Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Identification
2.2. General Experimental Procedure
2.3. Fungal Materials, Cultivation, Fermentation, and Isolation
2.4. ECD Calculation Methods
2.5. Antibacterial Assay
2.6. Antifungal Assay
2.7. Synergistic Antifungal Assay
3. Results and Discussion
3.1. Phylogenetic Analysis
3.2. Structure Elucidation
3.3. Antibacterial Activities of the Isolated Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species from 1997–2016. Open Forum Infect Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.E.; Bicanic, T. Drug resistance and novel therapeutic approaches in invasive candidiasis. Front. Cell Infect. Microbiol. 2021, 11, 759408. [Google Scholar] [CrossRef] [PubMed]
- Mota Fernandes, C.; Dasilva, D.; Haranahalli, K.; McCarthy, J.B.; Mallamo, J.; Ojima, I.; Del Poeta, M. The future of antifungal drug therapy: Novel compounds and targets. Antimicrob. Agents Chemother. 2021, 65, e01719–e01920. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Molecular mechanisms in and beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef]
- Bezerra, L.P.; Freitas, C.D.T.; Silva, A.F.B.; Amaral, J.L.; Neto, N.A.S.; Silva, R.G.G.; Parra, A.L.C.; Goldman, G.H.; Oliveira, J.T.A.; Mesquita, F.P.; et al. Synergistic antifungal activity of synthetic peptides and antifungal drugs against Candida albicans and C. parapsilosis biofilms. Antibiotics 2022, 11, 553. [Google Scholar] [CrossRef]
- Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of myrtenol and its synergistic interactions with antimicrobial drugs in the inhibition of single and mixed biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022, 10, 1773. [Google Scholar] [CrossRef]
- Aldholmi, M.; Marchand, P.; Ourliac-Garnier, I.; Le Pape, P.; Ganesan, A. A decade of antifungal leads from natural products: 2010–2019. Pharmaceuticals 2019, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.; Nakayama, D.G.; Sousa, E.; Pinto, E. Marine-derived compounds and prospects for their antifungal application. Molecules 2020, 25, 5858. [Google Scholar] [CrossRef] [PubMed]
- El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; Hamed, A.N.E.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem. 2017, 126, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Su, M.; Song, S.J.; Jung, J.H. Marine-derived Penicillium species as producers of cytotoxic metabolites. Mar. Drugs 2017, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.G.; Liu, Q.; Zhu, G.L.; Liu, H.S.; Zhu, W.M. Marine natural products sourced from marine-derived fungi. J. Asian Nat. Prod. Res. 2016, 18, 92–115. [Google Scholar] [CrossRef]
- Yang, X.L.; Liu, J.P.; Mei, J.H.; Jiang, R.; Tu, S.Z.; Deng, H.F.; Liu, J.; Yang, S.M.; Li, J. Origins, structures, and bioactivities of secondary metabolites from marine-derived Penicillium Fungi. Mini Rev. Med. Chem. 2021, 21, 2000–2019. [Google Scholar] [CrossRef]
- Song, F.; Dong, Y.; Wei, S.; Zhang, X.; Zhang, K.; Xu, X. New antibacterial secondary metabolites from a marine-derived Talaromyces sp. Strain BTBU20213036. Antibiotics 2022, 11, 222. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Lin, R.; Yang, H.; Song, F.; Xu, X.; Wang, L. New secondary metabolites from the marine-derived fungus Talaromyces mangshanicus BTBU20211089. Mar. Drugs 2022, 20, 79. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Y.; Zhang, X.; Zhang, X.; Chen, C.; Song, F.; Xu, X. Two New trienoic acid derivatives from marine-derived fungus Penicillium oxalicum BTBU20213011. Rec. Nat. Prod. 2023, 17, 958–962. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 2002, 112, 8251–8260. [Google Scholar] [CrossRef]
