnan Province, Jinghong City, Jinuo Township, Bapo village, 100°98′ E, 22°06′ N, alt. 1046 m, found on trunks of dicotyledonous plants. 26 October 2023, Hong Yu and Zhi-Qin Wang (YHH MJBP2309032, paratype; YFCC MJBP23099452, ex-paratype living culture); Ibid., (YHH MJBP2309033, YHH MJBP2309034, YHH MJBP2309035).
Commentary. The three-gene phylogenetic analyses showed that the three samples of M. jinuoana were clustered in the Globe clade and closely related to M. boliviensis P. Chaverri & K.T. Hodge, M. insperata (Rombach, M. Liu, Humber, and K.T. Hodge) P. Chaverri & K.T. Hodge, and M. macrostroma (P. Chaverri and K.T. Hodge) P. Chaverri & K.T. Hodge. Morphologically, the stromata shape, texture, and color of M. jinuoana was significantly different from those of M. boliviensis, M. insperata, and M. macrostroma [3,39]. Ecologically, M. jinuoana was found on the trunk of dicotyledonous plants, while M. boliviensis and M. insperata were found on the underside of leaves, and M. macrostroma was found on the living vines of dicotyledonous plants [3,39].
Moelleriella longzhuensis Hong Yu bis, Z.L. Yang & Z.Q. Wang, sp. nov. Figure 5.
Mycobank No: 851870.
Etymology. Named after the Chinese name “Longzhu” of the plant Dendrocalamus giganteus Wall. ex Munro, to which the stromata were attached.
Type. China, Yunnan Province, Jinping County, the Fenshuiling National Nature Reserve, 103°22′ E, 22°78′ N, alt. 1436 m, found on the underside of the living leaves of D. giganteus. 22 October 2023, Hong Yu (YHH MLFSL2310012, holotype; YFCC MLFSL23109453, ex-holotype living culture).
Description. Sexual morph: Not known. Asexual morph: Anamorphic stromata with a subglobose head and constricted base (stud-shaped), white to pale yellow when immature becoming pale yellow to yellow when mature, 1–1.9 mm diam, surface pruinose or tomentose, with hypothallus 0.1–1.1 mm. Hyphae of stromata forming loose textura intricata to epidermoidea. Conidiomata simple depressions of surface, 319–481 × 237–448 μm, several conidiomata per stroma, but difficult to count because some of them are confluent with neighboring ones. Conidial masses pale yellow to yellow. In section, the Conidioma subglobose to globose. Phialides not observed. Conidia unicellular, hyaline, smooth, inflated at midpoint and tapering at both ends, 12–16.1 × 2.6–3.9 μm. No paraphyses observed.
Culture characteristics. Colonies on PDA slow-growing, attaining a diam of 6–7 mm in 21 days at 25 °C. Colonies pale yellow to pale yellowish brown, compact, forming a subglobose structure. Conidial masses usually abundant, usually forming several gushing bands, pale yellow to pale orange. Reverse of colony pale yellow to yellowish brown.
Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera) and whiteflies (Aleyrodidae, Sternorrhyncha, Hemiptera), found on the underside of the living leaves of D. giganteus.
Distribution. China, Yunnan Province, Jinping County.
Other material examined. China, Yunnan Province, Jinping County, the Fenshuiling National Nature Reserve, 103°22′ E, 22°78′ N, alt. 1436 m, found on the underside of the living leaves of D. giganteus. 22 October 2023, Hong Yu and Zhi-Qin Wang (YHH MLFSL2310013, paratype; YFCC MLFSL23109454, ex-paratype living culture); Ibid., (YHH MLFSL2310014, YHH MLFSL2310015, YHH MLFSL2310016, YHH MLFSL2310017, YHH MLFSL2310018).
Commentary. Phylogenetically, the three samples of M. longzhuensis were grouped together in subclade II of the Effuse clade and formed a monophyletic group. It was sister to M. rhombispora, with a high level of statistical support in terms of the BI posterior probabilities (PP = 1) and the ML bootstrap proportions (BP = 100%). Morphologically, M. longzhuensis was similar to M. rhombispora in that its conidia were inflated at the midpoint and tapered at both ends [3]. However, M. longzhuensis exhibits significant morphological differences from M. rhombispora due to its color and the shape of its anamorphic stromata. The conidiomata of the former could be confluent with their neighbors but the those of the latter were not confluent. The former also had larger conidia (12–16.1 × 2.6–3.9 vs. 9–14 × 2.5–3 μm) and no paraphyses were observed [3].

4. Discussion

The calculation of genetic distances for the three genes showed that the interspecific genetic distances between the new species in this study and other species of the genus were greater than the intraspecific genetic distances (see Tables S1–S6). This study resulted in the discovery of two new species of Moelleriella and one new species of Conoideocrella through phylogenetic analyses, morphological observations, and calculations of inter- and intraspecific genetic distances within genera.
The genus Moelleriella was divided into the Effuse clade and the Globose clade by Chaverri et al. [3]. The Effuse clade is composed of two sister clades, i.e., subclade I and subclade II [6]. Currently, subclade I includes 13 species, and subclade II includes 13 species [15]. The Effuse clade species were characterized as having effuse to thin, pulvinate stromata of loose hyphal tissue. Many species had hypothalli (e.g., M. basicystis P. Chaverri & K.T. Hodge; M. disjuncta (Seaver) P. Chaverri & K.T. Hodge; M. libera (Syd. and P. Syd.) P. Chaverri & M. Liu; M. madidiensis P. Chaverri & K.T. Hodge; M. ochracea (Massee) M. Liu & P. Chaverri; M. phyllogena (Mont.) P. Chaverri & K.T. Hodge; M. pongdueatensis Mongkols., Thanakitp. & Luangsa-ard; M. raciborskii (Zimm.) P. Chaverri, M. Liu & K.T. Hodge; M. rhombispora (M. Liu & K.T. Hodge) M. Liu & P. Chaverri; M. thanathonensis Y.P. Xiao, T.C. Wen & K.D. Hyde; M. umbospora P. Chaverri & K.T. Hodge; and M. zhongdongii (M. Liu & K.T. Hodge) M. Liu & P. Chaverri). These species had mostly whitish coloration and occasionally their stromata were pale yellow to orange (e.g., M. basicystis) [3,7,8,9,10,13,14,15]. The Globose clade species had globose and darker stromata, compact tissue, were hard or coriaceous, did not have hypothalli (except M. sloaneae (Pat.) P. Chaverri & K.T. Hodge), and had stromata that were usually 1–2 mm (except for M. macrostroma (P. Chaverri & K.T. Hodge) P. Chaverri & K.T. Hodge) [3]. However, these characteristics were not unique to each clade, and overlap could be found between the clades [3].
