Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences
Abstract
:1. Introduction
- Saprobe fungi are the main decomposers of organic matter in subterranean sites with a significant role in the biogeochemical cycling of elements in caves [3]. Previous speleomycological studies have suggested that fungi can colonize a variety of organic substrata within the caves, such as bat guano, moonmilk, sediments, etc. Also, cave fungi can be isolated from carcasses of cave-associated animals, which are divided into troglobites (obligate cave dwellers), troglophiles (organisms that can live and reproduce in caves but also in surface habitats with similar conditions), and trogloxenes (organisms that use caves occasionally but do not depend on them for survival) [4].
- Some fungal species are parasites and can cause diseases of cave animals. For example, Pseudogymnoascus destructans (Ascomycota, Leotiomycetes) is a causative agent of the white-nose syndrome in bats [5]. Likewise, the members of genus Arthrorhynchus (Ascomycota, Laboulbeniomycetes) are obligate parasites of bat flies and are documented in various caves [6].
- Fungi can serve as a food source for various cave-dwelling organisms. In cave ecosystems with limited external inputs, fungi may represent a crucial energy and nutrient source for certain species, including cave-adapted invertebrates [1].
- Fungi are constituents of subaerial biofilms (SAB), which are often formed on cave walls and ceilings. The metabolic activity of SAB-forming fungi could lead to weathering of stone substrata, unusual colorations on speleothems, as well as precipitation and formation of corrosion residues [7].
- Many fungal species are the main “culprits” responsible for the biodeterioration of prehistoric wall paintings in the caves with Paleolithic art [8]. Also, in the caves that are repurposed for sacral objects during the history of mankind, fungi can be biodeteriogens of murals and other artifacts deposited within [9,10]. Nevertheless, biodeterioration induced by fungi is reported for several caves from the UNESCO list of world cultural heritage sites. For example, black stains, as a biodeterioration symptom of fungal origin, are reported on walls with prehistoric paintings in the Lascaux cave [8].
- Fungal propagules, mostly spores and mycelial fragments, are always present in the cave air, and when optimal conditions are met, they could reach high concentrations expressed in CFU m−3 of air [11]. In fact, high concentrations of toxigenic and pathogenic airborne fungi in the caves are linked with impaired indoor air quality, and this issue could be regarded as a health risk factor for both visitors and cave personnel in show caves [12].
- Caves could be referred to as extreme environments, poor in nutrients, which is a limiting factor for the growth and proliferation of fungi, which are heterotrophs. Although the number of speleomycological studies constantly increases, caves are still considered biologically poorly investigated environments and a potential source for novel fungal species. For instance, Scolecobasidium lascauxense (syn. Ochroconis lascauxensis) and S. anomalum (syn. O. anomala), members of Dothideomycetes, are melanized micromycetes that were first documented, isolated, and described from the above-mentioned black stains of Paleolithic paintings in the famous Lascaux cave [13]. Furthermore, Zhang et al. [14] described 20 novel fungal species in karst caves across China. Although some fungal species, such as Acaulium caviariforme (Ascomycota, Sordariomycetes), Aspergillus baeticus, and A. thesauricus (Ascomycota, Eurotiomycetes), are only documented in cave environments, it is still discussed whether truly there exist fungi that could be named obligate troglobionts [15].
- It is a well-known fact that the presence of fungi in caves contributes to the overall biodiversity of subterranean ecosystems. Also, some fungal species reported in caves may have unique biochemical properties and be the potential source for novel organic compounds. In this sense, these fungi can be of interest for biotechnological applications, especially in the pharmaceutical industry, due to the production of metabolites with different biological activities [16].
2. Materials and Methods
2.1. NCBI Database Search
2.2. Statistical Anlyses
3. Results
3.1. Taxonomy of Cave Mycobiota—Dominant Phyla
3.2. Dominant Classes of Fungi in Caves
3.3. Dominant Fungal Genera in Caves
3.4. Dominant Fungal Species in Caves
3.5. New Fungal Species Described in Caves
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasti, I.G.; Fui, F.S.; Zhi, T.Q.; Mun, C.W.; Kassim, M.H.S.; Dawood, M.M.; Hasan, N.H.; Subbiah, V.K.; Khan, F.A.A.; Seelan, J.S.S. Fungi from Dead Arthropods and Bats of Gomantong Cave, Northern Borneo, Sabah (Malaysia). J. Cave Karst Stud. 2020, 82, 4. [Google Scholar] [CrossRef]
- Pusz, W.; Ogórek, R.; Uklańska-Pusz, C.M.; Zagożdżon, P. Speleomycological Research in Underground Osówka Complex in Sowie Mountains (Lower Silesia, Poland). Int. J. Speleol. 2014, 43, 3. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Jiang, C.Y.; Liu, S.J. Microbial Roles in Cave Biogeochemical Cycling. Front. Microbiol. 2022, 13, 950005. [Google Scholar] [CrossRef]
- Trajano, E. Ecological classification of subterranean organisms. Encycl. Caves 2012, 2, 275–277. [Google Scholar]
- Hoyt, J.R.; Kilpatrick, A.M.; Langwig, K.E. Ecology and Impacts of White-Nose Syndrome on Bats. Nat. Rev. Microbiol. 2021, 19, 196–210. [Google Scholar] [CrossRef]
