The Gut Mycobiome for Precision Medicine
Abstract
:1. Introduction
2. The Gut Mycobiome
2.1. Gut Mycobiome Composition
2.2. Gut Mycobiome Determinants of Variation
2.3. Gut Mycobiome Functions
3. Methodologies to Study the Gut Mycobiome
3.1. Culture-Dependent Methods
3.2. Culture-Independent Methods
3.2.1. Metagenomics
3.2.2. Other Omic Techniques
4. Aspects of Fungal Pathogenesis
4.1. Fungal Virulence Factors
4.2. Interactions with the Host Immune System
4.3. Production of Metabolites
5. The Gut Mycobiome in Disease
5.1. Dysbiosis of the Gut Mycobiome in Gastrointestinal Tract Diseases
5.2. Dysbiosis of the Gut Mycobiome in Metabolic Diseases
5.3. Dysbiosis of the Gut Mycobiome in Liver Diseases
5.4. Dysbiosis of the Gut Mycobiome in Neurological Diseases
5.5. Dysbiosis of the Gut Mycobiome in Cancers
5.6. Dysbiosis of the Gut Mycobiome in Microbial Infections
5.7. Dysbiosis of the Gut Mycobiome in Cardiovascular Diseases
5.8. Dysbiosis of the Gut Mycobiome in Other Diseases
Human Disease | Country | Fungal Alteration | References | |
---|---|---|---|---|
Gastrointestinal tract diseases | Inflammatory bowel disease | Philadelphia, USA | Candida ↑ | [50] |
Inflammatory bowel disease | Paris, France | Candida albicans ↑ Saccharomyces cerevisiae ↓ | [51] | |
Inflammatory bowel disease | Japan | Candida ↑ Saccharomyces ↓ Sarocladium ↓ | [53] | |
Inflammatory bowel disease (with Clostridioides difficile infection) | Beijing, China | Saccharomyces cerevisiae ↑ | [52] | |
Crohn’s disease | China | Candida albicans
↑
Aspergillus clavatus ↑ C. neoformans ↑ | [57] | |
Crohn’s disease | Northern France–Belgium | Candida tropicalis ↑ | [58] | |
Crohn’s disease | China | Candida ↑ Aspergillus ↓ Sordariomycetes ↓ Penicillium ↓ | [56] | |
Crohn’s disease | Krakow, Poland | Candida tropicalis ↑ Malassezia spp. ↓ | [59] | |
Crohn’s disease | Southwest China | Exophiala dermatitidis ↑ Clonostachys ↑ Humicola ↑ Lophiostoma ↑ | [61] | |
Crohn’s disease | Krakow, Poland | Candida ↑ Malassezia ↑ Debaryomyces hansenii ↑ | [60] | |
Ulcerative colitis | Beijing, China | Scytalidium ↑ Morchella ↑ Paecilomyces ↑ Humicola ↓ Wickerhamomyces ↓ | [63] | |
Ulcerative colitis | Iran | Candida albicans ↓ Saccharomyces cerevisiae ↓ | [62] | |
Ulcerative colitis | Rome, Italy | Piptoporus ↑ Candida ↑ Hyphodontia ↑ Meyerozyma ↓ Malassezia ↓ | [64] | |
Hirschsprung-associated enterocolitis | Stockholm, Sweden California, USA | Candida sp. ↑ Malassezia ↓ Saccharomyces sp. ↓ | [122] | |
Irritable bowel syndrome | Piacenza, Italy | Candida spp. ↑ | [54] | |
Diarrhea-predominant irritable bowel syndrome | Wuhan, China | Mycosphaerella
↑
Aspergillus ↑ Sporidiobolus ↑ Pandora ↑ | [55] | |
Liver diseases | Cirrhosis | Virginia, USA | Candida ↑ | [75] |
Alcoholic hepatitis | USA | Candida ↑ Penicillium ↓ | [77] | |
Primary sclerosing cholangitis | Paris, France | Exophiala ↑ Saccharomyces cerevisiae ↓ | [78] | |
Decompensated cirrhosis | Beijing, China | Saccharomyces ↑ Aspergillus ↓ Penicillium ↓ Auricularia ↓ Cladosporium ↓ | [76] | |
Neurological diseases | Rett syndrome | Italy | Candida ↑ | [83] |
Autism Spectrum Disorders | Siena, Italy | Candida ↑ | [84] | |
Autism Spectrum Disorders | China | Saccharomyces cerevisiae ↑ Aspergillus versicolor ↓ | [85] | |
Current depressive episode | Hangzhou, China | Candida ↑ Penicillium ↓ | [82] | |
Mild cognitive impairment | USA | Botrytis ↑ Kazachstania ↑ Phaeoacremonium ↑ Cladosporium ↑ Meyerozyma ↓ | [86] | |
Alzheimer’s disease | Zhejiang, China | Candida tropicalis ↑ Schizophyllum commune ↑ Rhodotorula mucilaginosa ↓ | [81] | |
Multiple sclerosis | Missouri, USA | Saccharomyces ↑ Aspergillus ↑ | [79] | |
Multiple sclerosis | Iowa, USA | Candida ↑ Epicoccum ↑ Saccharomyces ↓ | [80] | |
Parkinson’s disease | United Kingdom | Tremellaceae ↑ Penicillium ↑ Saccharomyces ↓ | [87] | |
Schizophrenia | China | Purpureocillium ↑ | [88] | |
Attention-deficit/hyperactivity disorder | Kaohsiung, Taiwan | Candida albicans ↑ | [23] | |
Depression | China | Saccharomyces ↑ Apiotrichum ↑ Aspergillus ↓ Xeromyces ↓ | [89] | |
Cancers | Hematologic malignancy or disorders | Istanbul, Turkey | Non-albicans Candida spp. ↑ C. glabrata ↑ | [96] |
Colorectal cancer | Shanghai, China | Trichosporon
↑
Malassezia ↑ | [92] | |
Colorectal cancer | Hong Kong, China | Malasseziomycetes ↑ Saccharomycetes ↓ Pneumocystidomycetes ↓ | [90] | |
Colorectal cancer | China | Aspergillus rambellii ↑ Cordyceps sp. ↑ Erysiphe pulchra ↑ Moniliophthora perniciosa ↑ Sphaerulina musiva ↑ Phytophthora capsici ↑ A. kawachii ↓ | [91] | |
Gastric cancer | Nanjing, China | Cutaneotrichosporon
↑
Malassezia ↑ Rhizopus ↓ Rhodotorula ↓ | [94] | |
Adenoma | Shanghai, China | Malassezia restricta ↑ Leucoagaricus_sp_SymCcos ↓ fungal_sp_ARF18 ↓ | [93] | |
Hepatocellular carcinoma | Wuhan, China | Malassezia ↑ Malassezia sp. ↑ Candida ↑ C. albicans ↑ | [95] | |
Pancreatic ductal adenocarcinoma | New York, USA | Malassezia spp. ↑ | [123] | |
Lung adenocarcinoma | Beijing, Suzhou, and Hainan, China | Saccharomyces ↑ Aspergillus ↑ Apiotrichum ↑ Candida ↓ | [97] | |
Microbial infections | HIV | Ile-Ife, Nigeria | Candida albicans ↑ Candida krusei ↑ Candida tropicalis ↑ | [98] |
HIV | Marseille, France | Candida albicans ↑ Candida tropicalis ↑ | [99] | |
HIV | Southwest Cameroon | Candida ↑ | [100] | |
HIV | China | Aspergillus ↑ | [101] | |
COVID-19 | Hong Kong, China | Candia albicans ↑ | [102] | |
COVID-19 | Hangzhou, China | Aspergillus ↓ Penicillium ↓ | [103] | |
H1N1 | Hangzhou, China | Candida glabrata ↑ Aspergillus ↓ Penicillium ↓ | [103] | |
Cryptococcal meningitis | Jiangxi, China | Pyricularia sp. ↑ Rasamsonia emersonii ↑ Cytospora leucostoma ↑ Wallemia ichthyophaga ↑ Ustilaginoidea virens ↓ Metschnikowia aff. pulcherrima ↓ Pyricularia pennisetigena ↓ Jimgerdemannia flammicorona ↓ | [104] | |
Eye diseases | Bacterial Keratitis | Telangana, India | Aspergillus ↑ Malassezia ↑ Mortierella ↓ Rhizopus ↓ Kluyveromyces ↓ Embellisia ↓ Haematonectria ↓ | [113] |
Uveitis | Hyderabad, India | Malassezia restricta
↑
Candida albicans ↑ Candida glabrata ↑ Aspergillus gracilis ↑ | [114] | |
Metabolic diseases | Type 1 Diabetes | Istanbul, Turkey | Candida albicans ↑ | [124] |
Type 1 Diabetes | Finland | Saccharomyces ↑
Candida ↑ | [55] | |
Type 1 Diabetes | Krakow, Poland | Saccharomyces ↓ | [66] | |
Type 2 Diabetes | Pune, India | Aspergillus
↑
Candida ↑ | [69] | |
Type 2 Diabetes | Hyderabad, India | Candida ↑ Agaricus ↓ Chlorophyllum ↓ Coprinopsis ↓ Leucoagaricus ↓ Termitomyces ↓ Trametes ↓ Trichoderma ↓ Volvariella ↓ | [67] | |
Type 2 Diabetes | Sharjah, United Arab Emirates | Malessezia firfur ↑ Unclassified Davidiella ↑ Unclassified Basidiomycota ↓ | [68] | |
Obesity | Girona, Spain | Mucor racemosus ↓
M. fuscus ↓ | [70] | |
Obesity | Juiz de Fora, Brazil | Paecilomyces sp. ↑ Penicillium sp. ↑ Candida sp. ↑ Aspergillus sp. ↑ Fonsecaea sp. ↑ Geotrichum sp. ↑ Trichosporon sp. ↑ Rhodotorula sp. ↑ Rhizopus sp. ↑ Mucor sp. ↑ | [72] | |
Obesity | Mexico | Candida spp. ↑ | [125] | |
Obesity | Islamabad, Pakistan | Candida kefyr ↑ C.albicans ↑ Teunomyces krusei ↑ | [61] | |
Nonalcoholic fatty liver disease | Zhejiang, China | Talaromyces ↑ Paraphaeosphaeria ↑ Lycoperdon ↑ Curvularia ↑ Phialemoniopsis ↑ Paraboeremia ↑ Sarcinomyces ↑ Cladophialophora ↑ Sordaria ↑ Leptosphaeria ↓ Pseudopithomyces ↓ Fusicolla ↓ | [73] | |
Nonalcoholic Steatohepatitis | Marseille, France | Pichia kudriavzevii ↑ Candida glabrata ↑ C. albicans ↑ Galactomyces geotrichum ↑ | [74] | |