All three reported species of Conoideocrella were present in the field as telemorphic stromata with elongated flask-shaped or elongated conic-shaped perithecia [23,24]. In this way, it could be easily distinguished from Moelleriella, although it was in good agreement with Moelleriella in terms of growing environment and host category. Two genera, Moelleriella and Conoideocrella, were parasitic on whiteflies (Aleyrodidae, Hemiptera) or scale insects (Coccidae and Lecaniidae, Hemiptera) [3,23,24]. The fungus always completely obliterated the host, making it nearly impossible to identify the insect [3,23].
Scale insects and whiteflies are tiny, widely distributed parasites that suck plant sap, and many of these species are serious agricultural pests and act as vectors for viral plant diseases [40,41,42,43]. In the face of severe crop infestation by whiteflies, pesticides have been used mainly to suppress the whitefly population [44]. However, the overuse of pesticides has led to a certain degree of resistance to pesticides and harmful effects on non-target organisms and the environment [45]. The ability of Moelleriella and Conoideocrella species to parasitize large populations of whiteflies and scale insects in the wild gives these species the potential to be developed as green and non-polluting biological control agents. Moelleriella libera (anamorph A. aleyrodis) was the first species of Moelleriella to be applied to control whiteflies in Florida, U.S.A. [46]. Subsequently, there have been an increasing number of studies on the control of pests with M. libera [47,48,49,50,51]. Relatively few studies have been conducted on other species of Molleriella for biocontrol materials.
Hypocrella s. str. (anamorph Aschersonia) and Molleriella species are not only important biocontrol agents, but their metabolites also possess a wide range of biological activities, such as anti-tumor, anti-malarial, anti-bacterial, and insecticidal properties, and have great value within applications for biopesticides and pharmaceuticals [52,53,54,55]. Various compounds have been reported in studies of the metabolites of Moelleriella, such as benzophenones, terpenoids, cyclopeptides, steroids, and carotenoids [52,56,57,58,59,60]. In the studies of the metabolites of Conoideocrella, depsipeptides, bioxanthracenes and their monomers, conoideoxime A, hopane triterpenoid (zeorin), xanthone glycoside and naphthopyrone glycoside, phenolic glucosides, and chromane analogues have been reported [61,62,63,64,65,66,67]. In this paper, three new species of Moelleriella and Conoideocrella have been identified. This discovery provides valuable insights to facilitate further research, exploitation, and utilization of their metabolites and entomopathogenic fungi for effective biological control of scale insects or whiteflies.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof10060423/s1, Table S1: Interspecific genetic distance matrix and intragroup genetic distances for nrLSU sequences of Moelleriella. Table S2: Interspecific genetic distance matrix and intragroup genetic distances for tef-1α sequences of Moelleriella. Table S3: Interspecific genetic distance matrix and intragroup genetic distances for rpb1 sequences of Moelleriella. Table S4: Interspecific genetic distance matrix and intragroup genetic distances for nrLSU sequences of Conoideocrella. Table S5: Interspecific genetic distance matrix and intragroup genetic distances for tef-1α sequences of Conoideocrella. Table S6: Interspecific genetic distance matrix and intragroup genetic distances for rpb1 sequences of Conoideocrella.

Author Contributions

Conceptualization, Z.-Q.W. and J.-M.M.; methodology, Z.-Q.W.; software, J.-M.M.; validation, Z.-L.Y. and J.Z.; formal analysis, Z.-Q.W.; investigation, Z.-Q.W., J.-M.M., Z.-L.Y., J.Z., Z.-Y.Y., J.-H.L. and H.Y.; resources, H.Y.; data curation, Z.-L.Y.; writing—original draft preparation, Z.-Q.W.; writing—review and editing, H.Y.; visualization, Z.-Q.W.; supervision, H.Y.; project administration, H.Y.; funding acquisition, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China (grant number 31870017).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The DNA sequence data obtained in this study have been deposited in GenBank. The accession numbers can be found in the article (Table 1).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Sullivan, R.F.; Bills, G.F.; Hywel-Jones, N.L.; White, J.F., Jr. Hyperdermium: A new clavicipitalean genus for some tropical epibionts of dicotyledonous plants. Mycologia 2000, 92, 908–918. [Google Scholar] [CrossRef]
  2. Chaverri, P.; Bischoff, J.F.; Evan, H.C.; Hodge, K.T. Regiocrella, a newentomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 2005, 97, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
  3. Chaverri, P.; Liu, M.; Hodge, K.T. A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics. Stud. Mycol. 2008, 60, 1–66. [Google Scholar] [CrossRef] [PubMed]
  4. Johnson, D.; Sung, G.H.; Hywel-Jones, N.L.; Luangsa-ard, J.J.; Bischoff, J.F.; Kepler, R.M.; Spatafora, J.W. Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycol. Res. 2009, 113, 279–289. [Google Scholar] [CrossRef]
  5. Luangsa-ard, J.J.; Mongkolsamrit, S.; Noisripoom, W.; Thanakitpipattana, D.; Khonsanit, A.; Wutikhun, T. Helicocollum, a new clavicipitalean genus pathogenic to scale insects (Hemiptera) in Thailand. Mycol. Prog. 2017, 16, 419–431. [Google Scholar] [CrossRef]
  6. Khonsanit, A.; Noisripoom, W.; Mongkolsamrit, S.; Phosrithong, N.; Luangsa-ard, J.J. Five new species of Moelleriella infecting scale insects (Coccidae) in Thailand. Mycol. Prog. 2021, 20, 847–867. [Google Scholar] [CrossRef]
  7. Mongkolsamrit, S.; Nguyen, T.T.; Tran, N.L.; Luangsa-ard, J.J. Moelleriella pumatensis, a new entomogenous species from Vietnam. Mycotaxon 2011, 17, 45–51. [Google Scholar] [CrossRef]