- Haelewaters, D.; Page, R.A.; Pfister, D.H. Laboulbeniales Hyperparasites (Fungi, Ascomycota) of Bat Flies: Independent Origins and Host Associations. Ecol. Evol. 2018, 8, 8396–8418. [Google Scholar] [CrossRef]
- Popović, S.; Simić, G.; Stupar, M.; Unković, N.; Krunić, O.; Savić, N.; Grbić, M. Cave Biofilms: Characterization of Phototrophic Cyanobacteria and Algae and Chemotrophic Fungi from Three Caves in Serbia. J. Cave Karst Stud. 2017, 79, 10–23. [Google Scholar] [CrossRef]
- Bastian, F.; Jurado, V.; Nováková, A.; Alabouvette, C.; Sáiz-Jiménez, C. The Microbiology of Lascaux Cave. Microbiology 2010, 156, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wu, F.; He, D.; Xu, R.; Feng, H.; Chen, T.; Wang, W. Seasonal Variation of Airborne Fungi of the Tiantishan Grottoes and Western Xia Museum, Wuwei, China. Sci. Cold Arid Reg. 2021, 13, 522–532. [Google Scholar] [CrossRef]
- Ljaljević Grbić, M.; Dimkić, I.; Savković, Ž.; Stupar, M.; Knežević, A.; Jelikić, A.; Unković, N. Mycobiome Diversity of the Cave Church of Sts. Peter and Paul in Serbia—Risk Assessment Implication for the Conservation of Rare Cavern Habitat Housing a Peculiar Fresco Painting. J. Fungi 2022, 8, 1263. [Google Scholar] [CrossRef]
- Stupar, M.; Savković, Ž.; Popović, S.; Simić, G.S.; Ljaljević Grbić, M. Speleomycology of Air in Stopića Cave (Serbia). Microb. Ecol. 2023, 86, 2021–2031. [Google Scholar] [CrossRef]
- Ogórek, R. Speleomycology of Air in Demänovská Cave of Liberty (Slovakia) and New Airborne Species for Fungal Sites. J. Cave Karst Stud. 2018, 80, 3, 153–160. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Nováková, A.; Bastian, F.; Alabouvette, C.; Sáiz-Jiménez, C. Use of Biocides for the Control of Fungal Outbreaks in Subterranean Environments: The Case of the Lascaux Cave in France. Environ. Sci. Technol. 2012, 46, 3762–3770. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Liu, F.; Zhou, X.; Liu, X.Z.; Liu, S.J.; Cai, L. Culturable Mycobiota from Karst Caves in China, with Descriptions of 20 New Species. Persoonia 2017, 39, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Zhao, P.; Cai, L. Origin of Cave Fungi. Front. Microbiol. 2018, 9, 1407. [Google Scholar] [CrossRef] [PubMed]
- Cyske, Z.; Jaroszewicz, W.; Żabińska, M.; Lorenc, P.; Sochocka, M.; Bielańska, P.; Węgrzyn, G. Unexplored Potential: Biologically Active Compounds Produced by Microorganisms from Hard-to-Reach Environments and Their Applications. Acta Biochim. Pol. 2021, 68, 565–574. [Google Scholar] [CrossRef]
- Rutherford, J.M.; Huang, L.M. A study of fungi of remote sediments in West Virginia caves and a comparison with reported species in the literature. Natl. Speleol. Soc. Bull. 1994, 56, 38–45. [Google Scholar]
- Vanderwolf, K.J.; Malloch, D.; McAlpine, D.F. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013, 42, 77–96. [Google Scholar] [CrossRef]
- Kato, N.N.; Arini, G.S.; Silva, R.R.; Bichuette, M.E.; Bitencourt, J.A.P.; Lopes, N.P. The world of cave microbiomes: Biodiversity, ecological interactions, chemistry, and the multi-omics integration. J. Braz. Chem. Soc. 2024, 35, e20230148. [Google Scholar] [CrossRef]
- Barbosa, R.N.; Felipe, M.T.C.; Silva, L.F.; Silva, E.A.; Silva, S.A.; Herculano, P.N.; Prazeres, J.F.S.A.; Lima, J.M.S.; Bezerra, J.D.P.; Moreira, K.A.; et al. A Review of the Biotechnological Potential of Cave Fungi: A Toolbox for the Future. J. Fungi 2025, 11, 145. [Google Scholar] [CrossRef]
- Bontemps, Z.; Alonso, L.; Pommier, T.; Hugoni, M.; Moënne-Loccoz, Y. Microbial ecology of tourist Paleolithic caves. Sci. Total Environ. 2022, 816, 151492. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.T.; Barton, H.A. Comparison of the White-Nose Syndrome Agent Pseudogymnoascus to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity. PLoS ONE 2014, 9, e86437. [Google Scholar] [CrossRef]
- Del Valle, A.; Martínez, V.; Figueroa, M.; Raja, H.A.; Mata, R. Alkaloids from the Fungus Penicillium spathulatum as α-Glucosidase Inhibitors. Planta Med. 2016, 82, 1345–1351. [Google Scholar] [CrossRef]
- Visagie, C.M.; Yilmaz, N.; Vanderwolf, K.; Renaud, J.B.; Sumarah, M.W.; Houbraken, J.; Assebgui, R.; Seifert, K.A.; Malloch, D. Penicillium Diversity in Canadian Bat Caves, Including a New Species, P. speluncae. Fungal Syst. Evol. 2020, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Woudenberg, J.H.C.; Sandoval-Denis, M.; Houbraken, J.; Seifert, K.A.; Samson, R.A. Cephalotrichum and related synnematous fungi with notes on species from the built environment. Stud. Mycol. 2017, 88, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.J.; Frisvad, J.C.; Sun, B.D.; Varga, J.; Kocsubé, S.; Dijksterhuis, J.; Kim, D.H.; Hong, S.B.; Houbraken, J.; Samson, R.A. Aspergillus Section Nidulantes (Formerly Emericella): Polyphasic Taxonomy, Chemistry and Biology. Stud. Mycol. 2016, 84, 1–118. [Google Scholar] [CrossRef]
- Carmichael, S.K.; Zorn, B.T.; Santelli, C.M.; Roble, L.A.; Carmichael, M.J.; Bräuer, S.L. Nutrient Input Influences Fungal Community Composition and Size and Can Stimulate Manganese (II) Oxidation in Caves. Environ. Microbiol. Rep. 2015, 7, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; Frisvad, J.C.; Seifert, K.A.; Overy, D.P.; Tuthill, D.M.; Valdez, J.G.; Samson, R.A. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia Mol. Phylogeny Evol. Fungi 2012, 29, 78–100. [Google Scholar] [CrossRef] [PubMed]