Respiratory diseases | Atopic wheeze | Ecuador | Pichia kudriavzevii ↑ Saccharomycetales ↓ | [115] |
Asthma | Michigan, USA | Candida ↑ Rhodotorula ↑ | [116] | |
Tuberculosis | Xinxiang, China | Saccharomyces ↑ Aspergillus ↓ | [117] | |
Immunological diseases | Graft-versus-host disease | The Netherlands | Candida spp. ↑ | [118] |
Celiac disease | Riyadh, Kingdom of Saudi Arabia | Tricholomataceae ↑ Saccharomycetaceae ↑ Saccharomycetes ↑ Saccharomyces cerevisiae ↑ Candida sp. ↑ Pichiaceae ↓ Pichia kudriavzevii ↓ Pneumocystis ↓ Pneumocystis jirovecii ↓ | [119] | |
Rheumatoid arthritis | Dalian, China | Pholiota ↓ Scedosporium ↓ Trichosporon ↓ | [120] | |
Systemic lupus erythematosus | China | Pezizales ↑ Cantharellales ↑ Pseudaleuria ↑ | [121] | |
Kidney diseases | Chronic kidney disease | China | Saccharomyces ↑ Candida ↓ Bjerkandera ↓ Rhodotorula ↓ Ganoderma ↓ | [126] |
End-stage renal disease | China | Aspergillus fumigatus
↑
Cladophialophora immunda ↑ Exophiala spinifera ↑ Hortaea werneckii ↑ Trichophyton rubrum ↑ Saccharomyces cerevisiae ↓ | [127] | |
Cardiovascular diseases | Chronic Heart Failure | Italy | Candida ↑ | [128] |
Coronary heart disease (with nonalcoholic fatty liver disease) | Beijing, China | Preussia ↑ Xylodon ↑ Cladorrhinum ↑ Candida glabrata ↓ Ganoderma ↓ | [107] | |
Hypertension | China | Malassezia ↑ Mortierella ↓ | [105] | |
Hypertension | Shanghai, China | Exophiala xenobiotica ↑ Exophiala mesophila ↑ | [106] | |
Gynecological diseases | Intrauterine adhesions | China | Filobasidium ↑ Exophiala ↑ | [108] |
Polycystic ovary syndrome | Jilin, China | Saccharomyces ↑ Lentinula ↑ Aspergillus ↓ | [109] | |
Skin disease | Atopic dermatitis | Bangkok, Thailand | Rhodotorula sp. ↑ Wickerhamomyces sp. ↓ Kodamaea sp. ↓ | [110] |
Inflammatory disease | Knee synovitis | Hunan, China | Schizophyllum ↓ | [111] |
Genetic disease | Peutz–Jeghers syndrome | Jinan, China | Candida ↑ | [112] |
Newborn disease | Extremely-low-birth-weight infants | New York, USA | Candida sp. ↑ Clavispora sp. ↑ | [34] |
6. The Gut Mycobiome in Precision Medicine
6.1. The Gut Mycobiome in Disease Diagnosis
6.2. The Gut Mycobiome in Disease Therapeutics
6.2.1. Probiotics and Prebiotics
6.2.2. Dietary Interventions
6.2.3. Fecal Microbiota Transplantation
6.2.4. Antifungal Drugs
7. The Gut Mycobiome and Precision Medicine: Challenges and Perspectives
7.1. Challenges and Advances in Mycobiome Research: From Methodological Hurdles to Clinical Applications of Gut Mycobiome in Disease Therapeutics
7.2. Integration of Mycobiome Data with Omics Data
7.3. Pharmacomicrobiomics
7.4. Gut Mycobiome Research in Africa: Obstacles and Opportunities
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The Gut Mycobiome of the Human Microbiome Project Healthy Cohort. Microbiome 2017, 5, 153. [Google Scholar] [CrossRef]
- Richard, M.L.; Sokol, H. The Gut Mycobiota: Insights into Analysis, Environmental Interactions and Role in Gastrointestinal Diseases. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Clooney, A.G.; Fouhy, F.; Sleator, R.D.; O’ Driscoll, A.; Stanton, C.; Cotter, P.D.; Claesson, M.J. Comparing Apples and Oranges? Next-Generation Sequencing and Its Impact on Microbiome Analysis. PLoS ONE 2016, 11, e0148028. [Google Scholar] [CrossRef]
- Schork, N.J. Personalized Medicine: Time for One-Person Trials. Nature 2015, 520, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, T.M.; Gilbert, J.A. Introducing the Microbiome into Precision Medicine. Trends Pharmacol. Sci. 2017, 38, 81–91. [Google Scholar] [CrossRef]
- Wu, J.; Singleton, S.S.; Bhuiyan, U.; Krammer, L.; Mazumder, R. Multi-Omics Approaches to Studying Gastrointestinal Microbiome in the Context of Precision Medicine and Machine Learning. Front. Mol. Biosci. 2024, 10, 1337373. [Google Scholar] [CrossRef]
- Behrouzi, A.; Nafari, A.H.; Siadat, S.D. The Significance of Microbiome in Personalized Medicine. Clin. Transl. Med. 2019, 8, 16. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Mukherjee, P.K. The Human Mycobiome and Its Impact on Health and Disease. Curr. Fungal Infect. Rep. 2013, 7, 345–350. [Google Scholar] [CrossRef]
- Witherden, E.A.; Moyes, D.L. Mycobiome and Gut Inflammation. Immun. Inflamm. Health Dis. 2018, 271–280. [Google Scholar] [CrossRef]
- Vallianou, N.; Kounatidis, D.; Christodoulatos, G.S.; Panagopoulos, F.; Karampela, I.; Dalamaga, M. Mycobiome and Cancer: What Is the Evidence? Cancers 2021, 13, 3149. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Patin, E.C.; Thompson, A.; Orr, S.J. Pattern Recognition Receptors in Fungal Immunity. Semin. Cell Dev. Biol. 2019, 89, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Thielemann, N.; Herz, M.; Kurzai, O.; Martin, R. Analyzing the Human Gut Mycobiome—A Short Guide for Beginners. Comput. Struct. Biotechnol. J. 2022, 20, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Hallen-Adams, H.E.; Suhr, M.J. Fungi in the Healthy Human Gastrointestinal Tract. Virulence 2017, 8, 352–358. [Google Scholar] [CrossRef]
- Chin, V.K.; Yong, V.C.; Chong, P.P.; Amin Nordin, S.; Basir, R.; Abdullah, M. Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm. 2020, 2020, 9560684. [Google Scholar] [CrossRef]
- Suhr, M.J.; Hallen-Adams, H.E. The Human Gut Mycobiome: Pitfalls and Potentials—A Mycologist’s Perspective. Mycologia 2015, 107, 1057–1073. [Google Scholar] [CrossRef]
- Pérez, J.C. Fungi of the Human Gut Microbiota: Roles and Significance. Int. J. Med. Microbiol. 2021, 311, 151490. [Google Scholar] [CrossRef]
- Hoffmann, C.; Dollive, S.; Grunberg, S.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE 2013, 8, e66019. [Google Scholar] [CrossRef]
- You, N.; Zhuo, L.; Zhou, J.; Song, Y.; Shi, J. The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut Liver 2020, 14, 291–296. [Google Scholar] [CrossRef]
- Beheshti-Maal, A.; Shahrokh, S.; Ansari, S.; Mirsamadi, E.S.; Yadegar, A.; Mirjalali, H.; Zali, M.R. Gut Mycobiome: The Probable Determinative Role of Fungi in IBD Patients. Mycoses 2021, 64, 468–476. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Aschenbrenner, D.; Yoo, J.Y.; Zuo, T. The Gut Mycobiome in Health, Disease, and Clinical Applications in Association with the Gut Bacterial Microbiome Assembly. Lancet Microbe 2022, 3, e969–e983. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, S.C.; Yeh, Y.M.; Lee, S.Y.; Kuo, H.C.; Yang, C.Y. Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder. J. Child Psychol. Psychiatry 2023, 64, 1280–1291. [Google Scholar] [CrossRef]
- Wu, X.; Xia, Y.; He, F.; Zhu, C.; Ren, W. Intestinal Mycobiota in Health and Diseases: From a Disrupted Equilibrium to Clinical Opportunities. Microbiome 2021, 9, 60. [Google Scholar] [CrossRef]
- Belvoncikova, P.; Splichalova, P.; Videnska, P.; Gardlik, R. The Human Mycobiome: Colonization, Composition, and the Role in Health and Disease. J. Fungi 2022, 8, 1046. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Bernstein, C.N.; Tremlett, H.; Van Domselaar, G.; Knox, N.C. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front. Microbiol. 2019, 9, 3249. [Google Scholar] [CrossRef]
- Mims, T.S.; Abdallah, Q.A.; Stewart, J.D.; Watts, S.P.; White, C.T.; Rousselle, T.V.; Gosain, A.; Bajwa, A.; Han, J.C.; Willis, K.A.; et al. The Gut Mycobiome of Healthy Mice Is Shaped by the Environment and Correlates with Metabolic Outcomes in Response to Diet. Commun. Biol. 2021, 4, 281. [Google Scholar] [CrossRef]