- Tran, T.D.; Pham, N.B.; Quinn, R.J. Structure determination of pentacyclic pyridoacridine alkaloids from the Australian marine organisms Ancorina geodides and Cnemidocarpa stolonifera. Eur. J. Org. Chem. 2014, 2014, 4805–4816. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 7th ed.; approved standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Han, J.; Wang, H.; Zhang, R.; Dai, H.; Chen, B.; Wang, T.; Sun, J.; Wang, W.; Song, F.; Li, E.; et al. Cyclic tetrapeptides with synergistic antifungal activity from the fungus Aspergillus westerdijkiae using LC-MS/MS-based molecular networking. Antibiotics 2022, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Li, Y.; Fu, S.B.; Liu, S.C.; Wei, J.C.; Che, Y.S. Ambuic acid and torreyanic acid derivatives from the endolichenic Fungus Pestalotiopsis sp. J. Nat. Prod. 2009, 72, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Harrar, K.; Reiser, O. Enantioselective synthesis of (-)-paeonilide. Chem. Commun. 2012, 48, 3457–3459. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Huo, R.; Liu, G.; Liu, L. New andrastin-Type meroterpenoids from the marine-derived fungus Penicillium sp. Mar. Drugs 2021, 19, 189. [Google Scholar] [CrossRef] [PubMed]
- Lunne, F.; Kohler, J.; Stroh, C.; Muller, L.; Daniliuc, C.G.; Muck-Lichtenfeld, C.; Wurthwein, E.U.; Esselen, M.; Humpf, H.U.; Kalinina, S.A. Insights into ergochromes of the plant pathogen Claviceps purpurea. J. Nat. Prod. 2021, 84, 2630–2643. [Google Scholar] [CrossRef]
- Matsuda, Y.; Quan, Z.Y.; Mitsuhashi, T.; Li, C.; Abe, I. Cytochrome P450 for citreohybridonol synthesis: Oxidative derivatization of the andrastin scaffold. Org. Lett. 2016, 18, 296–299. [Google Scholar] [CrossRef]
- Cheng, Z.; Xu, W.; Wang, Y.; Bai, S.; Liu, L.; Luo, Z.; Yuan, W.; Li, Q. Two new meroterpenoids and two new monoterpenoids from the deep sea-derived fungus Penicillium sp. YPGA11. Fitoterapia 2019, 133, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Özkaya, F.C.; Ebrahim, W.; Klopotowski, M.; Liu, Z.; Janiak, C.; Proksch, P. Isolation and X-ray structure analysis of citreohybridonol from marine-derived Penicillium atrovenetum. Nat. Prod. Res. 2018, 32, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. Penicyclones A-E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. F23-2. J. Nat. Prod. 2015, 78, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, F.; Zhao, L.; Duang, R.; Chen, G.; Li, X.; Li, Q.; Qin, S.; Ding, Z. A new polyoxygenated farnesylcyclohexenone from fungus Penicillium sp. Nat. Prod. Res. 2016, 30, 65–68. [Google Scholar] [CrossRef] [PubMed]
Position | 1 (CD3OD) | 2 (CDCl3) | ||
---|---|---|---|---|
δC | δH (mult, J in Hz) | δC | δH (mult, J in Hz) | |
1 | 195.8, C | 201.4, C | ||
2 | 123.6, CH | 5.72 (t, 1.5) | 134.4, CH | 6.70 (m) |
3 | 159.6, C | 152.5, C | ||
4 | 68.1, CH | 4.51 (m) | 196.1, C | |
5a | 60.7, CH | 3.64 (d, 3.0) | 51.3, CH2 | 3.17 (d, 16.0) |
5a | 2.92 (d, 16.0) | |||
6 | 61.7, C | 77.9, C | ||
7 | 27.4, CH2 | 2.44 (dd, 7.0, 15.0) 2.74 (overlap) | 38.6, CH2 | 1.87 (m) 1.70 (m) |
8a | 119.6, CH | 5.11 (m) | 33.0, CH2 | 2.12 (m) |
8b | 1.87 (m) | |||
9 | 138.6, C | 138.4, C | ||