- Puechmaille, S.J.; Wibbelt, G.; Korn, V.; Fuller, H.; Forget, F.; Mühldorfer, K.; Kurth, A.; Bogdanowicz, W.; Borel, C.; Bosch, T.; et al. Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality. PLoS ONE 2011, 6, e19167. [Google Scholar] [CrossRef]
- Martínková, N.; Bačkor, P.; Bartonička, T.; Blažková, P.; Červený, J.; Falteisek, L.; Gaisler, J.; Hanzal, V.; Horáček, D.; Hulva, P.; et al. Increasing Incidence of Geomyces destructans Fungus in Bats from the Czech Republic and Slovakia. PLoS ONE 2010, 5, e13853. [Google Scholar] [CrossRef]
- Gargas, A.; Trest, M.T.; Christensen, M.; Volk, T.J.; Blehert, D.S. Geomyces destructans sp. nov. Associated with Bat White-Nose Syndrome. Mycotaxon 2009, 108, 147–154. [Google Scholar] [CrossRef]
- Silva, E.I.P.; Jayasingha, P.; Senanayake, S.; Dandeniya, A.; Munasinghe, D.H. Microbiological Study in a Gneissic Cave from Sri Lanka, with Special Focus on Potential Antimicrobial Activities. Int. J. Speleol. 2021, 50, 4. [Google Scholar] [CrossRef]
- Dlauchy, D.; Tornai-Lehoczki, J.; Sedláček, I.; Audy, M.; Péter, G. Debaryomyces psychrosporus sp. nov., a yeast species from a Venezuelan cave. Antonie Van Leeuwenhoek 2011, 99, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Pusz, W.; Ogórek, R.; Knapik, R.; Kozak, B.; Bujak, H. The Occurrence of Fungi in the Recently Discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiol. J. 2015, 32, 59–67. [Google Scholar] [CrossRef]
- Alves, V.C.S.; Lira, R.A.; Lima, J.M.S.; Barbosa, R.N.; Bento, D.M.; Barbier, E.; Bezerra, J.D.P. Unravelling the Fungal Darkness in a Tropical Cave: Richness and the Description of One New Genus and Six New Species. Fungal Syst. Evol. 2022, 10, 139–167. [Google Scholar] [CrossRef]
- Singh, S.K.; Thapliyal, M.; Guleri, S.; Singh, K.; Bajpayee, A.B.; Saklani, K.; Kumar, A.; Sahni, S.; Kumar, R. First report on occurrence of Clonostachys in cave ecosystem from India. J. Mycopathol. Res. 2022, 60, 267–271. [Google Scholar]
- Ogórek, R.; Suchodolski, J.; Piecuch, A.; Przywara, K.; Višňovská, Z. Keratinophilic and Keratinolytic Fungi in Cave Ecosystems: A Culture-Based Study of Brestovská Cave and Demänovská Ľadová and Slobody Caves (Slovakia). Appl. Sci. 2022, 12, 1455. [Google Scholar] [CrossRef]
- Jurado, V.; Del Rosal, Y.; Liñan, C.; Martin-Pozas, T.; Gonzalez-Pimentel, J.L.; Saiz-Jimenez, C. Diversity and Seasonal Dynamics of Airborne Fungi in Nerja Cave, Spain. Appl. Sci. 2021, 11, 6236. [Google Scholar] [CrossRef]
- Liu, X.; Tibpromma, S.; Zhang, F.; Xu, J.; Chethana, K.W.T.; Karunarathna, S.C.; Mortimer, P.E. Neopestalotiopsis cavernicola sp. nov. from Gem Cave in Yunnan Province, China. Phytotaxa 2021, 512, 1–27. [Google Scholar] [CrossRef]
- Ogórek, R.; Speruda, M.; Borzęcka, J.; Piecuch, A.; Cal, M. First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites. Biology 2021, 10, 497. [Google Scholar] [CrossRef]
- Habibi, A.; Safaiefarahani, B. Identification of Fungi from Soil and Sediment in Jefriz Cave; the First Survey in a Cave from Iran. J. Cave Karst Stud. 2021, 83, 71–77. [Google Scholar] [CrossRef]
- Torres-Cruz, T.J.; Porras-Alfaro, A.; Caimi, N.A.; Nwabologu, O.; Strach, E.W.; Read, K.J.; Northup, D.E. Are Microclimate Conditions in El Malpais National Monument Caves in New Mexico, USA Suitable for Pseudogymnoascus Growth? Int. J. Speleol. 2019, 48, 7. [Google Scholar] [CrossRef]
- Man, B.; Wang, H.; Xiang, X.; Wang, R.; Yun, Y.; Gong, L. Phylogenetic Diversity of Culturable Fungi in the Heshang Cave, Central China. Front. Microbiol. 2015, 6, 1158. [Google Scholar] [CrossRef] [PubMed]
- Leplat, J.; Francois, A.; Bousta, F. Leptobacillium cavernicola, a newly discovered fungal species isolated from several Paleolithic-decorated caves in France. Phytotaxa 2022, 571, 186–196. [Google Scholar] [CrossRef]
- de Sá, A.S.F.; Leonardo-Silva, L.; Xavier-Santos, S. Expanding the Geographical Distribution of Blastobotrys malaysiensis (Saccharomycetales) Beyond the Asian Continent—A Cave Fungus First Reported in the Americas. Biodivers. Data J. 2022, 10, e80226. [Google Scholar] [CrossRef]
- Leplat, J.; François, A.; Touron, S.; Frouin, M.; Portais, J.-C.; Bousta, F. Aerobiological Behavior of Paleolithic Rock Art Sites in Dordogne (France): A Comparative Study in Protected Sites Ranging from Rock Shelters to Caves, with and without Public Access. Aerobiologia 2020, 36, 355–374. [Google Scholar] [CrossRef]
- Abrashev, R.; Krumova, E.; Petrova, P.; Eneva, R.; Kostadinova, N.; Miteva-Staleva, J.; Engibarov, S.; Stoyancheva, G.; Gocheva, Y.; Kolyovska, V.; et al. Distribution of a Novel Enzyme of Sialidase Family Among Native Filamentous Fungi. Fungal Biol. 2021, 125, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.O.; Bezerra, J.D.; Oliveira, T.G.; Barbier, E.; Bernard, E.; Machado, A.R.; Souza-Motta, C.M. Living in the Dark: Bat Caves as Hotspots of Fungal Diversity. PLoS ONE 2020, 15, e0243494. [Google Scholar] [CrossRef]
- Crous, P.W.; Cowan, D.A.; Maggs-Kölling, G.; Yilmaz, N.; Larsson, E.; Angelini, C.; Brandrud, T.E.; Dearnaley, J.D.W.; Dima, B.; Dovana, F.; et al. Fungal Planet description sheets: 1112–1181. Persoonia Mol. Phylogeny Evol. Fungi 2020, 45, 251. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Li, H.; Wang, W.; Cai, L. Setophoma spp. on Camellia sinensis. Fungal Syst. Evol. 2019, 4, 43–57. [Google Scholar] [CrossRef]