- Seed, P.C. The Human Mycobiome. Cold Spring Harb. Perspect. Med. 2014, 5, a019810. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sendid, B.; Hoarau, G.; Colombel, J.F.; Poulain, D.; Ghannoum, M.A. Mycobiota in Gastrointestinal Diseases. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human Microbiome Analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef]
- Huseyin, C.E.; O’Toole, P.W.; Cotter, P.D.; Scanlan, P.D. Forgotten Fungi—The Gut Mycobiome in Human Health and Disease. FEMS Microbiol. Rev. 2017, 41, 479–511. [Google Scholar] [CrossRef]
- Scanlan, P.D.; Marchesi, J.R. Micro-Eukaryotic Diversity of the Human Distal Gut Microbiota: Qualitative Assessment Using Culture-Dependent and -Independent Analysis of Feces. ISME J. 2008, 2, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Gouba, N.; Raoult, D.; Drancourt, M. Eukaryote Culturomics of the Gut Reveals New Species. PLoS ONE 2014, 9, e106994. [Google Scholar] [CrossRef]
- LaTuga, M.S.; Ellis, J.C.; Cotton, C.M.; Goldberg, R.N.; Wynn, J.L.; Jackson, R.B.; Seed, P.C. Beyond Bacteria: A Study of the Enteric Microbial Consortium in Extremely Low Birth Weight Infants. PLoS ONE 2011, 6, e27858. [Google Scholar] [CrossRef]
- Cénit, M.C.; Matzaraki, V.; Tigchelaar, E.F.; Zhernakova, A. Rapidly Expanding Knowledge on the Role of the Gut Microbiome in Health and Disease. Biochim. Biophys. Acta 2014, 1842, 1981–1992. [Google Scholar] [CrossRef]
- Lindahl, B.D.; Nilsson, R.H.; Tedersoo, L.; Abarenkov, K.; Carlsen, T.; Kjøller, R.; Kõljalg, U.; Pennanen, T.; Rosendahl, S.; Stenlid, J.; et al. Fungal Community Analysis by High-Throughput Sequencing of Amplified Markers—A User’s Guide. New Phytol. 2013, 199, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, M.; Vesty, A.; Wong, G.; Montgomery, J.M.; Fourie, C.; Douglas, R.G.; Biswas, K.; Taylor, M.W. Characterizing the Human Mycobiota: A Comparison of Small Subunit rRNA, ITS1, ITS2, and Large Subunit rRNA Genomic Targets. Front. Microbiol. 2018, 9, 2208. [Google Scholar] [CrossRef]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an Environmental DNA Barcode for Fungi: An In Silico Approach Reveals Potential PCR Biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef]
- Balderramo, D.C.; Romagnoli, P.A.; Granlund, A.V.B.; Catalan-Serra, I. Fecal Fungal Microbiota (Mycobiome) Study as a Potential Tool for Precision Medicine in Inflammatory Bowel Disease. Gut Liver 2023, 17, 505–515. [Google Scholar] [CrossRef]
- Daliri, E.B.; Ofosu, F.K.; Chelliah, R.; Lee, B.H.; Oh, D.H. Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies. Biomolecules 2021, 11, 300. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and Tools for High Throughput rRNA Analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [PubMed]
- van Baarlen, P.; Kleerebezem, M.; Wells, J.M. Omics approaches to study host-microbiota interactions. Curr. Opin. Microbiol. 2013, 16, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Ballini, A.; Boccellino, M.; Scacco, S.; Lovero, R.; Charitos, I.A.; Santacroce, L. The intestinal microbiota may be a potential theranostic tool for personalized medicine. J. Pers. Med. 2022, 12, 523. [Google Scholar] [CrossRef]
- Verberkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009, 3, 179–189. [Google Scholar] [CrossRef] [PubMed]
- van Burik, J.A.; Magee, P.T. Aspects of Fungal Pathogenesis in Humans. Annu. Rev. Microbiol. 2001, 55, 743–772. [Google Scholar] [CrossRef]
- Brunke, S.; Mogavero, S.; Kasper, L.; Hube, B. Virulence Factors in Fungal Pathogens of Man. Curr. Opin. Microbiol. 2016, 32, 89–95. [Google Scholar] [CrossRef]
- Chen, X.; Kokkotou, E.G.; Mustafa, N.; Bhaskar, K.R.; Sougioultzis, S.; O’Brien, M.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii Inhibits ERK1/2 Mitogen-Activated Protein Kinase Activation Both in Vitro and in Vivo and Protects Against Clostridium difficile Toxin A-Induced Enteritis. J. Biol. Chem. 2006, 281, 24449–24454. [Google Scholar] [CrossRef]
- Sun, S.; Wang, K.; Sun, L.; Cheng, B.; Qiao, S.; Dai, H.; Liu, H. Therapeutic Manipulation of Gut Microbiota by Polysaccharides of Wolfiporia cocos Reveals the Contribution of the Gut Fungi-Induced PGE2 to Alcoholic Hepatic Steatosis. Gut Microbes 2020, 12, 1830693. [Google Scholar] [CrossRef]
- Erb-Downward, J.R.; Noverr, M.C. Characterization of Prostaglandin E2 Production by Candida albicans. Infect. Immun. 2007, 75, 3498–3505. [Google Scholar] [CrossRef]
- Chehoud, C.; Albenberg, L.G.; Judge, C.; Hoffmann, C.; Grunberg, S.; Bittinger, K.; Baldassano, R.N.; Lewis, J.D.; Bushman, F.D.; Wu, G.D. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 1948–1956. [Google Scholar] [CrossRef]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ge, X.; Xu, H.; Tan, B.; Tian, B.; Shi, Y.; Dai, Y.; Li, Y.; Hu, S.; Qian, J. Gut microbiome and mycobiome in inflammatory bowel disease patients with Clostridioides difficile infection. Front. Cell. Infect. Microbiol. 2023, 13, 1129043. [Google Scholar] [CrossRef]
- Imai, T.; Inoue, R.; Kawada, Y.; Morita, Y.; Inatomi, O.; Nishida, A.; Bamba, S.; Kawahara, M.; Andoh, A. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 2019, 54, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Sciavilla, P.; Strati, F.; Di Paola, M.; Modesto, M.; Vitali, F.; Cavalieri, D.; Prati, G.M.; Di Vito, M.; Aragona, G.; De Filippo, C.; et al. Gut microbiota profiles and characterization of cultivable fungal isolates in IBS patients. Appl. Microbiol. Biotechnol. 2021, 105, 3277–3288. [Google Scholar] [CrossRef]
- Hong, G.; Li, Y.; Yang, M.; Li, G.; Qian, W.; Xiong, H.; Bai, T.; Song, J.; Zhang, L.; Hou, X. Gut fungal dysbiosis and altered bacterial-fungal interaction in patients with diarrhea-predominant irritable bowel syndrome: An explorative study. Neurogastroenterol. Motil. 2020, 32, e13891. [Google Scholar] [CrossRef]
- Qiu, X.; Zhao, X.; Cui, X.; Mao, X.; Tang, N.; Jiao, C.; Zhang, H. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn’s disease. Ther. Adv. Gastroenterol. 2020, 13, 1756284820971202. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Li, N.; Li, J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 2014, 48, 513–523. [Google Scholar] [CrossRef]
- Hoarau, G.; Mukherjee, P.K.; Gower-Rousseau, C.; Hager, C.; Chandra, J.; Retuerto, M.A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J.F.; et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 2016, 7, e01250-16. [Google Scholar] [CrossRef]
- Krawczyk, A.; Salamon, D.; Kowalska-Duplaga, K.; Bogiel, T.; Gosiewski, T. Association of fungi and archaea of the gut microbiota with Crohn’s disease in pediatric patients—Pilot study. Pathogens 2021, 10, 1119. [Google Scholar] [CrossRef]
- Krawczyk, A.; Salamon, D.; Kowalska-Duplaga, K.; Zapała, B.; Książek, T.; Drażniuk-Warchoł, M.; Gosiewski, T. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn’s disease. World J. Gastroenterol. 2023, 29, 2172–2187. [Google Scholar] [CrossRef]
- Zeng, L.; Feng, Z.; Zhuo, M.; Wen, Z.; Zhu, C.; Tang, C.; Liu, L.; Wang, Y. Fecal fungal microbiota alterations associated with clinical phenotypes in Crohn’s disease in Southwest China. PeerJ 2022, 10, e14260. [Google Scholar] [CrossRef]
- Azizollah, N.; Sharifinejad, N.; Mozhgani, S.H. Possible role of intestinal fungal dysbiosis in dectin-1 and cytokine expression in patients with ulcerative colitis. Indian J. Gastroenterol. 2024, 43, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Jun, X.; Ning, C.; Yang, S.; Zhe, W.; Na, W.; Yifan, Z.; Xinhua, R.; Yulan, L. Alteration of fungal microbiota after 5-ASA treatment in UC patients. Inflamm. Bowel Dis. 2020, 26, 380–390. [Google Scholar] [CrossRef]