  8. Mongkolsamrit, S.; Khonsanit, A.; Noisripoom, W.; Luangsa-ard, J.J. Two new entomogenous species of Moelleriella with perithecia in tubercles from Thailand. Mycoscience 2015, 56, 66–74. [Google Scholar] [CrossRef]
  9. Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
  10. Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.N.; Liu, J.K.; Bhat, D.J.; Jones, E.B.G.; McKenzie, E.H.C.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017, 83, 1–261. [Google Scholar] [CrossRef]
  11. Chen, Y.X.; Xue, Q.L.; Xie, Y.X.; Keyhani, N.O.; Guan, X.Y.; Wei, X.Y.; Zhao, J.; Yan, Z.; Chen, H.; Qiu, J.Z.; et al. Moelleriella sinensis sp. nov. (Clavicipitaceae, Ascomycota) from southeast China. Phytotaxa 2020, 429, 22. [Google Scholar] [CrossRef]
  12. Crous, P.W.; Cowan, D.A.; Maggs-Kölling, G.; Yilmaz, N.; Larsson, E.; Angelini, C.; Brandrud, T.E.; Dearnaley, J.D.W.; Dima, B.; Dovana, F.; et al. Fungal Planet description sheets: 1112–1181. Persoonia 2020, 45, 251–409. [Google Scholar] [CrossRef] [PubMed]
  13. Yuan, H.S.; Lu, X.; Dai, Y.C.; Hyde, K.D.; Kan, Y.H.; Kušan, I.; He, S.H.; Liu, N.G.; Sarma, V.V.; Zhao, C.L.; et al. Fungal diversity notes 1277–1386: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2020, 104, 1–266. [Google Scholar] [CrossRef]
  14. Wang, Z.Q.; Wang, Y.; Wang, Y.B.; Yu, H. A new species of Moelleriella from Yunnan Province in Southwestern China. Phytotaxa 2022, 555, 187–194. [Google Scholar] [CrossRef]
  15. Yang, Z.L.; Wang, Z.Q.; Ma, J.M.; Yu, H. Moelleriella simaoensis, a new entomogenous species of Moelleriella (Clavicipitaceae, Hypocreales) from Southwestern China. Phytotaxa 2023, 603, 060–068. [Google Scholar] [CrossRef]
  16. Ma, H.F. Resource Survey and Phylogenetic Study on Aschersonia. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2008. [Google Scholar]
  17. Wang, Y.Y. Resource Survey and Genetic Diversity Analysis of Aschersonia spp. and Their Telemorph Stage. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2009. [Google Scholar]
  18. Qiu, J.Z.; Chen, Y.; Wang, Y.Y.; Guan, X. The finding of Moelleriella ochracea (Ascomycota, Clavicipitaceae) in China. Mycosystema 2009, 28, 148–150. [Google Scholar]
  19. Qiu, Y.F. Molecular Systematics and DNA Barcode of Aschersonia. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2013. [Google Scholar]
  20. Kobayasi, Y.; Shimizu, D. Monograph of the genus Torrubiella. Bull. Natl. Sci. Mus. Tokyo 1982, 8, 43–78. [Google Scholar]
  21. Artjariyasripong, S.; Mitchell, J.I.; Hywel-Jones, N.L.; Jones, E.B.G. Relationship of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience 2001, 42, 503–517. [Google Scholar] [CrossRef]
  22. Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classifcation of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef]
  23. Hywel-Jones, N.L. Torrubiella luteorostrata: A pathogen of scale insects and its association with Paecilomyces cinnamomeus with a note on Torrubiella tenuis. Mycol. Res. 1993, 97, 1126–1130. [Google Scholar] [CrossRef]
  24. Mongkolsamrit, S.; Thanakitpipattana, D.; Khonsanit, A.; Promharn, R.; Luangsa-ard, J.J. Conoideocrella krungchingensis sp. nov., an entomopathogenic fungus from Thailand. Mycoscience 2016, 57, 264–270. [Google Scholar] [CrossRef]
  25. Petch, T. Studies in entomogenous fungi. III. Torrubiella. Trans. Br. Mycol. Soc. 1923, 9, 108–128. [Google Scholar] [CrossRef]
  26. Liu, M.; Hodge, K.T. Hypocrella zhongdongii sp. nov., the teleomorph of Aschersonia incrassata. Mycol. Res. 2005, 109, 818–824. [Google Scholar] [CrossRef] [PubMed]
  27. Vilgalys, R.; Hester, M. Rapid genetic identifcation and mapping of enzymatically amplifed ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
  28. Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol. Res. 1994, 98, 625–634. [Google Scholar] [CrossRef]
  29. Bischof, J.F.; Rehner, S.A.; Humber, R.A. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. favoviride Complex. Mycologia 2006, 98, 737–745. [Google Scholar] [CrossRef]
  30. Wang, Z.Q.; Wang, Y.; Dong, Q.Y.; Fan, Q.; Dao, V.M.; Yu, H. Morphological and Phylogenetic Characterization Reveals Five New Species of Samsoniella (Cordycipitaceae, Hypocreales). J. Fungi 2022, 8, 747. [Google Scholar] [CrossRef]
  31. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
  32. Zhang, D.; Gao, F.L.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
  33. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
  34. Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the raxml web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
  35. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efcient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
  36. Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
  37. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
  38. Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2017, 35, 518–522. [Google Scholar] [CrossRef]
  39. Liu, M.; Rombach, M. What’s in a name? Aschersonia insperata: A new pleoanamorphic fungus with characteristics of Aschersonia and Hirsutella. Mycologia 2005, 97, 246–253. [Google Scholar] [CrossRef] [PubMed]
  40. Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef]
  41. Xiong, J.; Zheng, W.J.; Yao, S.L. Research situations of occurrence, damage of Pealius mori (Homoptera: Aleyrodidae) and its integrated pest management in China. Guizhou Sci. 2011, 29, 85–91. [Google Scholar]
  42. Wang, J.R.; Song, Z.Q.; Du, Y.Z. Six New Record Species of Whiteflies (Hemiptera: Aleyrodidae) Infesting Morus alba in China. J. Insect Sci. 2014, 14, 274. [Google Scholar] [CrossRef]
  43. Arias-Corpuz, S.; Romero-Nápoles, J.; Hernández-Fuentes, L.M.; González-Hernández, H.; Illescas-Riquelme, C.P.; Lomeli-Flores, J.R.; Montalvo-González, E.; Nolasco-González, Y.; Velázquez-Monreal, J.J.; García-Magaña, M.d.L. Scale Insects (Hemiptera: Coccomorpha) on Jackfruit (Moraceae) in Nayarit, Mexico. J. Entomol. Sci. 2021, 57, 82–95. [Google Scholar] [CrossRef]
  44. Liang, P.; Tian, Y.A.; Biondi, A.; Desneux, N.; Gao, X.W. Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 2012, 21, 889–1898. [Google Scholar] [CrossRef]