- Garzoli, L.; Riccucci, M.; Patriarca, E.; Debernardi, P.; Boggero, A.; Pecoraro, L.; Picco, A.M. First Isolation of Pseudogymnoascus destructans, the Fungal Causative Agent of White-Nose Disease, in Bats from Italy. Mycopathologia 2019, 184, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Nováková, A.; Hubka, V.; Valinová, Š.; Kolařík, M.; Hillebrand-Voiculescu, A.M. Cultivable Microscopic Fungi from an Underground Chemosynthesis-Based Ecosystem: A Preliminary Study. Folia Microbiol. 2018, 63, 43–55. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.-B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus Section Flavi and Their Production of Aflatoxins, Ochratoxins and Other Mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Lasek-Nesselquist, E.; Chaturvedi, V.; Chaturvedi, S. Trichoderma polysporum Selectively Inhibits White-Nose Syndrome Fungal Pathogen Pseudogymnoascus destructans Amidst Soil Microbes. Microbiome 2018, 6, 139. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Ma, Y.; Mao, L.; Wu, F.; Ma, X.; Feng, H. Molecular Characterization of Airborne Fungi in Caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 2011, 65, 726–731. [Google Scholar] [CrossRef]
- Tanney, J.B.; Nguyen, H.D.; Pinzari, F.; Seifert, K.A. A Century Later: Rediscovery, Culturing and Phylogenetic Analysis of Diploöspora rosea, a Rare Onygenalean Hyphomycete. Antonie van Leeuwenhoek 2015, 108, 1023–1035. [Google Scholar] [CrossRef]
- Out, B.; Boyle, S.; Cheeptham, N. Identification of Fungi from Soil in the Nakimu Caves of Glacier National Park. J. Exp. Microbiol. Immunol. 2016, 2, 26–32. [Google Scholar]
- Lueschow, S.R.; Johnson, L.J.A.N.; Williams, T.F.; McCleery, R.; Porras-Alfaro, A. Opportunistic Pseudogymnoascus and Geomyces Species Isolated from Humans and Bats. Sydowia 2019, 71, 25–33. [Google Scholar] [CrossRef]
- Ogórek, R.; Pusz, W.; Matkowski, K.; Pląskowska, E. Assessment of Abundance and Species Composition of Filamentous Fungi in the Underground Rzeczka Complex in Sowie Mountains (Lower Silesia, Poland). Geomicrobiol. J. 2014, 31, 900–906. [Google Scholar] [CrossRef]
- Ogórek, R.; Pusz, W.; Zagożdżon, P.P.; Kozak, B.; Bujak, H. Abundance and Diversity of Psychrotolerant Cultivable Mycobiota in Winter of a Former Aluminous Shale Mine. Geomicrobiol. J. 2017, 34, 823–833. [Google Scholar] [CrossRef]
- Zhang, T.; Victor, T.R.; Rajkumar, S.S.; Li, X.; Okoniewski, J.C.; Hicks, A.C.; Davis, A.D.; Broussard, K.; LaDeau, S.L.; Chaturvedi, S.; et al. Mycobiome of the Bat White Nose Syndrome Affected Caves and Mines Reveals Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans. PLoS ONE 2014, 9, e108714. [Google Scholar] [CrossRef] [PubMed]
- Adetutu, E.M.; Thorpe, K.; Bourne, S.; Cao, X.; Shahsavari, E.; Kirby, G.; Ball, A.S. Phylogenetic Diversity of Fungal Communities in Areas Accessible and Not Accessible to Tourists in Naracoorte Caves. Mycologia 2011, 103, 959–968. [Google Scholar] [CrossRef]
- Wibbelt, G.; Kurth, A.; Hellmann, D.; Weishaar, M.; Barlow, A.; Veith, M.; Prüger, J.; Görföl, T.; Grosche, L.; Bontadina, F.; et al. White-Nose Syndrome Fungus (Geomyces destructans) in Bats, Europe. Emerg. Infect. Dis. 2010, 16, 1237. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, S.C.; Dong, Y.; Karasaki, S.; Tibpromma, S.; Hyde, K.D.; Lumyong, S.; Xu, J.; Sheng, J.; Mortimer, P.E. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerg. Microbes Infect. 2020, 9, 1554–1566. [Google Scholar] [CrossRef]
- Dyląg, M.; Sawicki, A.; Ogórek, R. Diversity of Species and Susceptibility Phenotypes Toward Commercially Available Fungicides of Cultivable Fungi Colonizing Bones of Ursus spelaeus on Display in Niedźwiedzia Cave (Kletno, Poland). Diversity 2019, 11, 224. [Google Scholar] [CrossRef]
- Carvalho, J.L.; Lima, J.M.; Barbier, E.; Bernard, E.; Bezerra, J.D.; Souza-Motta, C.M. Ticket to Ride: Fungi from Bat Ectoparasites in a Tropical Cave and the Description of Two New Species. Brazilian J. Microbiol. 2022, 53, 2077–2091. [Google Scholar] [CrossRef] [PubMed]
- Zalar, P.; Gubenšek, A.; Gostincar, C.; Kostanjšek, R.; Bizjak-Mali, L.; Gunde-Cimerman, N. Cultivable Skin Mycobiota of Healthy and Diseased Blind Cave Salamander (Proteus anguinus). Front. Microbiol. 2022, 13, 926558. [Google Scholar] [CrossRef] [PubMed]
- Leplat, J.; François, A.; Bousta, F. Simplicillium pech-merlensis, a new fungal species isolated from the Pech-Merle show cave. Phytotaxa 2021, 521, 80–94. [Google Scholar] [CrossRef]
- Sanchez-Moral, S.; Jurado, V.; Fernandez-Cortes, A.; Cuezva, S.; Martin-Pozas, T.; Gonzalez-Pimentel, J.L.; Ontañon, R.; Saiz-Jimenez, C. Environment-Driven Control of Fungi in Subterranean Ecosystems: The Case of La Garma Cave (Northern Spain). Int. Microbiol. 2021, 24, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Zareshahi, F.; Abolmaali, S.H.; Astaneh, S.D.A.; Asghari, A. Isolating Sorbicilin-Producing Fungi from Darband Cave and Evaluating the Sorbicilin Biomedical Applications. Stud. Fungi 2020, 5, 103–112. [Google Scholar] [CrossRef]
- Kuzmina, L.Y.; Gilvanova, E.A.; Galimzianova, N.F.; Chervyatsova, O.Y.; Ryabova, A.S.; Dzhabrailov, S.E.M.; Melentiev, A.I.; Aktuganov, G.E. The Novel Strain Acidomyces acidophilum Isolated from Acidophilic Biofilms (Snottites) Located in the Sheki-Heh Cave (North Caucasus). Curr. Microbiol. 2022, 79, 63. [Google Scholar] [CrossRef]
- Hubka, V.; Nováková, A.; Kolařík, M.; Jurjević, Ž.; Peterson, S.W. Revision of Aspergillus section Flavipedes: Seven new species and proposal of section Jani sect. nov. Mycologia 2015, 107, 169–208. [Google Scholar] [CrossRef] [PubMed]