- Del Chierico, F.; Cardile, S.; Baldelli, V.; Alterio, T.; Reddel, S.; Bramuzzo, M.; Knafelz, D.; Lega, S.; Bracci, F.; Torre, G.; et al. Characterization of the gut microbiota and mycobiota in Italian pediatric patients with primary sclerosing cholangitis and ulcerative colitis. Inflamm. Bowel Dis. 2024, 30, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Honkanen, J.; Vuorela, A.; Muthas, D.; Orivuori, L.; Luopajärvi, K.; Tejesvi, M.V.G.; Lavrinienko, A.; Pirttilä, A.M.; Fogarty, C.L.; Härkönen, T.; et al. Fungal dysbiosis and intestinal inflammation in children with beta-cell autoimmunity. Front. Immunol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Salamon, D.; Sroka-Oleksiak, A.; Gurgul, A.; Arent, Z.; Szopa, M.; Bulanda, M.; Małecki, M.T.; Gosiewski, T. Analysis of the gut mycobiome in adult patients with type 1 and type 2 diabetes using next-generation sequencing. Nutrients 2021, 13, 1066. [Google Scholar] [CrossRef]
- Jayasudha, R.; Das, T.; Kalyana Chakravarthy, S.; Sai Prashanthi, G.; Bhargava, A.; Tyagi, M.; Rani, P.K.; Pappuru, R.R.; Shivaji, S. Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS ONE 2020, 15, e0243077. [Google Scholar] [CrossRef]
- Al Bataineh, M.T.; Dash, N.R.; Bel Lassen, P.; Banimfreg, B.H.; Nada, A.M.; Belda, E.; Clément, K. Revealing Links between Gut Microbiome and Its Fungal Community in Type 2 Diabetes Mellitus among Emirati Subjects: A Pilot Study. Sci. Rep. 2020, 10, 9624. [Google Scholar] [CrossRef]
- Bhute, S.S.; Suryavanshi, M.V.; Joshi, S.M.; Yajnik, C.S.; Shouche, Y.S.; Ghaskadbi, S.S. Gut Microbial Diversity Assessment of Indian Type-2 Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbiol. 2017, 8, 214. [Google Scholar] [CrossRef]
- Rodríguez, M.M.; Pérez, D.; Chaves, F.J.; Esteve, E.; Marin-Garcia, P.; Xifra, G.; Vendrell, J.; Jové, M.; Pamplona, R.; Ricart, W.; et al. Obesity Changes the Human Gut Mycobiome. Sci. Rep. 2015, 5, 14600. [Google Scholar] [CrossRef]
- Shoukat, M.; Ullah, F.; Tariq, M.N.; Din, G.; Khadija, B.; Faryal, R. Profiling of Potential Pathogenic Candida Species in Obesity. Microb. Pathog. 2023, 174, 105894. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.M.; de Paula, T.O.; Sarmiento, M.R.A.; de Oliveira, M.G.; Pereira, M.L.M.; Toledo, I.V.; Nascimento, T.C.; Ferreira-Machado, A.B.; Silva, V.L.; Diniz, C.G. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on Aerobic Culture-Dependent Approach. Curr. Microbiol. 2018, 75, 726–735. [Google Scholar] [CrossRef] [PubMed]
- You, N.; Xu, J.; Wang, L.; Zhuo, L.; Zhou, J.; Song, Y.; Ali, A.; Luo, Y.; Yang, J.; Yang, W.; et al. Fecal Fungi Dysbiosis in Nonalcoholic Fatty Liver Disease. Obesity 2021, 29, 350–358. [Google Scholar] [CrossRef]
- Mbaye, B.; Borentain, P.; Magdy Wasfy, R.; Alou, M.T.; Armstrong, N.; Mottola, G.; Meddeb, L.; Ranque, S.; Gérolami, R.; Million, M.; et al. Endogenous Ethanol and Triglyceride Production by Gut Pichia kudriavzevii, Candida albicans and Candida glabrata Yeasts in Non-Alcoholic Steatohepatitis. Cells 2022, 11, 3390. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Liu, E.J.; Kheradman, R.; Fagan, A.; Heuman, D.M.; White, M.; Gavis, E.A.; Hylemon, P.; Sikaroodi, M.; Gillevet, P.M. Fungal Dysbiosis in Cirrhosis. Gut 2018, 67, 1146–1154. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; He, Y.; Zhang, Z.; Zeng, A.; Fan, C.; Lyu, L.; He, Z.; Ding, H. The Signatures and Crosstalk of Gut Microbiome, Mycobiome, and Metabolites in Decompensated Cirrhotic Patients. Front. Microbiol. 2024, 15, 1443182. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Duan, Y.; Liu, J.; Torralba, M.G.; Kuelbs, C.; Ventura-Cots, M.; Abraldes, J.G.; Bosques-Padilla, F.; Verna, E.C.; Brown, R.S., Jr.; et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients with Alcoholic Hepatitis. Hepatology 2020, 71, 522–538. [Google Scholar] [CrossRef]
- Lemoinne, S.; Kemgang, A.; Ben Belkacem, K.; Straube, M.; Jegou, S.; Corpechot, C.; Saint-Antoine IBD Network; Chazouillères, O.; Housset, C.; Sokol, H. Fungi Participate in the Dysbiosis of Gut Microbiota in Patients with Primary Sclerosing Cholangitis. Gut 2020, 69, 92–102. [Google Scholar] [CrossRef]
- Shah, S.; Locca, A.; Dorsett, Y.; Cantoni, C.; Ghezzi, L.; Lin, Q.; Bokoliya, S.; Panier, H.; Suther, C.; Gormley, M.; et al. Alterations of the Gut Mycobiome in Patients with MS. EBioMedicine 2021, 71, 103557. [Google Scholar] [CrossRef]
- Yadav, M.; Ali, S.; Shrode, R.L.; Shahi, S.K.; Jensen, S.N.; Hoang, J.; Cassidy, S.; Olalde, H.; Guseva, N.; Paullus, M.; et al. Multiple Sclerosis Patients Have an Altered Gut Mycobiome and Increased Fungal to Bacterial Richness. PLoS ONE 2022, 17, e0264556. [Google Scholar] [CrossRef]
- Ling, Z.; Zhu, M.; Liu, X.; Shao, L.; Cheng, Y.; Yan, X.; Jiang, R.; Wu, S. Fecal Fungal Dysbiosis in Chinese Patients with Alzheimer’s Disease. Front. Cell Dev. Biol. 2021, 8, 631460. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Pan, L.-Y.; Zhang, X.; Zhang, Z.; Zhou, Y.-Y.; Ruan, B. Altered Gut Bacterial–Fungal Interkingdom Networks in Patients with Current Depressive Episode. Brain Behav. 2020, 10, e01677. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Pindo, M.; Renzi, D.; et al. Altered Gut Microbiota in Rett Syndrome. Microbiome 2016, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New Evidences on the Altered Gut Microbiota in Autism Spectrum Disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Wang, Y.; Duan, M.; Guo, M.; Zhang, Q.; Zheng, H. Dysbiosis of Gut Fungal Microbiota in Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2021, 51, 267–275. [Google Scholar] [CrossRef]
- Nagpal, R.; Neth, B.J.; Wang, S.; Mishra, S.P.; Craft, S.; Yadav, H. Gut Mycobiome and Its Interaction with Diet, Gut Bacteria, and Alzheimer’s Disease Markers in Subjects with Mild Cognitive Impairment: A Pilot Study. EBioMedicine 2020, 59, 102950. [Google Scholar] [CrossRef]
- De Pablo-Fernandez, E.; Gebeyehu, G.G.; Flain, L.; Slater, R.; Frau, A.; Ijaz, U.Z.; Warner, T.; Probert, C. The Faecal Metabolome and Mycobiome in Parkinson’s Disease. Parkinsonism Relat. Disord. 2022, 95, 65–69. [Google Scholar] [CrossRef]
- Yuan, X.; Li, X.; Kang, Y.; Pang, L.; Hei, G.; Zhang, X.; Wang, S.; Zhao, X.; Zhang, S.; Tao, Q.; et al. Gut Mycobiota Dysbiosis in Drug-Naïve, First-Episode Schizophrenia. Schizophr. Res. 2022, 250, 76–86. [Google Scholar] [CrossRef]
- Hao, S.R.; Zhang, Z.; Zhou, Y.Y.; Zhang, X.; Sun, W.J.; Yang, Z.; Zhao, J.H.; Jiang, H.Y. Altered Gut Bacterial-Fungal Interkingdom Networks in Children and Adolescents with Depression. J. Affect. Disord. 2023, 332, 64–71. [Google Scholar] [CrossRef]
- Coker, O.O.; Nakatsu, G.; Dai, R.Z.; Wu, W.K.K.; Wong, S.H.; Ng, S.C.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. Enteric Fungal Microbiota Dysbiosis and Ecological Alterations in Colorectal Cancer. Gut 2019, 68, 654–662. [Google Scholar] [CrossRef]