  45. Gerling, D.; Alomar, Ò.; Arnò, J. Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot. 2001, 20, 779–799. [Google Scholar] [CrossRef]
  46. Berger, E.W. Natural enemies of scale insects and whiteflies in Florida. Fla. State Plant Board Q. Bull. 1921, 5, 141–154. [Google Scholar]
  47. Zhang, C.; Ali, S.; Musa, P.D.; Wang, X.M.; Qiu, B.L. Evaluation of the pathogenicity of Aschersonia aleyrodis on Bemisia tabaci in the laboratory and greenhouse. Biocontrol Sci. Technol. 2016, 27, 210–221. [Google Scholar] [CrossRef]
  48. Lima, B.M.F.V.; Almeida, J.E.M.; Moreira, J.O.T.; Santos, L.C.; Bittencourt, M.A.L. Entomopathogenic fungi associated with citrus blackfly (Aleurocanthus woglumi Ashby) in southern Bahia. Arq. Inst. Biol. 2017, 84, 1–3. [Google Scholar] [CrossRef]
  49. Zhang, C.; Shao, Z.F.; Han, Y.Y.; Wang, X.M.; Wang, Z.Q.; Peter, D.M.; Qiu, B.L.; Shaukat, A. Effects of Aschersonia aleyrodis on the life table and demographic parameters of Bemisia tabaci. J. Integr. Agric. 2018, 17, 389–396. [Google Scholar] [CrossRef]
  50. Ingle, Y.V.; Bhosale, D.N.; Paithankar, D.H.; Mane, S.S.; Lande, G.K. Natural occurrence of Aschersonia aleyrodis on citrus black fly in Vidarbha region of maharashtra. J. Plant Dis. 2019, 14, 147–150. [Google Scholar]
  51. Qasim, M.; Ronliang, J.; Islam, W.; Ali, H.; Khan, K.A.; Dash, C.K.; Jamal, Z.A.; Wang, L.D. Comparative pathogenicity of four entomopathogenic fungal species against nymphs and adults of citrus red mite on the citrus plantation. Int. J. Trop. Insect Sci. 2020, 41, 737–749. [Google Scholar] [CrossRef]
  52. Fu, D.L.; Chen, Y.X.; Guo, Q.F.; Mao, L.H.; Fei, J.; Qiu, J.Z. Research progress on metabolites from Aschersonia and its teleomorph (Ascomycota). Mycosystema 2018, 37, 541–554. [Google Scholar] [CrossRef]
  53. Guo, Q.F.; Dong, L.L.; Zang, X.Y.; Gu, Z.J.; He, X.Y.; Yao, L.D.; Cao, L.P.; Qiu, J.Z.; Guan, X. A new azaphilone from the entomopathogenic fungus Hypocrella sp. Nat. Prod. Res 2015, 29, 2000–2006. [Google Scholar] [CrossRef]
  54. Sadorn, K.; Saepua, S.; Punyain, W.; Saortep, W.; Choowong, W.; Rachtawee, P.; Pittayakhajonwut, P. Chromanones and aryl glucoside analogs from the entomopathogenic fungus Aschersonia confluens BCC53152. Fitoterapia 2020, 144, 104606. [Google Scholar] [CrossRef] [PubMed]
  55. Aragão, T.M.S.; dos Santos, J.V.F.C.; Santos, T.S.; Souto, E.B.; Severino, P.; Jain, S.; Mendonça, M.C. Scientific-technological analysis and biological aspects of entomopathogenic fungus Aschersonia. Sustain. Chem. Pharm. 2021, 24, 100562. [Google Scholar] [CrossRef]
  56. van Eijk, G.W.; Mummery, R.S.; Roeymans, H.J.; Valadon, L.R.G. A comparative study of carotenoids of Aschersonia aleyrodis and Aspergillus giganteus. Antonie Van Leeuwenhoek 1979, 45, 417–422. [Google Scholar] [CrossRef] [PubMed]
  57. van Eijk, G.W.; Roeijmans, H.J.; Seykens, D. Hopanoins from the entomogenous fungus Aschersonia aleyrodis. Tetrahedron Lett. 1986, 27, 2533–2534. [Google Scholar] [CrossRef]
  58. Krasnoff, S.B.; Gibson, D.M.; Belofsky, G.N.; Gloer, J.B. New destruxins from the entomopathogenic fungus Aschersonia sp. J. Nat. Prod. 1996, 59, 485–489. [Google Scholar] [CrossRef]
  59. Boonphong, S.; Kittakoop, P.; Isaka, M.; Palittapongarnpim, P.; Jaturapat, A.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. A new antimycobacterial, 3β-acetoxy-15α, 22-dihydroxyhopane, from the insect pathogenic fungus Aschersonia tubulata. Planta Med. 2001, 67, 279–281. [Google Scholar] [CrossRef] [PubMed]
  60. Isaka, M.; Hywel-Jones, N.L.; Sappan, M.; Mongkolsamrit, S.; Saidaengkham, S. Hopane triterpenes as chemotaxonomic markers for the scale insect pathogens Hypocrella s. lat. and Aschersonia. Mycol. Res. 2009, 113, 491–497. [Google Scholar] [CrossRef]
  61. Isaka, M.; Sappan, M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Mongkolsamrit, S.; Chunhametha, S. Chemical taxonomy of Torrubiella s. lat.: Zeorin as a marker of Conoideocrella. Fungal Biol. 2011, 115, 401–405. [Google Scholar] [CrossRef]
  62. Saepua, S.; Kornsakulkarn, J.; Choowong, W.; Supothina, S.; Thongpanchang, C. Bioxanthracenes and monomeric analogues from insect pathogenic fungus Conoideocrella luteorostrata Zimm. BCC 31648. Tetrahedron 2015, 71, 2400–2408. [Google Scholar] [CrossRef]
  63. Saepua, S.; Kornsakulkarn, J.; Somyong, W.; Laksanacharoen, P.; Isaka, M.; Thongpanchang, C. Bioactive compounds from the scale insect fungus Conoideocrella tenuis BCC 44534. Tetrahedron 2018, 74, 859–866. [Google Scholar] [CrossRef]
  64. Isaka, M.; Palasarn, S.; Choowong, W.; Mongkolsamrit, S. Conoideoxime A, antibacterial bis-oxime prenyl-tryptophan dimer from the whitefly pathogenic fungus Conoideocrella luteorostrata BCC 76664. Tetrahedron Lett. 2019, 60, 154–156. [Google Scholar] [CrossRef]
  65. Isaka, M.; Palasarn, S.; Rachtawee, P.; Srichomthong, K.; Mongkolsamrit, S. Paecilodepsipeptide D, a cyclohexadepsipeptide from cultures of the whitefly pathogenic fungus Conoideocrella luteorostrata BCC 76664. Phytochem. Lett. 2019, 34, 65–67. [Google Scholar] [CrossRef]
  66. Sadorn, K.; Saepua, S.; Boonyuen, N.; Komwijit, S.; Rachtawee, P.; Pittayakhajonwut, P. Phenolic glucosides and chromane analogs from the insect fungus Conoideocrella krungchingensis BCC53666. Tetrahedron 2019, 75, 3463–3471. [Google Scholar] [CrossRef]
  67. Yoneyama, T.; Iguchi, M.; Yoshii, K.; Elshamy, A.I.; Ban, S.; Noji, M.; Umeyama, A. Xanthone glucoside from an insect pathogenic fungus Conoideocrella luteorostrata NBRC106950. Nat. Prod. Res. 2022, 36, 3701–3704. [Google Scholar] [CrossRef]
Figure 1. Phylogenetic relationships of 14 genera in Clavicipitaceae are based on the maximum likelihood (ML) and the Bayesian inference (BI) analyses using nrLSU, tef-1α, and rpb1 sequences. Statistical support values greater than 70% are shown at the nodes for the BI posterior probabilities/the ML bootstrap proportions. The new taxa are highlighted in bold and T for ex-type material.