- Hubka, V.; Nováková, A.; Peterson, S.W.; Frisvad, J.C.; Sklenář, F.; Matsuzawa, T.; Kolařík, M. A Reappraisal of Aspergillus Section Nidulantes with Descriptions of Two New Sterigmatocystin-Producing Species. Plant Syst. Evol. 2016, 302, 1267–1299. [Google Scholar] [CrossRef]
- Visagie, C.M.; Goodwell, M.; Nkwe, D.O. Aspergillus Diversity from the Gcwihaba Cave in Botswana and Description of One New Species. Fungal Syst. Evol. 2021, 8, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Nováková, A.; Kolařík, M. Chrysosporium speluncarum, a new species resembling Ajellomyces capsulatus, obtained from bat guano in caves of temperate Europe. Mycol. Prog. 2010, 9, 253–260. [Google Scholar] [CrossRef]
- Jurado, V.; Porca, E.; Cuezva, S.; Fernandez-Cortes, A.; Sánchez-Moral, S.; Sáiz-Jiménez, C. Fungal outbreak in a show cave. Sci. Total Environ. 2010, 408, 3632–3638. [Google Scholar] [CrossRef] [PubMed]
- Jurado, V.; Fernandez-Cortes, A.; Cuezva, S.; Laiz, L.; Cañaveras, J.C.; Sanchez-Moral, S.; Saiz-Jimenez, C. The fungal colonisation of rock-art caves: Experimental evidence. Naturwissenschaften 2009, 96, 1027–1034. [Google Scholar] [CrossRef]
- Mitova, M.M.; Iliev, M.; Nováková, A.; Gorbushina, A.A.; Groudeva, V.I.; Martin-Sanchez, P.M. Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria. Int. J. Speleol. 2017, 46, 8. [Google Scholar] [CrossRef]
- Kiyuna, T.; An, K.D.; Kigawa, R.; Sano, C.; Sugiyama, J. Noteworthy anamorphic fungi, Cephalotrichum verrucisporum, Sagenomella striatispora, and Sagenomella griseoviridis, isolated from biodeteriorated samples in the Takamatsuzuka and Kitora Tumuli, Nara, Japan. Mycoscience 2017, 58, 320–327. [Google Scholar] [CrossRef]
- Camino, L.P.; Idnurm, A.; Cerda-Olmedo, E. Diversity, ecology, and evolution in Phycomyces. Fungal Biol. 2015, 119, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Martin-Sanchez, P.M.; Nováková, A.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Two new species of the genus Ochroconis, O. lascauxensis and O. anomala isolated from black stains in Lascaux Cave, France. Fungal Biol. 2012, 116, 574–589. [Google Scholar] [CrossRef]
- Tsuneda, A.; Davey, M.L.; Tsuneda, I.; Hudgins, A.; Currah, R.S. Endophoma, a new didymellaceous endoconidial genus from bat-cave soil. Mycologia 2011, 103, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.R.; Cai, L.; Liu, F. Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology 2017, 8, 164–177. [Google Scholar] [CrossRef]
- Busquets, A.; Fornós, J.J.; Zafra, F.; Lalucat, J.; Merino, A. Microbial communities in a coastal cave: Cova des Pas de Vallgornera (Mallorca, Western Mediterranean). Int. J. Speleol. 2014, 43, 8. [Google Scholar] [CrossRef]
- Garcia-Anton, E.; Cuezva, S.; Jurado, V.; Porca, E.; Miller, A.Z.; Fernandez-Cortes, A.; Saiz-Jimenez, C.; Sánchez-Moral, S. Combining stable isotope (δ 13 C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ. Sci. Pollut. Res. 2014, 21, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Martín Sánchez, P.M. Las manchas negras de la cueva de Lascaux: Origen, evolución y caracterización de un brote fúngico. Doctoral Dissertation, Instituto de Recursos Naturales y Agrobiología de Sevilla, Sevilla, Spain, 18 April 2012. [Google Scholar]
- Becker, P.; van den Eynde, C.; Baert, F.; D’hooge, E.; De Pauw, R.; Normand, A.C.; Piarroux, R.; Stubbe, D. Remarkable fungal biodiversity on northern Belgium bats and hibernacula. Mycologia 2023, 115, 484–498. [Google Scholar] [CrossRef]
- Haelewaters, D.; Dima, B.; Abdel-Hafiz, A.I.I.; Abdel-Wahab, M.A.; Abul-Ezz, S.R.; Acar, I.; Aguirre-Acosta, E.; Aime, M.C.; Aldemir, S.; Ali, M.; et al. Fungal Systematics and Evolution: FUSE 6. Sydowia 2020, 72, 231–356. [Google Scholar] [CrossRef]
- Jiang, J.R.; Chen, Q.; Cai, L. Polyphasic characterisation of three novel species of Paraboeremia. Mycol. Prog. 2017, 16, 285–295. [Google Scholar] [CrossRef]
- Nováková, A.L.E.N.A.; Savická, D.; Kolařík, M. Two novel species of the genus Trichosporon isolated from a cave environment. Czech Mycol. 2015, 67, 233–239. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Jurado, V.; Porca, E.; Bastian, F.; Lacanette, D.; Alabouvette, C.; Saiz-Jimenez, C. Airborne Microorganisms in Lascaux Cave (France). Int. J. Speleol. 2014, 43, 295–303. [Google Scholar] [CrossRef]
- Fernandez-Cortes, A.; Cuezva, S.; Sanchez-Moral, S.; Cañaveras, J.C.; Porca, E.; Jurado, V.; Martin-Sanchez, P.M.; Saiz-Jimenez, C. Detection of human-induced environmental disturbances in a show cave. Environ. Sci. Pollut. Res. 2011, 18, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Moghimi, H.; Geranpayeh Vaghei, M.; Nasr, S. Blastobotrys persicus sp. nov., an Ascomycetous Yeast Species Isolated from Cave Soil. Antonie Van Leeuwenhoek 2018, 111, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Rehner, S.A.; Minnis, A.M.; Sung, G.H.; Luangsa-ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef]
- Flieger, M.; Bandouchova, H.; Cerny, J.; Chudíčková, M.; Kolarik, M.; Kovacova, V.; Martínková, N.; Novák, P.; Šebesta, O.; Stodůlková, E.; et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 2016, 6, 33200. [Google Scholar] [CrossRef]
- Moñino, I.D. Evaluación y Control de Comunidades Microbianas en Cuevas Turísticas. Doctoral Dissertation, Universidad de Sevilla, Sevilla, Spain, 2014. [Google Scholar]
- Pikula, J.; Bandouchova, H.; Novotný, L.; Meteyer, C.U.; Zukal, J.; Irwin, N.R.; Zima, J.; Martínková, N. Histopathology confirms white-nose syndrome in bats in Europe. J. Wildl. Dis. 2012, 48, 207–211. [Google Scholar] [CrossRef]