- Lin, Y.; Lau, H.C.; Liu, Y.; Kang, X.; Wang, Y.; Ting, N.L.; Kwong, T.N.; Han, J.; Liu, W.; Liu, C.; et al. Altered Mycobiota Signatures and Enriched Pathogenic Aspergillus rambellii Are Associated with Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology 2022, 163, 908–921. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Kong, C.; Li, H.; Huang, L.; Qu, X.; Qin, N.; Qin, H. Dysbiosis Signature of Mycobiota in Colon Polyp and Colorectal Cancer. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2457–2468. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Xia, K.; Wu, M.; Zhong, H.; Sun, J.; Zhu, Y.; Huang, L.; Wu, X.; Yin, L.; Yang, R.; et al. Alterations of Gut Mycobiota Profiles in Adenoma and Colorectal Cancer. Front. Cell. Infect. Microbiol. 2022, 12, 839435. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, X.; Xu, R.; Adeel, K.; Lu, X.; Chen, M.; Shen, H.; Li, Z.; Xu, Z. Fungal Microbiota Dysbiosis and Ecological Alterations in Gastric Cancer. Front. Microbiol. 2022, 13, 889694. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Chai, D.; Li, C.; Qiu, Z.; Kuang, T.; Liu, L.; Deng, W.; Wang, W. Characterization of the Intestinal Fungal Microbiome in Patients with Hepatocellular Carcinoma. J. Transl. Med. 2023, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Agırbaslı, H.; Özcan, S.A.K.; Gedikoğlu, G. Fecal Fungal Flora of Pediatric Healthy Volunteers and Immunosuppressed Patients. Mycopathologia 2005, 159, 515–520. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, W.; Pei, Y.; Tao, H.; Ma, J.; Li, R.; Zhang, F.; Wang, L.; Shen, L.; Liu, Y.; et al. Gut Mycobiome as a Potential Non-Invasive Tool in Early Detection of Lung Adenocarcinoma: A Cross-Sectional Study. BMC Med. 2023, 21, 409. [Google Scholar] [CrossRef]
- Awoyeni, A.; Olaniran, O.; Odetoyin, B.; Hassan-Olajokun, R.; Olopade, B.; Afolayan, D.; Adekunle, O. Isolation and Evaluation of Candida Species and Their Association with CD4+ T Cell Counts in HIV Patients with Diarrhea. African Health Sci. 2017, 17, 322–329. [Google Scholar] [CrossRef]
- Hamad, I.; Abou Abdallah, R.; Ravaux, I.; Mokhtari, S.; Tissot-Dupont, H.; Michelle, C.; Stein, A.; Lagier, J.C.; Raoult, D.; Bittar, F. Metabarcoding Analysis of Eukaryotic Microbiota in the Gut of HIV-Infected Patients. PLoS ONE 2018, 13, e0191913. [Google Scholar] [CrossRef]
- Ako, S.; Achidi, E.; Assob, J.; Nkenfou, C.; Pokam, B.; Enoh, J.; Cho, F.N.; Mbanya, M. Gut Microbiota Dysbiotic Pattern and Its Associated Factors in a Cameroonian Cohort with and Without HIV Infection. J. Adv. Microbiol. 2019, 17, 1–23. [Google Scholar] [CrossRef]
- Yin, Y.; Tuohutaerbieke, M.; Feng, C.; Li, X.; Zhang, Y.; Xu, Q.; Tu, J.; Yang, E.; Zou, Q.; Shen, T. Characterization of the Intestinal Fungal Microbiome in HIV and HCV Mono-Infected or Co-Infected Patients. Viruses 2022, 14, 1811. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhan, H.; Zhang, F.; Liu, Q.; Tso, E.Y.K.; Lui, G.C.Y.; Chen, N.; Li, A.; Lu, W.; Chan, F.K.L.; et al. Alterations in Fecal Fungal Microbiome of Patients with COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020, 159, 1302–1310.e5. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Gu, S.; Jiang, H.; Yan, R.; Chen, Y.; Chen, Y.; Luo, R.; Huang, C.; Lu, H.; Zheng, B.; et al. Gut Mycobiota Alterations in Patients with COVID-19 and H1N1 Infections and Their Associations with Clinical Features. Commun. Biol. 2021, 4, 480. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, K.; Huang, Y.; Liu, Y.; Lu, X.; Liao, W.; Liu, X.; Zhang, Q.; Pan, W. Gut Microbiota Associated with Cryptococcal Meningitis and Dysbiosis Caused by Anti-Fungal Treatment. Front. Microbiol. 2023, 13, 1086239. [Google Scholar] [CrossRef]
- Zou, Y.; Ge, A.; Lydia, B.; Huang, C.; Wang, Q.; Yu, Y. Gut Mycobiome Dysbiosis Contributes to the Development of Hypertension and Its Response to Immunoglobulin Light Chains. Front. Immunol. 2022, 13, 1089295. [Google Scholar] [CrossRef]
- Chen, B.Y.; Lin, W.Z.; Li, Y.L.; Bi, C.; Du, L.J.; Liu, Y.; Zhou, L.J.; Liu, T.; Xu, S.; Shi, C.J.; et al. Characteristics and Correlations of the Oral and Gut Fungal Microbiome with Hypertension. Microbiol. Spectrum 2023, 11, e0195622. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wang, X.; Ren, X.; Liu, Y. Changes and Roles of Intestinal Fungal Microbiota in Coronary Heart Disease Complicated with Nonalcoholic Fatty Liver Disease. Am. J. Transl. Res. 2020, 12, 3445–3460. [Google Scholar]
- Liu, N.; Zhao, X.; Tan, J.; Liu, S.; Li, B.; Xu, W.; Peng, L.; Gu, P.; Li, W.; Shapiro, R.; et al. Mycobiome Dysbiosis in Women with Intrauterine Adhesions. Microbiol. Spectr. 2022, 10, e01324-22. [Google Scholar] [CrossRef]
- Chen, K.; Geng, H.; Liu, J.; Ye, C. Alteration in Gut Mycobiota of Patients with Polycystic Ovary Syndrome. Microbiol. Spectr. 2023, 11, e02360-23. [Google Scholar] [CrossRef]
- Mok, K.; Suratanon, N.; Roytrakul, S.; Charoenlappanit, S.; Patumcharoenpol, P.; Chatchatee, P.; Vongsangnak, W.; Nakphaichit, M. ITS2 Sequencing and Targeted Meta-Proteomics of Infant Gut Mycobiome Reveal the Functional Role of Rhodotorula sp. during Atopic Dermatitis Manifestation. J. Fungi 2021, 7, 748. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, K.; Li, J.; Zhang, Y.; Zhang, W.; Doherty, M.; Yang, Z.; Yang, T.; Yang, Y.; Weng, Q.; et al. Gut-Joint Axis in Knee: Gut Fungal Dysbiosis and Altered Fungi-Bacteria Correlation Network Identified in a Community-Based Study. RMD Open 2023, 9, e003529. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; Wang, J.-X.; Tian, L.; Zuo, X.-L.; Li, Y.-Q.; Yu, Y.-B. Altered Gut Microbiota in Patients with Peutz-Jeghers Syndrome. Front. Microbiol. 2022, 13, 881508. [Google Scholar] [CrossRef]
- Jayasudha, R.; Chakravarthy, S.K.; Prashanthi, G.S.; Sharma, S.; Garg, P.; Murthy, S.I.; Shivaji, S. Alterations in Gut Bacterial and Fungal Microbiomes Are Associated with Bacterial Keratitis, an Inflammatory Disease of the Human Eye. J. Biosci. 2018, 43, 835–856. [Google Scholar]
- Jayasudha, R.; Kalyana Chakravarthy, S.; Sai Prashanthi, G.; Sharma, S.; Tyagi, M.; Shivaji, S. Implicating Dysbiosis of the Gut Fungal Microbiome in Uveitis, an Inflammatory Disease of the Eye. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.-C.; Arévalo, A.; Stiemsma, L.; Dimitriu, P.; Chico, M.E.; Loor, S.; Vaca, M.; Boutin, R.C.T.; Morien, E.; Jin, M.; et al. Associations between Infant Fungal and Bacterial Dysbiosis and Childhood Atopic Wheeze in a Nonindustrialized Setting. J. Allergy Clin. Immunol. 2018, 142, 424–434.e10. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; Levan, S.; Fadrosh, D.; Panzer, A.R.; LaMere, B.; Rackaityte, E.; Lukacs, N.W.; et al. Neonatal Gut Microbiota Associates with Childhood Multisensitized Atopy and T Cell Differentiation. Nat. Med. 2016, 22, 1031–1035. [Google Scholar] [CrossRef]
- Han, M.; Wang, X.; Zhang, J.; Su, L.; Ishaq, H.M.; Li, D.; Cui, J.; Zhao, H.; Yang, F. Gut Bacterial and Fungal Dysbiosis in Tuberculosis Patients. BMC Microbiol. 2024, 24, 141. [Google Scholar] [CrossRef]
- van der Velden, W.J.; Netea, M.G.; de Haan, A.F.; Huls, G.A.; Donnelly, J.P.; Blijlevens, N.M. Role of the Mycobiome in Human Acute Graft-Versus-Host Disease. Biol. Blood Marrow Transplant. 2013, 19, 329–332. [Google Scholar] [CrossRef]
- El Mouzan, M.; Al-Hussaini, A.; Serena, G.; Assiri, A.; Al Sarkhy, A.; Al Mofarreh, M.; Alasmi, M.; Fasano, A. Microbiota Profile of New-Onset Celiac Disease in Children in Saudi Arabia. Gut Pathog. 2022, 14, 37. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Li, X.; Wang, M.; Dong, J.; Tang, W.; Lei, Z.; Guo, Y.; Li, M.; Li, Y. Alterations of Gut Fungal Microbiota in Patients with Rheumatoid Arthritis. PeerJ 2022, 10, e13037. [Google Scholar] [CrossRef]