Figure 1. Phylogenetic relationships of 14 genera in Clavicipitaceae are based on the maximum likelihood (ML) and the Bayesian inference (BI) analyses using nrLSU, tef-1α, and rpb1 sequences. Statistical support values greater than 70% are shown at the nodes for the BI posterior probabilities/the ML bootstrap proportions. The new taxa are highlighted in bold and T for ex-type material.
Jof 10 00423 g001
Figure 2. Morphology of Conoideocrella tenuis. (A,B) Telemorphic stroma containing perithecia; (C) Perithecium; (DH) Mature asci with developing asci; (I) Obverse of colonies on PDA at 25 °C after 21 days; (J) Reverse of colonies on PDA at 25 °C after 21 days; (KO) Conidia of hirsutella-like asexual stage on PDA. Scale bars: 1 mm (A,B); 200 µm (C); 50 µm (D,E); 25 µm (F); 50 µm (G); 20 µm (H); 1 cm (I,J); 10 µm (KM); and 5 µm (N,O).
Figure 2. Morphology of Conoideocrella tenuis. (A,B) Telemorphic stroma containing perithecia; (C) Perithecium; (DH) Mature asci with developing asci; (I) Obverse of colonies on PDA at 25 °C after 21 days; (J) Reverse of colonies on PDA at 25 °C after 21 days; (KO) Conidia of hirsutella-like asexual stage on PDA. Scale bars: 1 mm (A,B); 200 µm (C); 50 µm (D,E); 25 µm (F); 50 µm (G); 20 µm (H); 1 cm (I,J); 10 µm (KM); and 5 µm (N,O).
Jof 10 00423 g002
Figure 3. Morphology of Conoideocrella fenshuilingensis. (A,B) Telemorphic stroma containing perithecia; (C,D) Perithecium; (EL) Mature asci with developing asci. Scale bars: 1 mm (A,B); 200 µm (CG); 100 µm (H); 150 µm (I); 100 µm (J); 30 µm (K); and 20 µm (L).
Figure 3. Morphology of Conoideocrella fenshuilingensis. (A,B) Telemorphic stroma containing perithecia; (C,D) Perithecium; (EL) Mature asci with developing asci. Scale bars: 1 mm (A,B); 200 µm (CG); 100 µm (H); 150 µm (I); 100 µm (J); 30 µm (K); and 20 µm (L).
Jof 10 00423 g003
Figure 4. Morphology of Moelleriella jinuoana. (AC) Anamorphic stromata containing conidiomata; (D,E) Section of stromata showing conidiomata; (F,G) Phialides with conidia at the tips; (H) Conidia; (I) Obverse of colonies on PDA at 25 °C after 21 days; (J) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (A); 0.5 mm (B,C); 100 µm (D,E); 20 µm (F,G); 10 µm (H); and 2 mm (I,J).
Figure 4. Morphology of Moelleriella jinuoana. (AC) Anamorphic stromata containing conidiomata; (D,E) Section of stromata showing conidiomata; (F,G) Phialides with conidia at the tips; (H) Conidia; (I) Obverse of colonies on PDA at 25 °C after 21 days; (J) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (A); 0.5 mm (B,C); 100 µm (D,E); 20 µm (F,G); 10 µm (H); and 2 mm (I,J).
Jof 10 00423 g004
Figure 5. Morphology of Moelleriella longzhuensis. (AC) Anamorphic stromata containing conidiomata; (D,E) Section of stromata showing conidiomata; (F) Phialides with conidia at the tips; (G) Conidia; (H) Obverse of colonies on PDA at 25 °C after 21 days; (I) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (A); 0.5 mm (B,C); 50 µm (D); 100 µm (E); 20 µm (F,G); and 2 mm (H,I).
Figure 5. Morphology of Moelleriella longzhuensis. (AC) Anamorphic stromata containing conidiomata; (D,E) Section of stromata showing conidiomata; (F) Phialides with conidia at the tips; (G) Conidia; (H) Obverse of colonies on PDA at 25 °C after 21 days; (I) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (A); 0.5 mm (B,C); 50 µm (D); 100 µm (E); 20 µm (F,G); and 2 mm (H,I).
Jof 10 00423 g005
Table 1. Names, voucher information, and corresponding GenBank accession numbers of the taxa used in this study.
Table 1. Names, voucher information, and corresponding GenBank accession numbers of the taxa used in this study.