- Porca, E.; Jurado, V.; Martin-Sanchez, P.M.; Hermosín, B.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves. Ecol. Indic. 2011, 11, 1594–1598. [Google Scholar] [CrossRef]
- Hubka, V.; Nováková, A.; Jurjević, Ž.; Sklenář, F.; Frisvad, J.C.; Houbraken, J.; Kolařík, M. Polyphasic Data Support the Splitting of Aspergillus candidus into Two Species; Proposal of Aspergillus dobrogensis sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 995–1011. [Google Scholar] [CrossRef]
- Glässnerová, K.; Sklenář, F.; Jurjević, Ž.; Houbraken, J.; Yaguchi, T.; Visagie, C.M.; Gené, J.; Siqueira, J.P.Z.; Kubátová, A.; Kolařík, M.; et al. A monograph of Aspergillus section Candidi. Stud. Mycol. 2022, 102, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Kusuya, Y.; Sklenář, F.; D’hooge, E.; Yaguchi, T.; Ban, S.; Visagie, C.M.; Houbraken, J.; Takahashi, H.; Hubka, V. Reducing the number of accepted species in Aspergillus series Nigri. Stud. Mycol. 2022, 102, 95–132. [Google Scholar] [CrossRef] [PubMed]
- Mulec, J.; Covington, E.; Walochnik, J. Is bat guano a reservoir of Geomyces destructans? Open J. Vet. Med. 2013, 3, 161–167. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, S.Y.; Chung, C.U.; Park, J.S.; Kim, Y.J.; Oem, J.K. Fungal diversity in Korean caves and cave-inhabiting bats with attention to Pseudogymnoascus species. Diversity 2023, 15, 198. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhou, S.Y.; Eurwilaichitr, L.; Ingsriswang, S.; Raza, M.; Chen, Q.; Cai, L. Culturable Mycobiota from Karst Caves in China II, with Descriptions of 33 New Species. Fungal Divers. 2021, 106, 29–136. [Google Scholar] [CrossRef]
- Takashima, M.; Kurakado, S.; Cho, O.; Kikuchi, K.; Sugiyama, J.; Sugita, T. Description of Four Apiotrichum and Two Cutaneotrichosporon Species Isolated from Guano Samples from Bat-Inhabited Caves in Japan. Int. J. Syst. Evol. Microbiol. 2020, 70, 4458–4469. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012; p. 496. [Google Scholar]
- Sun, B.D.; Houbraken, J.; Frisvad, J.C.; Jiang, X.Z.; Chen, A.J.; Samson, R.A. New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. Int. J. Syst. Evol. Microbiol. 2020, 70, 004425. [Google Scholar] [CrossRef]
- Beimforde, C.; Feldberg, K.; Nylinder, S.; Rikkinen, J.; Tuovila, H.; Dörfelt, H.; Schmidt, A.R. Estimating the Phanerozoic History of the Ascomycota Lineages: Combining Fossil and Molecular Data. Mol. Phylogenet. Evol. 2014, 78, 386–398. [Google Scholar] [CrossRef]
- Senanayake, I.C.; Pem, D.; Rathnayaka, A.R.; Wijesinghe, S.N.; Tibpromma, S.; Wanasinghe, D.N.; Phookamsak, R.; Kularathnage, N.D.; Gomdola, D.; Harishchandra, D.; et al. Predicting Global Numbers of Teleomorphic Ascomycetes. Fungal Divers. 2022, 114, 237–278. [Google Scholar] [CrossRef]
- Durán, P.; Barra, P.J.; Jorquera, M.A.; Viscardi, S.; Fernandez, C.; Paz, C.; Bol, R. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef]
- Challacombe, J.F.; Hesse, C.N.; Bramer, L.M.; McCue, L.A.; Lipton, M.; Purvine, S.; Nicora, C.; Gallegos-Graves, L.V.; Porras-Alfaro, A.; Kuske, C.R. Genomes and Secretomes of Ascomycota Fungi Reveal Diverse Functions in Plant Biomass Decomposition and Pathogenesis. BMC Genom. 2019, 20, 976. [Google Scholar] [CrossRef]
- Feng, L.; Song, Q.; Jiang, Q.; Li, Z. The Horizontal and Vertical Distribution of Deep-Sea Sediments Fungal Community in the South China Sea. Front. Mar. Sci. 2021, 8, 592784. [Google Scholar] [CrossRef]
- Segundo, W.O.P.F.; de Oliveira, R.S.; Lima, R.M.; Santiago, P.A.L.; de Oliveira, L.A.; Cortez, A.C.A.; Lima, E.S.; de Souza, É.S.; Frickmann, H.; de Souza, J.V.B. Antimicrobial Potential of Metabolites in Fungal Strains Isolated from a Polluted Stream: Annulohypoxylon stygium WL1B5 Produces Metabolites against Extended-Spectrum Beta-Lactamase-Positive Escherichia coli. Antibiotics 2022, 12, 27. [Google Scholar] [CrossRef]
- Villa, F.; Cappitelli, F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Stoppiello, G.A.; Muggia, L.; De Carolis, R.; Coleine, C.; Selbmann, L. Ecological Niche Drives Fungal and Bacterial Diversity in Endolithic and Epilithic Communities Inhabiting Granites in Victoria Land, Antarctica. Polar Biol. 2025, 48, 16. [Google Scholar] [CrossRef]
- Dimkić, I.; Fira, D.; Janakiev, T.; Kabić, J.; Stupar, M.; Nenadić, M.; Grbić, M.L. The Microbiome of Bat Guano: For What Is This Knowledge Important? Appl. Microbiol. Biotechnol. 2021, 105, 1407–1419. [Google Scholar] [CrossRef]
- Ogórek, R.; Dyląg, M.; Kozak, B.; Višňovská, Z.; Tančinová, D.; Lejman, A. Fungi Isolated and Quantified from Bat Guano and Air in Harmanecka and Driny Caves (Slovakia). J. Cave Karst Stud. 2016, 78, 41–49. [Google Scholar] [CrossRef]
- Jofre, G.I.; Singh, A.; Mavengere, H.; Sundar, G.; D’Agostino, E.; Chowdhary, A.; Matute, D.R. An Indian lineage of Histoplasma with strong signatures of differentiation and selection. Fungal Genet. Biol. 2022, 158, 103654. [Google Scholar] [CrossRef]
- Money, N.P. Spore production, discharge, and dispersal. In The Fungi; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 67–97. [Google Scholar]
- Ingold, C.T.; Hudson, H.J. The Biology of Fungi; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Elbert, W.; Taylor, P.E.; Andreae, M.O.; Pöschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores. Atmos. Chem. Phys. 2007, 7, 4569–4588. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Poli, A.; Zanellati, A.; Piano, E.; Biagioli, F.; Coleine, C.; Nicolosi, G.; Varese, G.C. Cultivable fungal diversity in two karstic caves in Italy: Under-investigated habitats as source of putative novel taxa. Sci. Rep. 2024, 14, 4164. [Google Scholar] [CrossRef]