- Li, B.Z.; Wang, H.; Li, X.B.; Zhang, Q.R.; Huang, R.G.; Wu, H.; Wang, Y.Y.; Li, K.D.; Chu, X.J.; Cao, N.W.; et al. Altered Gut Fungi in Systemic Lupus Erythematosus—A Pilot Study. Front. Microbiol. 2022, 13, 1031079. [Google Scholar] [CrossRef]
- Frykman, P.K.; Nordenskjöld, A.; Kawaguchi, A.; Hui, T.T.; Granström, A.L.; Cheng, Z.; Tang, J.; Underhill, D.M.; Iliev, I.; Funari, V.A.; et al. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and Without a History of Enterocolitis: A Multicenter Study. PLoS ONE 2015, 10, e0124172. [Google Scholar] [CrossRef]
- Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J.I.; Shadaloey, S.A.; Wu, D.; Preiss, P.; Verma, N.; et al. The Fungal Mycobiome Promotes Pancreatic Oncogenesis via Activation of MBL. Nature 2019, 574, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Soyucen, E.; Gulcan, A.; Aktuglu-Zeybek, A.C.; Onal, H.; Kiykim, E.; Aydin, A. Differences in the Gut Microbiota of Healthy Children and Those with Type 1 Diabetes. Pediatr. Int. 2014, 56, 336–343. [Google Scholar] [CrossRef] [PubMed]
- García-Gamboa, R.; Kirchmayr, M.R.; Gradilla-Hernández, M.S.; Pérez-Brocal, V.; Moya, A.; González-Avila, M. The Intestinal Mycobiota and Its Relationship with Overweight, Obesity and Nutritional Aspects. J. Hum. Nutr. Diet. 2021, 34, 645–655. [Google Scholar] [CrossRef]
- Hu, J.; Wei, S.; Gu, Y.; Wang, Y.; Feng, Y.; Sheng, J.; Hu, L.; Gu, C.; Jiang, P.; Tian, Y.; et al. Gut Mycobiome in Patients with Chronic Kidney Disease Was Altered and Associated with Immunological Profiles. Front. Immunol. 2022, 13, 843695. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, L.; Guo, R.; Ma, S.; Li, S.; Zhang, Y.; Jiang, H.; Shi, H.; Zhang, P. Altered Gut Mycobiome in Patients with End-Stage Renal Disease and Its Correlations with Serum and Fecal Metabolomes. J. Transl. Med. 2024, 22, 202. [Google Scholar] [CrossRef]
- Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC Heart Fail. 2016, 4, 220–227. [Google Scholar] [CrossRef]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef]
- Guttmacher, A.E.; Collins, F.S. Genomic Medicine—A Primer. N. Engl. J. Med. 2002, 347, 1512–1520. [Google Scholar] [CrossRef]
- McCarthy, J.J.; McLeod, H.L.; Ginsburg, G.S. Genomic Medicine: A Decade of Successes, Challenges, and Opportunities. Sci. Transl. Med. 2013, 5, 189sr4. [Google Scholar] [CrossRef] [PubMed]
- Bradburne, C.; Hamosh, A. Integrating the Microbiome into Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 475–477. [Google Scholar] [CrossRef]
- Tiew, P.Y.; Mac Aogain, M.; Ali, N.A.B.M.; Thng, K.X.; Goh, K.; Lau, K.J.X.; Chotirmall, S.H. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies, and Challenges. Mycopathologia 2020, 185, 207–231. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing Different Supervised Machine Learning Algorithms for Disease Prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Stafford, P.; Cichacz, Z.; Woodbury, N.W.; Johnston, S.A. Immunosignature System for Diagnosis of Cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E3072–E3080. [Google Scholar] [CrossRef]
- Catalàn-Serra, I.; Thorsvik, S.; Beisvag, V.; Bruland, T.; Underhill, D.; Sandvik, A.K.; Granlund, A.V.B. P712 Fungal Microbiota Composition in Inflammatory Bowel Disease Patients in a Norwegian Cohort: Characterization of Disease Phenotypes and Correlation with Clinical Activity and Disease Course. J. Crohn’s Colitis 2022, 16 (Suppl. S1), i608–i609. [Google Scholar] [CrossRef]
- Quinton, J.F.; Sendid, B.; Reumaux, D.; Duthilleul, P.; Cortot, A.; Grandbastien, B.; Charrier, G.; Targan, S.R.; Colombel, J.F.; Poulain, D. Anti-Saccharomyces cerevisiae Mannan Antibodies Combined with Antineutrophil Cytoplasmic Autoantibodies in Inflammatory Bowel Disease: Prevalence and Diagnostic Role. Gut 1998, 42, 788–791. [Google Scholar] [CrossRef]
- Sarrabayrouse, G.; Elias, A.; Yáñez, F.; Mayorga, L.; Varela, E.; Bartoli, C.; Casellas, F.; Borruel, N.; Herrera de Guise, C.; Machiels, K.; et al. Fungal and Bacterial Loads: Noninvasive Inflammatory Bowel Disease Biomarkers for the Clinical Setting. mSystems 2021, 6, e01277-20. [Google Scholar] [CrossRef]
- Ventin-Holmberg, R.; Eberl, A.; Saqib, S.; Korpela, K.; Virtanen, S.; Sipponen, T.; Salonen, A.; Saavalainen, P.; Nissilä, E. Bacterial and Fungal Profiles as Markers of Infliximab Drug Response in Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 1019–1031. [Google Scholar] [CrossRef]
- Chin, S.F.; Megat Mohd Azlan, P.I.H.; Mazlan, L.; Neoh, H.M. Identification of Schizosaccharomyces pombe in the Guts of Healthy Individuals and Patients with Colorectal Cancer: Preliminary Evidence from a Gut Microbiome Secretome Study. Gut Pathog. 2018, 10, 29. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, X.; Zhang, T.; Jin, J.; Qin, Z.; Ren, X.; Wang, X.; Zhang, S.; Yin, X.; Tian, Z.; et al. The Role of Dysbiotic Gut Mycobiota in Modulating Risk for Abdominal Aortic Aneurysm. Microbiol. Spectr. 2024, 12, e0177624. [Google Scholar] [CrossRef]
- Hager, C.L.; Isham, N.; Schrom, K.P.; Chandra, J.; McCormick, T.; Miyagi, M.; Ghannoum, M.A. Effects of a Novel Probiotic Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Yoon, T.J.; Kim, T.J.; Lee, H.; Shin, K.S.; Yun, Y.P.; Moon, W.K.; Kim, D.W.; Lee, K.H. Anti-Tumor Metastatic Activity of Beta-Glucan Purified from Mutated Saccharomyces cerevisiae. Int. Immunopharmacol. 2008, 8, 36–42. [Google Scholar] [CrossRef]
- Galinari, É.; Almeida-Lima, J.; Macedo, G.R.; Mantovani, H.C.; Rocha, H.A.O. Antioxidant, Antiproliferative, and Immunostimulatory Effects of Cell Wall α-D-Mannan Fractions from Kluyveromyces marxianus. Int. J. Biol. Macromol. 2018, 109, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.J.; Matuo, R.; da Silva, A.F.; Matiazi, H.J.; Mantovani, M.S.; Ribeiro, L.R. Protective Effect of Beta-Glucan Extracted from Saccharomyces cerevisiae, Against DNA Damage and Cytotoxicity in Wild-Type (K1) and Repair-Deficient (Xrs5) CHO Cells. Toxicol. Vitro 2007, 21, 41–52. [Google Scholar] [CrossRef]
- Offei, B.; Vandecruys, P.; De Graeve, S.; Foulquié-Moreno, M.R.; Thevelein, J.M. Unique Genetic Basis of the Distinct Antibiotic Potency of High Acetic Acid Production in the Probiotic Yeast Saccharomyces cerevisiae var. Boulardii. Genome Res. 2019, 29, 1478–1494. [Google Scholar] [CrossRef]
- Chen, X.; Yang, G.; Song, J.H.; Xu, H.; Li, D.; Goldsmith, J.; Zeng, H.; Parsons-Wingerter, P.A.; Reinecker, H.C.; Kelly, C.P. Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE 2013, 8, e64227. [Google Scholar] [CrossRef]
- Schreiber, D.; Marx, L.; Felix, S.; Clasohm, J.; Weyland, M.; Schäfer, M.; Klotz, M.; Lilischkis, R.; Erkel, G.; Schäfer, K.-H. Anti-Inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In Vitro Models. Front. Physiol. 2017, 8, 566. [Google Scholar] [CrossRef]
- Abbas, Z.; Yakoob, J.; Jafri, W.; Ahmad, Z.; Azam, Z.; Usman, M.W.; Shamim, S.; Islam, M. Cytokine and Clinical Response to Saccharomyces boulardii Therapy in Diarrhea-Dominant Irritable Bowel Syndrome: A Randomized Trial. Eur. J. Gastroenterol. Hepatol. 2014, 26, 630–639. [Google Scholar] [CrossRef]
- Swidsinski, A.; Loening-Baucke, V.; Verstraelen, H.; Osowska, S.; Doerffel, Y. Biostructure of Fecal Microbiota in Healthy Subjects and Patients with Chronic Idiopathic Diarrhea. Gastroenterology 2008, 135, 568–579. [Google Scholar] [CrossRef]
- Schneider, S.M.; Girard-Pipau, F.; Filippi, J.; Hebuterne, X.; Moyse, D.; Hinojosa, G.C.; Pompei, A.; Rampal, P. Effects of Saccharomyces boulardii on Fecal Short-Chain Fatty Acids and Microflora in Patients on Long-Term Total Enteral Nutrition. World J. Gastroenterol. 2005, 11, 6165–6169. [Google Scholar] [CrossRef] [PubMed]
- Sougioultzis, S.; Simeonidis, S.; Bhaskar, K.R.; Chen, X.; Anton, P.M.; Keates, S.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii Produces a Soluble Anti-Inflammatory Factor That Inhibits NF-κB-Mediated IL-8 Gene Expression. Biochem. Biophys. Res. Commun. 2006, 343, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Garcia Vilela, E.; De Lourdes De Abreu Ferrari, M.; Oswaldo Da Gama Torres, H.; Guerra Pinto, A.; Carolina Carneiro Aguirre, A.; Paiva Martins, F.; Marcos Andrade Goulart, E.; Sales Da Cunha, A. Influence of Saccharomyces boulardii on the Intestinal Permeability of Patients with Crohn’s Disease in Remission. Scand. J. Gastroenterol. 2008, 43, 842–848. [Google Scholar] [CrossRef]
- Everard, A.; Matamoros, S.; Geurts, L.; Delzenne, N.M.; Cani, P.D. Saccharomyces boulardii Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low-Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic db/db Mice. mBio 2014, 5, e01011–e1014. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Yu, J. Gut Mycobiome in Metabolic Diseases: Mechanisms and Clinical Implications. Biomed. J. 2024, 47, 100625. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Scarpa, M.; Marchiori, C.; Sarasin, G.; Caputi, V.; Porzionato, A.; Giron, M.C.; Palù, G.; Castagliuolo, I. Saccharomyces boulardii CNCM I-745 Supplementation Reduces Gastrointestinal Dysfunction in an Animal Model of IBS. PLoS ONE 2017, 12, e0181863. [Google Scholar] [CrossRef]
- Takata, K.; Tomita, T.; Okuno, T.; Kinoshita, M.; Koda, T.; Honorat, J.A.; Takei, M.; Hagihara, K.; Sugimoto, T.; Mochizuki, H.; et al. Dietary Yeasts Reduce Inflammation in Central Nervous System via Microflora. Ann. Clin. Transl. Neurol. 2015, 2, 56–66. [Google Scholar] [CrossRef]
- Amalaradjou, M.A.; Bhunia, A.K. Bioengineered Probiotics, A Strategic Approach to Control Enteric Infections. Bioengineered 2013, 4, 379–387. [Google Scholar] [CrossRef]
- Bron, P.A.; van Baarlen, P.; Kleerebezem, M. Emerging Molecular Insights into the Interaction Between Probiotics and the Host Intestinal Mucosa. Nat. Rev. Microbiol. 2011, 10, 66–78. [Google Scholar] [CrossRef]
- Petschow, B.; Doré, J.; Hibberd, P.; Dinan, T.; Reid, G.; Blaser, M.; Cani, P.D.; Degnan, F.H.; Foster, J.; Gibson, G.; et al. Probiotics, Prebiotics, and the Host Microbiome: The Science of Translation. Ann. N. Y. Acad. Sci. 2013, 1306, 1–17. [Google Scholar] [CrossRef]
- Candela, M.; Maccaferri, S.; Turroni, S.; Carnevali, P.; Brigidi, P. Functional Intestinal Microbiome, New Frontiers in Prebiotic Design. Int. J. Food Microbiol. 2010, 140, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, S.R.; Schnabl, B.; Knight, R.; Loomba, R. Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metab. 2021, 33, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhu, L.; Zhu, T.; Jian, Y.; Ding, Y.; Zhou, M.; Feng, X. Zinc Supplementation Reduces Candida Infections in Pediatric Intensive Care Unit: A Randomized Placebo-Controlled Clinical Trial. J. Clin. Biochem. Nutr. 2019, 64, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; Olatunji, G.D. The Role of Microbiome Analysis in Precision Medicine and Personalized Nutrition for Improving Health Outcomes in Africa: A Correspondence. IJS Glob. Health 2023, 6, e137. [Google Scholar]
- Mehdizadeh, T.; Jafari, J. Personalized Medicine and Health Promotion: The Gut Microbiome’s Key Function. Personalized Med. J. 2023, 8, 8–13. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, Its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar]
- van Soest, A.P.M.; Hermes, G.D.A.; Berendsen, A.A.M.; van de Rest, O.; Zoetendal, E.G.; Fuentes, S.; Santoro, A.; Franceschi, C.; de Groot, L.C.P.G.M.; de Vos, W.M. Associations Between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults: The NU-AGE Study. Nutrients 2020, 12, 3471. [Google Scholar] [CrossRef]
- Mitsou, E.K.; Kakali, A.; Antonopoulou, S.; Mountzouris, K.C.; Yannakoulia, M.; Panagiotakos, D.B.; Kyriacou, A. Adherence to the Mediterranean Diet Is Associated with the Gut Microbiota Pattern and Gastrointestinal Characteristics in an Adult Population. Br. J. Nutr. 2017, 117, 1645–1655. [Google Scholar]
- Pagliai, G.; Russo, E.; Niccolai, E.; Dinu, M.; Di Pilato, V.; Magrini, A.; Bartolucci, G.; Baldi, S.; Menicatti, M.; Giusti, B.; et al. Influence of a 3-Month Low-Calorie Mediterranean Diet Compared to the Vegetarian Diet on Human Gut Microbiota and SCFA: The CARDIVEG Study. Eur. J. Nutr. 2020, 59, 2011–2024. [Google Scholar]
- Lewis, J.D.; Chen, E.Z.; Baldassano, R.N.; Otley, A.R.; Griffiths, A.M.; Lee, D.; Bittinger, K.; Bailey, A.; Friedman, E.S.; Hoffmann, C.; et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe 2015, 18, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.; Smith, C.; Adamson, E.; Isham, N.; Salem, I.; Retuerto, M. Effect of Mycobiome Diet on Gut Fungal and Bacterial Communities of Healthy Adults. J. Prob. Health 2019, 7, 215. [Google Scholar]
- Kelly, C.R.; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.; Moore, T.; Wu, G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology 2015, 149, 223–237. [Google Scholar] [CrossRef]
- Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; et al. Fecal Microbiota Transplantation Induces Remission in Patients with Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015, 149, 102–109.e106. [Google Scholar] [CrossRef]
- Kazemian, N.; Ramezankhani, M.; Sehgal, A.; Khalid, F.M.; Kalkhoran, A.H.Z.; Narayan, A.; Wong, G.K.; Kao, D.; Pakpour, S. The Trans-Kingdom Battle Between Donor and Recipient Gut Microbiome Influences Fecal Microbiota Transplantation Outcome. Sci. Rep. 2020, 10, 18349. [Google Scholar] [CrossRef]
- Ianiro, G.; Murri, R.; Sciumè, G.D.; Impagnatiello, M.; Masucci, L.; Ford, A.C.; Law, G.R.; Tilg, H.; Sanguinetti, M.; Cauda, R.; et al. Incidence of Bloodstream Infections, Length of Hospital Stay, and Survival in Patients with Recurrent Clostridioides difficile Infection Treated with Fecal Microbiota Transplantation or Antibiotics: A Prospective Cohort Study. Ann. Intern. Med. 2019, 171, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, I.; Paramsothy, S.; Doron, I.; Semon, A.; Kaakoush, N.O.; Clemente, J.C.; Faith, J.J.; Borody, T.J.; Mitchell, H.M.; Colombel, J.F.; et al. Fungal Trans-Kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. Cell Host Microbe 2020, 27, 823–829. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy Against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Zwolinska-Wcislo, M.; Brzozowski, T.; Budak, A.; Kwiecien, S.; Sliwowski, Z.; Drozdowicz, D.; Trojanowska, D.; Rudnicka-Sosin, L.; Mach, T.; Konturek, S.J.; et al. Effect of Candida Colonization on Human Ulcerative Colitis and the Healing of Inflammatory Changes of the Colon in the Experimental Model of Colitis Ulcerosa. J. Physiol. Pharmacol. 2009, 60, 107–118. [Google Scholar]
- Shiao, S.L.; Kershaw, K.M.; Limon, J.J.; You, S.; Yoon, J.; Ko, E.Y.; Guarnerio, J.; Potdar, A.A.; McGovern, D.P.B.; Bose, S.; et al. Commensal Bacteria and Fungi Differentially Regulate Tumor Responses to Radiation Therapy. Cancer Cell 2021, 39, 1202–1213.e6. [Google Scholar] [CrossRef]
- Wheeler, M.L.; Limon, J.J.; Bar, A.S.; Leal, C.A.; Gargus, M.; Tang, J.; Brown, J.; Funari, V.A.; Wang, H.L.; Crother, T.R.; et al. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe 2016, 19, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. The Human Gut Microbiome Viewed Across Age and Geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.I.; McDonald, D.; et al. Best Practices for Analyzing Microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Khan, R.; Zheng, Y.; Lee, P.C.; Li, Q.; Khan, I. Exploring the Role of Gut Microbiota in Advancing Personalized Medicine. Front. Microbiol. 2023, 14, 1274925. [Google Scholar] [CrossRef]
- Kreulen, I.A.M.; de Jonge, W.J.; van den Wijngaard, R.M.; van Thiel, I.A.M. Candida spp. in Human Intestinal Health and Disease: More than a Gut Feeling. Mycopathologia 2023, 188, 845–862. [Google Scholar] [CrossRef]
- Koh, A.Y. Murine Models of Candida Gastrointestinal Colonization and Dissemination. Eukaryot. Cell 2013, 12, 1416–1422. [Google Scholar] [CrossRef]
- Jawhara, S.; Poulain, D. Saccharomyces boulardii Decreases Inflammation and Intestinal Colonization by Candida albicans in a Mouse Model of Chemically Induced Colitis. Med. Mycol. 2007, 45, 691–700. [Google Scholar] [CrossRef]
- Galloway-Peña, J.R.; Kontoyiannis, D.P. The Gut Mycobiome: The Overlooked Constituent of Clinical Outcomes and Treatment Complications in Patients with Cancer and Other Immunosuppressive Conditions. PLoS Pathog. 2020, 16, e1008353. [Google Scholar] [CrossRef]
- Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Keller, J.J. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Manuck, S.B.; McCaffery, J.M. Gene-Environment Interaction. Annu. Rev. Psychol. 2014, 65, 41–70. [Google Scholar] [CrossRef]
- Donovan, P.D.; Gonzalez, G.; Higgins, D.G.; Butler, G.; Ito, K. Identification of Fungi in Shotgun Metagenomics Datasets. PLoS ONE 2018, 13, e0192898. [Google Scholar]
- Consortium, O.; Gabaldon, T. Recent Trends in Molecular Diagnostics of Yeast Infections: From PCR to NGS. FEMS Microbiol. Rev. 2019, 43, 517–547. [Google Scholar] [CrossRef]
- Ding, T.; Liu, C.; Li, Z. The Mycobiome in Human Cancer: Analytical Challenges, Molecular Mechanisms, and Therapeutic Implications. Mol. Cancer 2025, 24, 18. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Lan, C.; Ren, J. Help, Hope and Hype: Ethical Considerations of Human Microbiome Research and Applications. Protein Cell 2018, 9, 404–415. [Google Scholar] [CrossRef]
- Rhodes, R. Ethical Issues in Microbiome Research and Medicine. BMC Med. 2016, 14, 156. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, H.; Xu, W.; Yan, S.; Ng, S.C. The Role of Gut Mycobiome in Health and Diseases. Therapeutic Adv. Gastroenterol. 2021, 14, 17562848211047130. [Google Scholar] [CrossRef]
- Arıkan, M.; Muth, T. Integrated Multi-Omics Analyses of Microbial Communities: A Review of the Current State and Future Directions. Mol. Omics 2023, 19, 607–623. [Google Scholar] [CrossRef]
- Scanu, M.; Toto, F.; Petito, V.; Masi, L.; Fidaleo, M.; Puca, P.; Baldelli, V.; Reddel, S.; Vernocchi, P.; Pani, G.; et al. An Integrative Multi-Omic Analysis Defines Gut Microbiota, Mycobiota, and Metabolic Fingerprints in Ulcerative Colitis Patients. Front. Cell. Infect. Microbiol. 2024, 14, 1366192. [Google Scholar] [CrossRef]
- Chen, S.; Niu, C.; Lv, W. Multi-Omics Insights Reveal the Remodeling of Gut Mycobiome with P. gingivalis. Front. Cell. Infect. Microbiol. 2022, 12, 937725. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Ni, Y.; Liu, Y.; Gao, X.; Tse, M.A.; Panagiotou, G.; Xu, A. Exercise-Changed Gut Mycobiome as a Potential Contributor to Metabolic Benefits in Diabetes Prevention: An Integrative Multi-Omics Study. Gut Microbes 2024, 16, 2416928. [Google Scholar] [CrossRef]
- Shuai, M.; Fu, Y.; Zhong, H.L.; Gou, W.; Jiang, Z.; Liang, Y.; Miao, Z.; Xu, J.J.; Huynh, T.; Wahlqvist, M.L.; et al. Mapping the Human Gut Mycobiome in Middle-Aged and Elderly Adults: Multiomics Insights and Implications for Host Metabolic Health. Gut 2022, 71, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Fukui, H.; Nishida, A.; Matsuda, S.; Kira, F.; Watanabe, S.; Kuriyama, M.; Kawakami, K.; Aikawa, Y.; Oda, N.; Arai, K.; et al. Usefulness of Machine Learning-Based Gut Microbiome Analysis for Identifying Patients with Irritable Bowel Syndrome. J. Clin. Med. 2020, 9, 2403. [Google Scholar] [CrossRef] [PubMed]
- King, C.H.; Desai, H.; Sylvetsky, A.C.; Lotempio, J.; Ayanyan, S.; Carrie, J.; Crandall, K.A.; Fochtman, B.C.; Gasparyan, L.; Gulzar, N.; et al. Baseline Human Gut Microbiota Profile in Healthy People and Standard Reporting Template. PLoS ONE 2019, 14, e0206484. [Google Scholar] [CrossRef] [PubMed]
- McCallum, L.; Lip, S.; Padmanabhan, S. Chapter 18—Pharmacodynamic Pharmacogenomics. In Handbook of Pharmacogenomics and Stratified Medicine; Padmanabhan, S., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 365–383. [Google Scholar]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction Between Drugs and the Gut Microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef]
- Bisanz, J.E.; Spanogiannopoulos, P.; Pieper, L.M.; Bustion, A.E.; Turnbaugh, P.J. How to Determine the Role of the Microbiome in Drug Disposition. Drug Metab. Dispos. 2018, 46, 1588–1595. [Google Scholar] [CrossRef]
- Lee, E.H.; Hong, C.R. Composition, Developmental Patterns, and Pathological Associations of the Human Gut Mycobiome. Ann. Clin. Microbiol. 2024, 28, 2. [Google Scholar] [CrossRef]
- McGuire, A.L.; Colgrove, J.; Whitney, S.N.; Diaz, C.M.; Bustillos, D.; Versalovic, J. Ethical, Legal, and Social Considerations in Conducting the Human Microbiome Project. Genome Res. 2008, 18, 1861–1864. [Google Scholar] [CrossRef]
- Gurdasani, D.; Carstensen, T.; Tekola-Ayele, F.; Pagani, L.; Tachmazidou, I.; Hatzikotoulas, K.; Karthikeyan, S.; Iles, L.; Pollard, M.O.; Choudhury, A.; et al. The African Genome Variation Project Shapes Medical Genetics in Africa. Nature 2015, 517, 327–332. [Google Scholar] [CrossRef]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The Missing Diversity in Human Genetic Studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Nkera-Gutabara, C.K.; Kerr, R.; Scholefield, J.; Hazelhurst, S.; Naidoo, J. Microbiomics: The Next Pillar of Precision Medicine and Its Role in African Healthcare. Front. Genet. 2022, 13, 869610. [Google Scholar] [CrossRef] [PubMed]
- Allali, I.; Abotsi, R.E.; Tow, L.A.; Thabane, L.; Zar, H.J.; Mulder, N.M.; Nicol, M.P. Human Microbiota Research in Africa: A Systematic Review Reveals Gaps and Priorities for Future Research. Microbiome 2021, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- CMMI. Available online: https://cmmi.csir.co.za/ (accessed on 29 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Jaddaoui, I.; Sehli, S.; Al Idrissi, N.; Bakri, Y.; Belyamani, L.; Ghazal, H. The Gut Mycobiome for Precision Medicine. J. Fungi 2025, 11, 279. https://doi.org/10.3390/jof11040279
El Jaddaoui I, Sehli S, Al Idrissi N, Bakri Y, Belyamani L, Ghazal H. The Gut Mycobiome for Precision Medicine. Journal of Fungi. 2025; 11(4):279. https://doi.org/10.3390/jof11040279
Chicago/Turabian StyleEl Jaddaoui, Islam, Sofia Sehli, Najib Al Idrissi, Youssef Bakri, Lahcen Belyamani, and Hassan Ghazal. 2025. "The Gut Mycobiome for Precision Medicine" Journal of Fungi 11, no. 4: 279. https://doi.org/10.3390/jof11040279
APA StyleEl Jaddaoui, I., Sehli, S., Al Idrissi, N., Bakri, Y., Belyamani, L., & Ghazal, H. (2025). The Gut Mycobiome for Precision Medicine. Journal of Fungi, 11(4), 279. https://doi.org/10.3390/jof11040279