SpeciesStrainHostOriginGenBank Accession Numbers
nrLSUtef-1αrpb1
Conoideocrella fenshuilingensisYHH CFFSL2310002 TScale insectsChina, Yunnan, Jinping County, the Fenshuiling National Nature ReservePP178583PP177168PP177158
Conoideocrella fenshuilingensisYHH CFFSL2310003Scale insectsChina, Yunnan, Jinping County, the Fenshuiling National Nature ReservePP178584PP177169PP177159
Conoideocrella krungchingensisBCC 36100 TScale insectThailand, Nakhon Si Thammarat Province, Khao Luang National ParkKJ435080KJ435097-
Conoideocrella krungchingensisBCC 36101Scale insectThailand, Nakhon Si Thammarat Province, Khao Luang National ParkKJ435081KJ435098-
Conoideocrella krungchingensisBCC 53666Scale insectThailand, Nakhon Si Thammarat Province, Khao Luang National ParkKJ435070KJ435099-
Conoideocrella krungchingensisBCC 53667Scale insectThailand, Nakhon Si Thammarat Province, Khao Luang National ParkKJ435071KJ435100-
Conoideocrella luteorostrataNHJ 11343Scale insect-EF468850-EF468906
Conoideocrella luteorostrataNHJ 12516Scale insect-EF468849EF468800EF468905
Conoideocrella tenuisNHJ 6293Scale insect-EU369044EU369029EU369068
Conoideocrella tenuisNHJ 6791Scale insect-EU369046EU369028EU369069
Conoideocrella tenuisYHH CTPW23089310Scale insectsChina, Yunnan, Jinping County, the Fenshuiling National Nature ReservePP178581PP177166PP177156
Conoideocrella tenuisYFCC CTBP22109315Scale insectsChina, Yunnan, Jinping County, the Fenshuiling National Nature ReservePP178582PP177167PP177157
Hypocrella calendulinaBCC 20309 TScale insect nymphThailand, Ranong, Khlong Naka study trail, Khlong Naka Wildlife SanctuaryGU552154--
Hypocrella citrinaP.C. 597Scale insects or whitefliesBolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail to mountain along Eslabon RiverAY986905AY986930-
Hypocrella cf discoideaI93-901D-Côte D’IvoireEU392567EU392646EU392700
Hypocrella cf discoideaI95-901D-Côte D’IvoireEU392568EU392647EU392701
Hypocrella discoideaBCC 2097-Thailand-AY986945DQ000346
Hypocrella disciformisP.C. 655Scale insects or whitefliesHonduras, Dpto. Copan, Copan Ruinas, nature trailEU392560EU392643EU392697
Hypocrella disciformisP.C. 676Scale insects or whitefliesHonduras, Dpto. Copan, Copan Ruinas, nature trailEU392566EU392645EU392699
Hypocrella hirsutaP.C. 436.2Scale insects or whitefliesMexico, Veracruz, Catemaco, town of Ejido Lopez-Mateo, project “Cielo,
Tierra y Selva”, trail to the mountain
AY986922AY986949DQ000350
Hypocrella hirsutaP.C. 543 TScale insects or whitefliesBolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, near Chalalan lodgeEU392569EU392648EU392702
Hypocrella viridansP.C. 635Scale insects or whitefliesHonduras, Dpto. Atlantida, Tela, Lancetilla Natural ReserveEU392572EU392651EU392705
Hypocrella viridansP.C. 670Scale insects or whitefliesHonduras, Dpto. Copan, Santa Rita, Rio Amarillo, Peña Quemada ReserveEU392574EU392652EU392706
Metacordyceps chlamydosporiaJCM18603Soil under Hibiscus rosa-sinensisJapan, Tokyo, Hachijo Island-AB758464AB758667
Metacordyceps chlamydosporiaJCM18608SoilJapan, Hokkaido, Sapporo-AB758481AB758684
Metapochonia bulbillosaFKI-4395Soil under Q. serrataJapan, NaganoAB709809AB758460AB758663
Metapochonia bulbillosaCBS 145.70 TRoot of Picea abiesDenmarkAF339542EF468796EF468902
Metarhizium albumARSEF 2082Cofana spectraSri LankaDQ518775DQ522352KJ398617
Metarhizium anisopliaeBUM_1900SoilChina, Yunnan, Gaoligong MountainsMH143820MH143854MH143869
Metarhizium baoshanenseCCTCCM 2016589 TSoilChina, Yunnan, Baoshan City, Taibao mountainKY264174KY264169KY264180
Metarhizium baoshanenseBUM63.4SoilChina, Yunnan, Baoshan City, Taibao mountainKY264175KY264170KY264181
Metarhizium flavovirideCBS 125.65--MT078854MT078846MT078862
Metarhizium flavovirideCBS 700.74--MT078855MT078847MT078863
Moelleriella africanaP.C. 736-Ghana, Costa Rica, and BoliviaAY986917AY986943DQ000344
Moelleriella albaBCC49409 TWhitefly nymphsThailand, Narathiwat Province, Hala Bala Wildlife SanctuaryJQ269646KX254423JQ256906
Moelleriella albaBCC49492Whitefly nymphsThailand, Narathiwat Province, Hala Bala Wildlife SanctuaryJQ269645KX254424JQ256905
Moelleriella boliviensisP.C. 603Scale insectsBolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National ParkAY986923AY986950DQ000351
Moelleriella basicystisF183147 = CUP 067746Scale insects and whitefliesPanama, Chiriqui, Quebrada Hacha, San Juan Oriente, BesikoEU392577EU392653-
Moelleriella basicystisP.C. 374Scale insects and whitefliesCosta Rica, Guanacaste, Guanacaste Conservation Area, Rincon de la Vieja National ParkAY986903AY986928DQ000329
Moelleriella chaiangmaiensisBCC18029 TScale insectThailand, Chiang Mai, Doi Inthanon National ParkMT659360MW091560-
Moelleriella chaiangmaiensisBBH33051Scale insectThailand, Krabi, Jiranan Techaprasan’s house (Thap Prik)MT659362MT672277MT672269
Moelleriella chaiangmaiensisBCC60941Scale insectThailand, Nakhon Ratchasima, Khao Yai National Park, Pha Kluaimai Waterfall Nature TrailMT659361MT672278MT672270
Moelleriella chumphonensisBCC47574 TWhitefly
nymphs
Thailand, Chumphon, Phato Watershed Conservation and Management UnitJQ269647KX254421JQ256907
Moelleriella chumphonensisBBC47575Whitefly
nymphs
Thailand, Chumphon, Phato Watershed Conservation and Management UnitJQ269648KX254422JQ256908
Moelleriella disjunctaJ.B.205Scale insects and whitefliesPanama, Fortuna, along trail 1 km west of STRI Biological StationEU392578EU392654-
Moelleriella epiphyllaP.C. 545Scale insects and whitefliesBolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail TapacareEU392585EU392660EU392711
Moelleriella epiphyllaI93-813Scale insects and whitefliesGuyana, Matthew’s RidgeEU392583EU392656EU392707
Moelleriella evansiiP.C. 627Scale insects and whitefliesEcuador, Manabi. Y de la Laguna, Reserva BilsaAY986916AY986942DQ000343
Moelleriella flavaBCC60924 TScale insectsThailand, Nakhon Ratchasima, Khao Yai National Park, Mo Sing To Nature TrailKF951146KX254430MT672271
Moelleriella flavaBCC60925Scale insectsThailand, Nakhon Ratchasima, Khao Yai National Park, Mo Sing To Nature TrailKF951147KX254431MT672272