- Zhang, N.; Castlebury, L.A.; Miller, A.N.; Huhndorf, S.M.; Schoch, C.L.; Seifert, K.A.; Samuels, G.J.; Rossman, A.Y.; Rogers, J.D.; Sung, G.H. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006, 98, 1076–1087. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, X.; Dong, C.B.; Zhang, Y.W.; Chen, W.H.; Liang, J.D.; Han, Y.F. Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China. MycoKeys 2024, 102, 301. [Google Scholar] [CrossRef]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzón, A.; Ownley, B.H.; et al. Fungal entomopathogens: New insights on their ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef]
- Begerow, D.; Stoll, M.; Bauer, R. A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 2006, 98, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.L.S.; Resende Stoianoff, M.A.D.; Lopes Ferreira, R. Mycological Study for a Management Plan of a Neotropical Show Cave (Brazil). Int. J. Speleol. 2013, 42, 10. [Google Scholar] [CrossRef]
- Bladt, T.T.; Frisvad, J.C.; Knudsen, P.B.; Larsen, T.O. Anticancer and Antifungal Compounds from Aspergillus, Penicillium, and Other Filamentous Fungi. Molecules 2013, 18, 11338–11376. [Google Scholar] [CrossRef] [PubMed]
- Júnior, D.P.L.; Yamamoto, A.C.A.; de Souza Amadio, J.V.R.; Martins, E.R.; do Santos, F.A.L.; Simoes, S.D.A.A.; Hahn, R.C. Trichocomaceae: Biodiversity of Aspergillus spp. and Penicillium spp. Residing in Libraries. J. Infect. Dev. Ctries. 2012, 6, 734–743. [Google Scholar] [CrossRef]
- Shen, H.D.; Tam, M.F.; Tang, R.B.; Chou, H. Aspergillus and Penicillium Allergens: Focus on Proteases. Curr. Allergy Asthma Rep. 2007, 7, 351–356. [Google Scholar] [CrossRef]
- Suchy, H.; Zalar, P.; Macedo, M.F. Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review. Appl. Sci. 2024, 14, 7429. [Google Scholar] [CrossRef]
- Ahmed, E.A.E.; Mohamed, R.M. Bacterial Deterioration in the Limestone Minaret of Prince Muhammad and Suggested Treatment Methods, Akhmim, Egypt. Geomaterials 2022, 12, 37–58. [Google Scholar] [CrossRef]
- Whiting-Fawcett, F.; Blomberg, A.S.; Troitsky, T.; Meierhofer, M.B.; Field, K.A.; Puechmaille, S.J.; Lilley, T.M. A Palearctic View of a Bat Fungal Disease. Conserv. Biol. 2025, 39, e14265. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, R.A.; Sánchez-Cordero, V.; Boyer, D.; Schondube, J.E.; Rodríguez-Moreno, Á.; Gutiérrez-Granados, G. Risk of Infection of White-Nose Syndrome in North American Vespertilionid Bats in Mexico. Ecol. Inform. 2022, 72, 101869. [Google Scholar] [CrossRef]
- Zukal, J.; Bandouchova, H.; Brichta, J.; Cmokova, A.; Jaron, K.S.; Kolarik, M.; Martínková, N. White-Nose Syndrome without Borders: Pseudogymnoascus destructans Infection Tolerated in Europe and Palearctic Asia but Not in North America. Sci. Rep. 2016, 6, 19829. [Google Scholar] [CrossRef]
- Mammola, S.; Piano, E.; Cardoso, P.; Vernon, P.; Domínguez-Villar, D.; Culver, D.C.; Pipan, T.; Isaia, M. Climate Change Going Deep: The Effects of Global Climatic Alterations on Cave Ecosystems. Anthr. Rev. 2019, 6, 98–116. [Google Scholar] [CrossRef]
- Pfendler, S.; Karimi, B.; Maron, P.-A.; Ciadamidaro, L.; Valot, B.; Bousta, F.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. Biofilm Biodiversity in French and Swiss Show Caves Using the Metabarcoding Approach: First Data. Sci. Total Environ. 2018, 615, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk-Żak, K.; Zielenkiewicz, U. Microbial Diversity in Caves. Geomicrobiol. J. 2016, 33, 20–38. [Google Scholar] [CrossRef]
- Barton, H.A.; Northup, D.E. Geomicrobiology in Cave Environments: Past, Current, and Future Perspectives. J. Cave Karst Stud. 2007, 69, 163–178. [Google Scholar]
- Das, T.; Al-Tawaha, A.R.; Pandey, D.K.; Nongdam, P.; Shekhawat, M.S.; Dey, A.; Choudhary, K.; Sahay, S. Halophilic, Acidophilic, Alkaliphilic, Metallophilic, and Radioresistant Fungi: Habitats and Their Living Strategies. In Extremophilic Fungi: Ecology, Physiology and Applications; Springer Nature: Singapore, 2022; pp. 171–193. [Google Scholar]
Species | Accession Numbers | Country | Cave | Substratum | Ref. | Holotype |
---|---|---|---|---|---|---|
Amphichorda cavernicola | MK336089 MK336003 | China | Feng Cave, Sichuan, Xingwen | Bird feces | [104] | HMAS 24801 (From dung of Aves in cave: Sichuan) |
Apiotrichum akiyoshidainum | AB180200 | Japan | Akiyoshi-do | Guano | [105] | JCM 12595 |
Apiotrichum chiropterorum | AB180197 | Japan | Akiyoshi-do | Guano | [105] | JCM 12594 |
Apiotrichum coprophilum | AB180199 | Japan | Akiyoshi-do | Guano | [105] | JCM 12596 |
Apiotrichum otae | AB180196 | Japan | Nippara-shonyud | Guano | [105] | JCM 12593 |
Aspergillus cavernicola | HG008744 | Romania | Caprei grotto | Cave walls | [91,107] | - |
Aspergillus croceus | LN873932, LN873931 | Spain | Cueva del Tesoro | Sediment | [73] | PRM 924053 (From cave sediment: Spain) |
Aspergillus dobrogensis | LT626976 | Romania | Movile Cave | Sediment | [99] | PRM 935751 (From cave sediment: Romania) |
Aspergillus lebretii | ON862927 ON862928 | Brazil | The Abrigo do Letreiro Cave | Air | [35] | URM 95150 (From air, in cave: Rio Grande do Norte) |
Aspergillus limoniformis | NG_075262 | China | Mingjiu Cave, Yunang | Bat guano | [104] | HMAS 248014 (From dung of Chiroptera in cave: Yunnan) |
Aspergillus okavangoensis | MW480788 | Botswana | Gcwihaba Caves, Okavango basin | Bat guano-contaminated soil | [74] | PREM 63212 (From soil contaminated with feces of Chiroptera: Botswana) |