10 | 43.0, CH2 | 2.74 (overlap) | 116.2, CH | 5.26 (t, 7.0) |
11 | 128.9, CH | 5.62 (overlap) | 33.3, CH2 | 3.05 (d, 7.0) |
12 | 135.1, CH | 5.65 (overlap) | 177.4, C | |
13 | 87.2, C | 16.4, CH3 | 2.04 (d, 1.5) | |
14 | 34.9, CH2 | 2.22 (m) 2.12 (m) | 16.6, CH3 | 1.58 (s) |
15 | 29.8, CH2 | 2.57 (m) | ||
16 | 179.6, C | |||
17 | 20.3, CH3 | 1.98 (t, 1.0) | ||
18 | 16.5, CH3 | 1.64 (br s) | ||
19 | 26.6, CH3 | 1.48 (d, 1.5) |
Pos. | 3 | 4 | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1-NH | 8.30 (d, 7.5) | 8.30 (d, 6.5) | ||
2 | 165.0, C | 165.0, C | ||
3 | 122.8, CH | 5.91 (d, 15.0) | 122.8, CH | 5.91 (d, 15.0) |
4 | 139.6, CH | 7.00 (dd, 15.0, 10.5) | 139.6, CH | 7.00 (dd, 15.0, 10.5) |
5 | 128.5, CH | 6.17 (dd, 15.0, 10.5) | 128.5, CH | 6.18 (dd, 15.0, 10.5) |
6 | 142.0, CH | 6.08 (dt, 15.0. 7.0) | 142.1, CH | 6.08 (dt, 15.0, 7.0) |
7 | 32.2, CH2 | 2.12 (dt, 7.0, 7.0) | 32.3, CH2 | 2.12 (dt, 7.0, 6.5) |
8 | 28.3, CH2 | 1.37 (m) | 28.4, CH2 | 1.37 (m) |
9 | 28.6, CH2 | 1.27 (m) | 28.6, CH2 | 1.27 (m) |
10 | 29.0, CH2 | 1.25 (m) | 29.2, CH2 | 1.26 (m) |
11 | 26.3, CH2 | 1.24 (m) | 26.3, CH2 | 1.24 (m) |
12a | 36.0, CH2 | 1.26 (m) | 36.6, CH2 | 1.24 (m) |
12b | 1.12 (m) | 1.06 (m) | ||
13 | 29.6, CH | 1.79 (m) | 28.9, CH2 | 1.49 (m) |
14 | 41.4, CH2 | 2.18 (dd, 15.0, 6.0) | 39.9, CH2 | 1.43 (m) |
1.99 (dd, 15.0, 8.0) | 1.19 (m) | |||
15 | 174.0, C | 58.8, CH2 | 3.40 (m) | |
16 | 19.6, CH3 | 0.87 (d, 7.0) | 19.6, CH3 | 0.82 (d, 6.5) |
2′ | 72.3, CH2 | 3.90 (dd, 9.5, 4.5) | 72.3, CH2 | 3.91 (dd, 9.5, 5.0) |
3.59 (dd, 9.5, 1.5) | 3.59 (dd, 9.5, 1.5) | |||
3′ | 56.0, CH | 4.10 (m) | 56.0, CH | 4.10 (m) |
4′ | 49.1, CH | 2.66 (ddd, 9.5, 5.0, 4.5) | 49.1, CH | 2.66 (m) |
5′a | 29.9, CH2 | 2.04 (m, 5′a) | 29.8, CH2 | 2.04 (m, 5′a) |
5′b | 1.83 (m, 5′b) | 1.82 (m, 5′b) | ||
6′ | 67.2, CH2 | 3.75 (m) | 67.2, CH2 | 3.74 (m) |
8′ | 108.2, CH | 5.67 (d, 5.0) | 108.2, CH | 5.66 (d, 5.0) |
Position | 1 | 1-1 | 1-2 |
---|---|---|---|
1 | 195.8 | 191.8 | 191.8 |
2 | 123.6 | 121.6 | 120.0 |
3 | 159.6 | 159.2 | 159.1 |
4 | 68.1 | 68.6 | 68.6 |
5 | 60.7 | 59.1 | 59.5 |
6 | 61.7 | 58.6 | 58.5 |
7 | 27.4 | 30.5 | 30.6 |
8 | 119.6 | 119.3 | 119.1 |
9 | 138.6 | 133.2 | 133.4 |
10 | 43.0 | 43.1 | 46.2 |
11 | 128.9 | 125.5 | 124.1 |
12 | 135.1 | 130.9 | 130.7 |
13 | 87.2 | 83.5 | 83.3 |
14 | 34.9 | 35.4 | 35.4 |
15 | 29.8 | 29.1 | 29.1 |
16 | 179.6 | 172.5 | 172.5 |
17 | 20.3 | 21.9 | 21.9 |
18 | 16.5 | 17.3 | 17.1 |
19 | 26.6 | 27.7 | 27.4 |
R2 | 0.9999 | 0.9988 | |
MAE | 2.29 | 2.60 | |
MaxErr | 7.09 | 7.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Dong, Y.; Yang, J.; Wang, L.; Ma, L.; Song, F.; Ma, X. Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035. J. Fungi 2024, 10, 424. https://doi.org/10.3390/jof10060424
Xu X, Dong Y, Yang J, Wang L, Ma L, Song F, Ma X. Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035. Journal of Fungi. 2024; 10(6):424. https://doi.org/10.3390/jof10060424
Chicago/Turabian StyleXu, Xiuli, Yifei Dong, Jinpeng Yang, Long Wang, Linlin Ma, Fuhang Song, and Xiaoli Ma. 2024. "Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035" Journal of Fungi 10, no. 6: 424. https://doi.org/10.3390/jof10060424
APA StyleXu, X., Dong, Y., Yang, J., Wang, L., Ma, L., Song, F., & Ma, X. (2024). Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035. Journal of Fungi, 10(6), 424. https://doi.org/10.3390/jof10060424