Moelleriella flavaBCC60929Scale insectsThailand, Nakhon Ratchasima, Khao Yai National Park, Mo Sing To Nature TrailKX298238KX254432MT672273
Moelleriella gracilisporaCGMCC3.18989Whitefly nymphsChina, Fujian Province, Wuyishan City, Wu Yi MountainKC964202KC964191KC964179
Moelleriella gracilisporaCGMCC3.18990Whitefly nymphsChina, Fujian Province, Wuyishan City, Wu Yi MountainKC964203KC964192KC964180
Moelleriella insperataARSEF 2396 T-Philippines, Los Baños, Laguna, NNE slope of Mount MakilingAY518374DQ070029EU392713
Moelleriella jinuoanaYHH MJBP2309031 TScale insects and whitefliesChina, Yunnan Province, Jinghong City, Jinuo Township, Banpo villagePP178643PP177170PP177160
Moelleriella jinuoanaYHH MJBP2309032Scale insects and whitefliesChina, Yunnan Province, Jinghong City, Jinuo Township, Banpo villagePP178644PP177171PP177161
Moelleriella jinuoanaYFCC MJBP23099451Scale insects and whitefliesChina, Yunnan Province, Jinghong City, Jinuo Township, Banpo villagePP178645PP177172PP177162
Moelleriella kanchanaburiensisBCC75979Scale insectsThailand, Kanchanaburi, Takhian Thong Waterfall Nature TrailMT659363MT672279MT843900
Moelleriella kanchanaburiensisBCC75980Scale insectsThailand, Kanchanaburi, Takhian Thong Waterfall Nature TrailMT659364MT672280MT843901
Moelleriella kanchanaburiensisBCC75981 TScale insectsThailand, Kanchanaburi, Takhian Thong Waterfall Nature TrailMT659365MT672281-
Moelleriella liberaP.C. 444Scale insects and whitefliesMexico, Veracruz, Catemaco, Ejido Lopez Mateo town, project `Cielo, Tierra y Selva’, trail to mountainEU392591EU392662EU392714
Moelleriella liberaP.C. 445Scale insects and whitefliesMexico, Veracruz, Catemaco, Ejido Lopez Mateo town, project `Cielo, Tierra y Selva’, trail to mountainAY986900AY986925DQ000326
Moelleriella longzhuensisYHH MLFSL2310012 TScale insects and whitefliesChina, Yunnan Province, Jinping County, the Fenshuiling National Nature ReservePP178646PP177173PP177163
Moelleriella longzhuensisYHH MLFSL2310013Scale insects and whitefliesChina, Yunnan Province, Jinping County, the Fenshuiling National Nature ReservePP178647PP177174PP177164
Moelleriella longzhuensisYFCC MLFSL23109453Scale insects and whitefliesChina, Yunnan Province, Jinping County, the Fenshuiling National Nature Reserve-PP177175PP177165
Moelleriella macrostromaJ.B. 115Scale insectsCosta Rica, Heredia, Sarapiquí, La Selva Biological StationAY986920AY986947DQ000348
Moelleriella macrostromaP.C. 605Scale insectsBolivia, La Paz Department, Province Franz Tamayo, San José de Uchipiamonas, Madidi National ParkAY986919AY986946DQ000347
Moelleriella madidiensisP.C. 569Scale insectsBolivia, La Paz Department, Province Franz Tamayo, San José de Uchipiamonas, Madidi National ParkAY986915AY986941DQ000342
Moelleriella madidiensisP.C. 594Scale insectsBolivia, La Paz Department, Province Franz Tamayo, San José de Uchipiamonas, Madidi National ParkEU392595EU392666EU392718
Moelleriella molliiI93-901A-Côte D’IvoireEU392599EU392667EU392719
Moelleriella molliiI93-901C-Côte D’IvoireEU392600EU392668EU392720
Moelleriella nanensisBCC66303 TScale insectsThailand, Nan, Doi Mongkhon Nature TrailKX298236KX254427MW085940
Moelleriella nanensisBCC66305Scale insectsThailand, Nan, Doi Mongkhon Nature TrailMW080317KX254428MW085941
Moelleriella niveaBCC60891 TScale insectsThailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature TrailMW080318MT672282MW085942
Moelleriella niveaBCC58543Scale insectsThailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature TrailMT659366MT672283MT672274
Moelleriella niveaBCC58544Scale insectsThailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature TrailMT659367MT672284MT843898
Moelleriella ochraceaP.C. 626Scale insects and whitefliesEcuador, Manabi. Y de la Laguna, Reserva Bilsa, primary forestEU392604EU392670EU392722
Moelleriella ochraceaIE 1308 = P.C. 726Scale insects and whitefliesMexico, Veracruz. Emiliano Zapata Municipality, Plan ChicoEU392601EU392669EU392721
Moelleriella phukhiaoensisBCC19769Scale insect nymphsThailand, Chaiyaphum Province, Bueng Pan Protect Forest Unit, Phu Khiao Wildlife SanctuaryKT880502-KT880506
Moelleriella phukhiaoensisBCC19773Scale insect nymphsThailand, Chaiyaphum Province, Bueng Pan Protect Forest Unit, Phu Khiao Wildlife SanctuaryKT880503-KT880507
Moelleriella phyllogenaP.C. 555Scale insects and whitefliesBolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail TapacareEU392610EU392674EU392726
Moelleriella phyllogenaJ.B. 130Scale insects and whitefliesPanama, Fortuna, on leaf of CostaEU392608EU392672EU392724
Moelleriella pongdueatensisBCC31787Scale insect nymphsThailand, Chiang Mai Province, Pong Dueat Pa Pae GeyserKT880500KX254433KT880504
Moelleriella pongdueatensisBCC31788Scale insect nymphsThailand, Chiang Mai Province, Pong Dueat Pa Pae GeyserKT880501KX254434KT880505
Moelleriella puerensisYFCC 8615 TWhitefliesChina, Yunnan Province, Puer City, Simao District, Xinfang ReservoirMW786748MW815596MW815595
Moelleriella puerensisYFCC 8626WhitefliesChina, Yunnan Province, Puer City, Simao District, Xinfang ReservoirMW786750MW815598MW815594
Moelleriella raciborskiiAFR28-Ghana, Central Region, Jukua District, Kakum National Park, wet semideciduous forestDQ070113EU392675EU392727
Moelleriella raciborskiiI93-901-Côte D’IvoireEU392611EU392676EU392728
Moelleriella rhombisporaP.C. 467Scale insects and whitefliesCosta Rica, Heredia, La Selva Biological Station, Camino CantarranaAY986908AY986933DQ000334
Moelleriella rhombisporaP.C. 696Scale insects and whitefliesHonduras, Yojoa, Los Pinos, Cerro Azul Meambar National ParkEU392618EU392680EU392732
Moelleriella schizostachyiCBS 100067-ThailandAY986921AY986948DQ000349
Moelleriella sinensisBCC69128Scale insectsThailand, Chiang Mai, Doi Inthanon National Park, Mae Chaem Junction (KM.38) Nature TrailKX298234KX254425MT843899
Moelleriella sinensisBCC69129Scale insectsThailand, Chiang Mai, Doi Inthanon National Park, Mae Chaem Junction (KM.38) Nature TrailKX298235KX254426MT672275