Aspergillus phialiformis | MK336096 | China | Sanjiao Cave, Yunan | Stone | [104] | HMAS 248017 (From rocks in cave: Yunnan) |
Blastobotrys persicus | NG_088046 | Iran | Mejare Cave | Soil | [93] | IBRC-M 30238 (Isolated from cave soil: Iran) |
Cephalotrichum guizhouense | MF419783 MF419752 | China | Cave in Shuanghe National Geographic Park, Guizhou Province | Stone | [83] | HMAS 247177 (From limestone from cave: Guizhou) |
Cephalotrichum laeve | MF419780 MF419750 | China | Cave in Shuanghe National Geographic Park, Guizhou Province | Stone | [83] | HMAS 247178 (From limestone from cave: Guizhou) |
Cephalotrichum lignatile | KY249269 NR_154842 | Belgium | - | Timber | [25] | CBS H-22852: (Isolated from timber in cave: Belgium) |
Cephalotrichum oligotrophicum | NG_069510 | China | Cave in Shuanghe National Geographic Park, Guizhou Province | Stone | [83] | HMAS 247176 (From limestone from cave: Guizhou) |
Chrysosporium speluncarum | AM949569 | Slovakia | Jasovska Cave | Guano heap of insectivore bat Rhinolopus euryale | [75] | - |
Cutaneotrichosporon cavernicola | AB180195 | Japan | Nippara-shonyud | Bat guano | [105] | JCM 12590 |
Cutaneotrichosporon middelhovenii | NR_172214 AB180198 | Japan | Nippara-shonyud | Bat guano | [105] | JCM 12592 |
Debaryomyces psychrosporus | HM769277 NG_066358 NG_064957 HM769276 HM769275 | Venezuela | Crystal Eyes Cave (Cueva Ojos de Cristal), Roraima Tepui Mountain | Secondary mineral deposits (stalactites and stromatolites)—silicates | [33] | NCAIM Y.01972 (Isolated from dry stalactites of silicic sandstone: Venezuela) |
Endophoma elongata | NG_070363 JF340088 | Canada | Cadomin Cave | Bat cave soil | [82] | UAMH 11216 (Isolated from soil of bat cave: Alberta) |
Gymnascella minnisii | MW054470 MW054469 MT988379 | USA | Canoe Creek Hartman Mine, Pennsylvania, Blair County | Bat guano | [49] | CUP 70725 |
Gymnoascus exasperatus | NR_178112 NG_088047 KY883236 | China | - | Bat guano | [14] | HMAS 246925 (Isolated from guano of bat: Guizhou) |
Leptobacillium cavernicola | OM622527 OM628847 OM628786 | France | Paleolithic-decorated cave (Pair-non-Pair cave) | Cave wall | [44] | CBS 149113 (From rock, in cave: France) |
Malbranchea cavernosa | ON862930 ON862923 | Brazil | The Abrigo do Letreiro | Air | [35] | URM 95151 (From air, in cave: Rio Grande do Norte) |
Microascus globulosus | KY883283 KY883243 KX855234 | China | Unnamed karst Cave | Guano | [14] | HMAS 246928 (Isolated from bat guano: Guizhou) |
Mortierella multispora | MT031921 NG_075335 MT032146 | China | Cave outside of Kunming City, Yunnan Province | Carcass of Rhinolophus affinis (bat) | [62] | YMF 1.06174 |
Mortierella rhinolophicola | MT031919 NG_075334 MT032144 NR_172422 | China | Cave outside of Kunming City, Yunnan Province | Carcass of Rhinolophus affinis (bat) | [64] | YMF 1.06175 |
Mortierella yunnanensis | MT031917 NG_075333 MT032142 NR_172421 | China | Cave outside of Kunming City, Yunnan Province | Carcass of Rhinolophus affinis (bat) | [64] | YMF 1.06176 |
Neocosmospora pallidimors | MT031916 MT032141 | China | Cave outside of Kunming City, Yunnan Province | Carcass of Rhinolophus affinis (bat) | [64] | YMF 1.06177 |
Neopestalotiopsis cavernicola | MW581238 MW545802 | China | Gem Cave, inner cave | Rock surfaces | [39] | HKAS 111937 (From surface of rocks, in cave: Yunnan) |
Paraboeremia oligotrophica | KX829041 KX829040 KX829039 | China | Cave at the Shuanghe National Geographic Park, Guizhou Province | Limestone | [89] | HMAS 247036 (Isolated from carbonatites from cave: Guizhou) |
Penicillium speluncae | MG490867 | Canada | White Cave | Cave wall | [24] | DAOM 745788 |
Penicillium vanluykii | JX997007 | USA | Lechuguilla Cave | - | [28] | CBS H-21059 (Isolated from cave: New Mexico) |
Pseudogymnoascus palmeri | MT988150 | USA | Woodward Cave | Sediment | [49] | CUP-70724 |
Pseudolecanicillium caatingaense | ON862934 ON862926 | Brazil | The Abrigo do Letreiro Cave | Air | [35] | URM 95152 (From air, in cave: Rio Grande do Norte) |
Scolecobasidium anellii | FR832477 NR_111436 | Italy | Castellana Cave | Superficially darkened stalactites | [81] | - |
Scolecobasidium anomalum | HE575202 | France | Lascaux Cave, Paleolithic paintings | Black stain on cave sediment | [81] | - |
Scolecobasidium lascauxense | HE575200 | France | Lascaux Cave, Paleolithic paintings | Black stain on cave sediment | [81] | - |
Setophoma caverna | MK511944 MK511965 | China | - | Rock | [50] | HMAS 248085 |
Simplicillium pechmerlense | MW031272 MW031740 MW031268 | France | Pech-Merle Cave | Air | [68] | CBS 147188 (From air in cave: France) |
Talaromyces cavernicola | ON862936 ON862935 | Brazil | The Abrigo do Letreiro Cave | Air | [35] | URM 95155 From air, in cave: Rio Grande do Norte |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savković, Ž.; Popović, S.; Stupar, M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. J. Fungi 2025, 11, 286. https://doi.org/10.3390/jof11040286
Savković Ž, Popović S, Stupar M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. Journal of Fungi. 2025; 11(4):286. https://doi.org/10.3390/jof11040286
Chicago/Turabian StyleSavković, Željko, Slađana Popović, and Miloš Stupar. 2025. "Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences" Journal of Fungi 11, no. 4: 286. https://doi.org/10.3390/jof11040286
APA StyleSavković, Ž., Popović, S., & Stupar, M. (2025). Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. Journal of Fungi, 11(4), 286. https://doi.org/10.3390/jof11040286