Moelleriella sinensisCGMCC 3.18911Whitefly nymphsChina, Fujian Province, Wu Yi MountainMK412091-MK412101
Moelleriella simaoensisYHH 2210015 TWhitefliesChina, Yunnan Province, Puer City, Simao District, Xinfang ReservoirOQ621807OQ623179OQ616915
Moelleriella simaoensisYHH 2210016WhitefliesChina, Yunnan Province, Puer City, Simao District, Xinfang ReservoirOQ621808OQ623180OQ616916
Moelleriella sloaneaeI94-920Scale insects or whitefliesGuatemala, TikalEU392621EU392682EU392734
Moelleriella sloaneaeI94-922CScale insects or whitefliesBelize, Cayo, Rio FrioEU392622EU392683EU392735
Moelleriella thanathonensisMFLU:16-2922Unidentified insectThailand, Chiang Rai, Headquarter of Thanathon orchard-KY646200-
Moelleriella turbinataIMI 352838Scale insects and whitefliesMexico, Estado Veracruz, XalapaEU392625EU392685EU392737
Moelleriella turbinataP.C. 678Scale insects and whitefliesHonduras, Dpt. of Atlántida, Tela, Pico Bonito National ParkEU392627EU392687EU392739
Moelleriella umbosporaP.C. 461Scale insects or whitefliesMexico, Chiapas, PalenqueEU392628EU392688EU392740
Moelleriella umbosporaP.C. 457Scale insects or whitefliesMexico, Chiapas, PalenqueAY986904AY986929DQ000330
Moelleriella zhongdongiiP.C. 504Scale insects or whitefliesCosta Rica, Heredia, La Selva Biological Station, Sendero CantarranaEU392631EU392689EU392741
Moelleriella zhongdongiiP.C. 549Scale insects or whitefliesBolivia, YungasEU392632EU392690EU392742
Neoaraneomyces araneicolaDY101711 TSpiderChina, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous PrefectureMW730609MW753033-
Neoaraneomyces araneicolaDY101712SpiderChina, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous PrefectureMW730610MW753034-
Orbiocrella petchiiNHJ 5318Scale insectThailand, Kaeng Krachan National Park, trail to Tor Tip WaterfallEU369040EU369021EU369062
Orbiocrella petchiiNHJ 6209Scale insectThailandEU369039EU369023EU369061
Parametarhizium changbaienseSGSF125 TOn litter of forestChina, Jilin Province, Changbai MountainsMN589994MN908589-
Parametarhizium hingganenseSGSF355 TOn litter of forestChina, Heilongjiang Province, Greater Hinggan mountainsMN061635MN065770-
Paraneoaraneomyces sinensisZY 22.006 TSoilChina, Guizhou Province, Kaili CityOQ709260OQ719626-
Paraneoaraneomyces sinensisZY 22.007SoilChina, Guizhou Province, Kaili CityOQ709261OQ719627-
Paraneoaraneomyces sinensisZY 22.008SoilChina, Guizhou Province, Kaili CityOQ709262OQ719628-
Pleurocordyceps aurantiacaMFLUCC 17-2113 TLarvae (Coleopteran)Thailand, Prachuap Khiri KhanMG136910MG136875MG136866
Pleurocordyceps marginaliradiansMFLU 17-1582Cossidae larvaeThailand, Chiang Mai, Te Mushroom Research Center-MG136878MG136869
Pochonia sinensisZY 22.009SoilChina, Guizhou Province, Kaili CityOQ709263OQ719629-
Pochonia sinensisZY 22.010SoilChina, Guizhou Province, Kaili CityOQ709264OQ719630-
Pseudometarbizium araneogenumDY101741SpiderChina, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous PrefectureMW730618MW753037-
Pseudometarbizium araneogenumDY101801 TSpiderChina, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous PrefectureMW730623MW753039-
Purpureocillium lavendulumFMR 10376 TSoilVenezuela, CaracasFR775489FR775516FR775512
Purpureocillium lilacinumCBS 284.36 TSoil-FR775484FR734156FR775507
Purpureocillium lilacinumCBS 431.87Meloidogyne sp.-EF468844EF468791EF468897
Samuelsia geonomisP.C. 614Scale insects or whitefliesBolivia, Dpt. of La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail to mountain along Eslabon RiverEU392638EU392692EU392744
Samuelsia sheikhiiP.C. 686Scale insects or whitefliesHonduras, Yojoa, Los Pinos, Cerro Azul Meambar National ParkEU392639EU392693EU392745
Samuelsia chalalensisP.C. 560WhitefliesBolivia, Dpt. of La Paz, San Jose de Uchipiamonas, Madidi National ParkEU392637EU392691EU392743
Samuelsia mundiveterisBCC40021Scale insect nymphsThailand, Chiang Mai Province, Mae Chaem Junction (km 38), Doi Inthanon National ParkGU552152GU552145-
Samuelsia mundiveterisBCC40022Scale insect nymphsThailand, Chiang Mai Province, Mae Chaem Junction (km 38), Doi Inthanon National ParkGU552153GU552146-
Samuelsia rufobrunneaP.C. 613InsectsBolivia, Dpt. of La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail to mountain along Eslabon RiverAY986918AY986944-
New species are shown in bold. T ex-type material. ARSEF: ARS Collection of Entomopathogenic Fungal Cultures, New York, U.S.A; BBH: the BIOTEC Culture Herbarium; BCC: the BIOTEC Culture Collection; CBS: Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre, Utrecht, the Netherlands; CCTCC: China Center for Type Culture Collection; CGMCC: the China General Microbiological Culture Collection Center; CUP: the Cornell University Plant Pathology Herbarium; FKI: Fungal Collection of Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan; FMR: the culture collection of the Faculty of Medicine in Reus; JB: Joseph Bischoff, personal collection; JCM: Japan Collection of Microorganisms, Wako, Japan; MFLU: Mae Fah Luang University; MFLUCC: the Mae Fah Luang University Culture Collection; NHJ: Nigel Hywel-Jones, personal collection; P.C: Herbier Cryptogamique, Dépt. Systématique et Évolution, Muséum National d’Histoire Naturelle; YFCC: the Yunnan Fungal Culture Collection of Yunnan University, China; YHH: the Yunnan Herbal Herbarium of Yunnan University, China.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, Z.-Q.; Ma, J.-M.; Yang, Z.-L.; Zhao, J.; Yu, Z.-Y.; Li, J.-H.; Yu, H. Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota). J. Fungi 2024, 10, 423. https://doi.org/10.3390/jof10060423

AMA Style

Wang Z-Q, Ma J-M, Yang Z-L, Zhao J, Yu Z-Y, Li J-H, Yu H. Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota). Journal of Fungi. 2024; 10(6):423. https://doi.org/10.3390/jof10060423

Chicago/Turabian Style

Wang, Zhi-Qin, Jin-Mei Ma, Zhi-Li Yang, Jing Zhao, Zhi-Yong Yu, Jian-Hong Li, and Hong Yu. 2024. "Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota)" Journal of Fungi 10, no. 6: 423. https://doi.org/10.3390/jof10060423

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop