Endemic and Other Dimorphic Mycoses in The Americas
Abstract
:1. Introduction
2. Coccidioides Species
3. Histoplasma Species
4. Blastomyces Species
5. Paracoccidioides Species
6. Sporothrix Species
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benedict, K.; Kobayashi, M.; Garg, S.; Chiller, T.; Jackson, B.R. Symptoms in blastomycosis, coccidioidomycosis, and histoplasmosis versus other respiratory illnesses in commercially insured adult outpatients, United States, 2016–2017. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Brown, J.; Benedict, K.; Park, B.J.; Thompson, G.R., III. Coccidioidomycosis: Epidemiology. Clin. Epidemiol. 2013, 5, 185. [Google Scholar]
- Freedman, M.; Anderson, S.; Benedict, K.; McCotter, O.; Derado, G.; Hoekstra, R. Preliminary estimates of annual burden of coccidioidomycosis in the United States, 2010–2014. In Proceedings of the 7th International Coccidioidomycosis Symposium, Stanford, CA, USA, 10–13 August 2017. [Google Scholar]
- McCotter, O.Z.; Benedict, K.; Engelthaler, D.M.; Komatsu, K.; Lucas, K.D.; Mohle-Boetani, J.C.; Oltean, H.; Vugia, D.; Chiller, T.M.; Sondermeyer Cooksey, G.L.; et al. Update on the epidemiology of coccidioidomycosis in the United States. Med. Mycol. 2019, 57 (Suppl. 1), S30–S40. [Google Scholar] [CrossRef] [PubMed]
- Galgiani, J.N.; Ampel, N.M.; Blair, J.E.; Catanzaro, A.; Johnson, R.H.; Stevens, D.A.; Williams, P.L.; Infectious Diseases Society of America. Coccidioidomycosis. Clin. Infect. Dis. 2005, 41, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E. Coccidioides niches and habitat parameters in the southwestern United States. Ann. N. Y. Acad. Sci. 2007, 1111, 47–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Shen, Y.; Lv, G.; Zheng, H.; Mei, H.; Zheng, X.; Kong, X.; Blechert, O.; Li, D.; Liu, W. Coccidioidomycosis: Imported and possible domestic cases in China: A case report and review, 1958–2017. Mycoses 2018, 61, 506–513. [Google Scholar] [CrossRef]
- Ajello, L. Comparative ecology of respiratory mycotic disease agents. Bacteriol. Rev. 1967, 31, 6. [Google Scholar] [CrossRef]
- Sharpton, T.J.; Stajich, J.E.; Rounsley, S.D.; Gardner, M.J.; Wortman, J.R.; Jordar, V.S.; Maiti, R.; Kodira, C.D.; Neafsey, D.E.; Zeng, Q.; et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009, 19, 1722–1731. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.W.; Barker, B.M. The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Med. Mycol. 2019, 57 (Suppl. 1), S16–S20. [Google Scholar] [CrossRef]
- Kollath, D.R.; Teixeira, M.M.; Funke, A.; Miller, K.J.; Barker, B.M. Investigating the role of animal burrows on the ecology and distribution of Coccidioides spp. in Arizona Soils. Mycopathologia 2020, 185, 145–159. [Google Scholar] [CrossRef]
- Lauer, A.; Baal, J.D.; Mendes, S.D.; Casimiro, K.N.; Passaglia, A.K.; Valenzuela, A.H.; Guibert, G. Valley fever on the Rise—Searching for microbial antagonists to the fungal pathogen Coccidioides immitis. Microorganisms 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelthaler, D.M.; Roe, C.C.; Hepp, C.M.; Teixeira, M.; Driebe, E.M.; Schupp, J.M.; Gade, L.; Waddell, V.; Komatsu, K.; Arathoon, E.; et al. Local population structure and patterns of western hemisphere dispersal for Coccidioides spp., the fungal cause of valley fever. mBio 2016, 7, e00550-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, M.M.; Barker, B.M. Use of population genetics to assess the ecology, evolution, and population structure of Coccidioides. Emerg. Infect. Dis. 2016, 22, 1022. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.C.; Koenig, G.L.; White, T.J.; Taylor, J.W. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the Non-California population of Coccidioides immitis. Mycologia 2002, 94, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.M.; Carlson, E.L.; Fisher, F.S.; Pappagianis, D. Demonstration of Coccidioides immitis and Coccidioides posadasii DNA in soil samples collected from Dinosaur National Monument, Utah. Med. Mycol. 2014, 52, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Marsden-Haug, N.; Goldoft, M.; Ralston, C.; Limaye, A.P.; Chua, J.; Hill, H.; Jecha, L.; Thompson, G.R., 3rd; Chiller, T. Coccidioidomycosis acquired in Washington state. Clin. Infect. Dis. 2013, 56, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Litvintseva, A.P.; Marsden-Haug, N.; Hurst, S.; Hill, H.; Gade, L.; Driebe, E.M.; Ralston, C.; Roe, C.; Barker, B.M.; Goldoft, M.; et al. Valley fever: Finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin. Infect. Dis. 2015, 60, e1–e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oltean, H.N.; Etienne, K.A.; Roe, C.C.; Gade, L.; McCotter, O.Z.; Engelthaler, D.M.; Litvintseva, A.P. Utility of whole-genome sequencing to ascertain locally acquired cases of coccidioidomycosis, Washington, USA. Emerg. Infect. Dis. 2019, 25, 501. [Google Scholar] [CrossRef] [PubMed]
- Oltean, H.N.; Springer, M.; Bowers, J.R.; Barnes, R.; Reid, G.; Valentine, M.; Engelthaler, D.M.; Toda, M.; McCotter, O.Z. Suspected locally acquired coccidioidomycosis in human, Spokane, Washington, USA. Emerg. Infect. Dis. 2020, 26, 606–609. [Google Scholar] [CrossRef]
- Maxwell, C.S.; Mattox, K.; Turissini, D.A.; Teixeira, M.M.; Barker, B.M.; Matute, D.R. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 2019, 73, 42–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolivras, K.N.; Comrie, A.C. Modeling valley fever (Coccidioidomycosis) incidence on the basis of climate conditions. Int. J. Biometeorol. 2003, 47, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Rosas, R.C.; Hinojosa, A.; Riquelme, M. Ecological niche modeling of Coccidioides spp. in western North American deserts. Ann. N. Y. Acad. Sci. 2007, 1111, 35–46. [Google Scholar] [CrossRef]
- Gorris, M.; Cat, L.; Zender, C.; Treseder, K.; Randerson, J. Coccidioidomycosis dynamics in relation to climate in the southwestern United States. Geohealth 2018, 2, 6–24. [Google Scholar] [CrossRef]
- Coopersmith, E.; Bell, J.; Benedict, K.; Shriber, J.; McCotter, O.; Cosh, M.H. Relating coccidioidomycosis [valley fever] incidence to soil moisture conditions. Geohealth 2017, 1, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Weaver, E.; Kolivras, K.N.; Thomas, R.Q.; Thomas, V.A.; Abbas, K.M. Environmental factors affecting ecological niche of Coccidioides species and spatial dynamics of valley fever in the United States. Spat. Spatio Temporal Epidemiol. 2020, 32, 100317. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Gonzalez, F.J.; Fonseca-Ford, M.; Franklin, P.; Huntington-Frazier, M.; Gutelius, B.; Kawakami, V.; Lunquest, K.; McCracken, S.; Moser, K.; et al. Notes from the field: Multistate Coccidioidomycosis outbreak in U.S. residents returning from community service trips to Baja, California, Mexico—July–August 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 332–333. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Benedict, K.; Xie, F.; Rieg, G.K.; Yu, K.C.; Contreras, R.; Truong, J.; Fong, K.; Tseng, H.F.; Jaconsen, S.J.; et al. Testing for Coccidioidomycosis among community-acquired pneumonia patients, Southern California, USA. Emerg. Infect. Dis. 2018, 24, 779–781. [Google Scholar] [CrossRef]
- Hurd-Kundeti, G.; Sondermeyer Cooksey, G.L.; Jain, S.; Vugia, D.J. Valley Fever (Coccidioidomycosis) Awareness—California, 2016–2017. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1512–1516. [Google Scholar] [CrossRef]
- Ashraf, N.; Kubat, R.C.; Poplin, V.; Adenis, A.A.; Denning, D.W.; Wright, L.; McCotter, O.; Schwartz, I.S.; Jackson, B.R.; Chiller, T.; et al. Re-Drawing the maps for endemic mycoses. Mycopathologia 2020, 185, 843–865. [Google Scholar]
- Cooksey, G.S.; Nguyen, A.; Knutson, K.; Tabnak, F.; Benedict, K.; McCotter, O.; Jain, S.; Vugia, D. Notes from the field: Increase in Coccidioidomycosis—California, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 833–834. [Google Scholar] [CrossRef] [Green Version]
- Benedict, K.; McCotter, O.Z.; Brady, S.; Komatsu, K.; Sondermeyer Cooksey, G.L.; Nguyen, A.; Jain, S.; Vugia, D.; Jackson, B.R. Surveillance for Coccidioidomycosis—United States, 2011–2017. Morbidity and mortality weekly report surveillance summaries [Washington, DC, 2002]. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 1–15. [Google Scholar]
- Colson, A.J.; Vredenburgh, L.M.; Guevara, R.E.; Rangel, N.P.; Kloock, C.T.; Lauer, A. Large-Scale land development, fugitive dust, and increased coccidioidomycosis incidence in the Antelope Valley of California, 1999–2014. Mycopathologia 2016, 182, 439–458. [Google Scholar] [CrossRef]
- Pearson, D.; Ebisu, K.; Wu, X.; Basu, R. A review of coccidioidomycosis in California: Exploring the intersection of land use, population movement, and climate change. Epidemiol. Rev. 2019, 41, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Valley Fever (Coccidioidomycosis) Statistics. 2020. Available online: https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html (accessed on 18 November 2020).
- Kauffman, C.A. Histoplasmosis: A clinical and laboratory update. Clin. Microbiol. Rev. 2007, 20, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Darling, S. A protozoon general infection producing pseudotubercles in the lungs and focal necroses in the liver, spleen, and lymph nodes. J. Am. Med. Assoc. 1906, 46, 1283–1285. [Google Scholar] [CrossRef] [Green Version]
- Nacher, M.; Adenis, A.; Mc Donald, S.; Do Socorro Mendonca Gomes, M.; Singh, S.; Lopes Lima, I.; Malcher Leite, R.; Hermelijn, S.; Wongsokarijo, M.; Van Eer, M.; et al. Disseminated histoplasmosis in HIV-Infected patients in South America: A neglected killer continues on its rampage. PLoS Negl. Trop. Dis. 2013, 7, e2319. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Mody, R.K. Epidemiology of histoplasmosis outbreaks, United States, 1938–2013. Emerg. Infect. Dis. 2016, 22, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, K.; McCracken, S.; Signs, K.; Ireland, M.; Amburgey, V.; Serrano, J.A.; Christophe, N.; Gibbons-Burgener, S.; Hallyburton, S.; Warren, K.A.; et al. Enhanced surveillance for histoplasmosis-9 States, 2018–2019. Open Forum Infect. Dis. 2020, 7, ofaa343. [Google Scholar] [CrossRef]
- Edwards, L.B.; Acquaviva, F.A.; Livesay, V.T.; Cross, F.W.; Palmer, C.E. An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am. Rev. Respir. Dis. 1969, 99, 1–132. [Google Scholar]
- Palmer, C.E. Geographic differences in sensitivity to histoplasmin among student nurses. Public Health Rep. 1946, 61, 475–487. [Google Scholar] [CrossRef]
- Manos, N.E.; Ferebee, S.H.; Kerschbaum, W.F. Geographic variation in the prevalence of histoplasmin sensitivity. Dis. Chest 1956, 29, 649–668. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, P.A.; Jackson, B.R.; Haselow, D.; Fields, V.; Ireland, M.; Austin, C.; Signs, K.; Fialkowski, V.; Patel, R.; Ellis, P.; et al. Multistate epidemiology of histoplasmosis, United States, 2011–2014. Emerg. Infect. Dis. 2018, 24, 425–431. [Google Scholar] [CrossRef]
- Maiga, A.W.; Deppen, S.; Scaffidi, B.K.; Baddley, J.; Aldrich, M.C.; Dittus, R.S.; Grogan, E.L. Mapping Histoplasma capsulatum exposure, United States. Emerg. Infect. Dis. 2018, 24, 1835–1839. [Google Scholar] [CrossRef]
- Benedict, K.; Thompson, G.R., 3rd; Deresinski, S.; Chiller, T. Mycotic infections acquired outside areas of known endemicity, United States. Emerg. Infect. Dis. 2015, 21, 1935–1941. [Google Scholar] [CrossRef]
- Dufresne, S.F.; Cole, D.C.; Denning, D.W.; Sheppard, D.C. Serious fungal infections in Canada. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.M.; McTaggart, L.R.; Dunn, D.; Pszczolko, E.; Tsui, K.G.; Morris, S.K.; Stephens, D.; Kus, J.V.; Richardson, S.E. Epidemiology and geographic distribution of blastomycosis, histoplasmosis, and coccidioidomycosis, Ontario, Canada, 1990–2015. Emerg. Infect. Dis. 2018, 24, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Sénéchal, A.; Ferry, T.; Boibieux, A.; Brion, J.P.; Epaulard, O.; Chidiac, C.; Peyramond, D. Imported pulmonary histoplasmosis in three French cavers after a trip to Cuba. J. Travel Med. 2012, 19, 64–65. [Google Scholar] [CrossRef]
- Armstrong, P.A.; Beard, J.D.; Bonilla, L.; Arboleda, N.; Lindsley, M.D.; Chae, S.R.; Castillo, D.; Nuñez, R.; Chiller, T.; de Perio, M.A.; et al. Outbreak of severe histoplasmosis among tunnel Workers-Dominican Republic, 2015. Clin. Infect. Dis. 2018, 66, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Derado, G.; Mody, R.K. Histoplasmosis-Associated hospitalizations in the United States, 2001–2012. Open Forum Infect. Dis. 2016, 3, ofv219. [Google Scholar] [CrossRef] [Green Version]
- Gabal, M.A.; Hassan, F.K.; Siad, A.A.; Karim, K.A. Study of equine histoplasmosis farciminosi and characterization of Histoplasma farciminosum. Sabouraudia 1983, 21, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Develoux, M.; Amona, F.M.; Hennequin, C. Histoplasmosis caused by Histoplasma capsulatum var. duboisii: A comprehensive review of cases from 1993 to 2019. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Kasuga, T.; White, T.J.; Koenig, G.; McEwen, J.; Restrepo, A.; Castañeda, E.; Da Silva Lacaz, C.; Heins-Vaccari, E.M.; De Freitas, R.S.; Zancopé-Oliveira, R.M.; et al. Phylogeography of the fungal pathogen Histoplasma capsulatum. Mol. Ecol. 2003, 12, 3383–3401. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.M.; Patané, J.S.; Taylor, M.L.; Gómez, B.L.; Theodoro, R.C.; de Hoog, S.; Engelthaler, D.M.; Zancopé-Oliveira, R.M.; Felipe, M.S.S.; Barker, B.M. Worldwide phylogenetic distributions and population dynamics of the genus Histoplasma. PLoS Negl. Trop. Dis. 2016, 10, e0004732. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, V.E.; Márquez, R.; Turissini, D.A.; Goldman, W.E.; Matute, D.R. Genome sequences reveal cryptic speciation in the human pathogen Histoplasma capsulatum. mBio 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Index Fungorum Histoplasma ohiense. 2020. Available online: http://www.indexfungorum.org/names/NamesRecord.asp?RecordID=823361 (accessed on 18 November 2020).
- Plan of Action for the Prevention and Control of HIV and Sexually Transmitted Infections 2016–2021. Available online: http://iris.paho.org/xmlui/handle/123456789/34081 (accessed on 18 November 2020).
- Nacher, M.; Leitao, T.S.; Gomez, B.L.; Couppie, P.; Adenis, A.; Damasceno, L.; Demar, M.; Samayoa, B.; Cáceres, D.H.; Pradinaud, R.; et al. The fight against HIV-Associated disseminated histoplasmosis in the Americas: Unfolding the different stories of four centers. J. Fungi 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, D.H.; Gómez, B.L.; Restrepo, Á.; Tobón, Á.M. Histoplasmosis y sida: Factores de riesgo clínicos y de laboratorio asociados al pronóstico de la enfermedad. Infectio 2012, 16, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Adenis, A.A.; Valdes, A.; Cropet, C.; McCotter, O.Z.; Derado, G.; Couppie, P.; Chiller, T.; Nacher, M. Burden of HIV-Associated histoplasmosis compared with tuberculosis in Latin America: A modelling study. Lancet Infect. Dis. 2018, 18, 1150–1159. [Google Scholar] [CrossRef]
- Adenis, A.A.; Nacher, M.; Hanf, M.; Basurko, C.; Dufour, J.; Huber, F.; Aznar, C.; Carme, B.; Couppie, P. Tuberculosis and histoplasmosis among human immunodeficiency virus-infected patients: A comparative study. Am. J. Trop. Med. Hyg. 2014, 90, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Pan American Health Organization (PAHO)/World Health Organization (WHO). Guidelines for Diagnosing and Managing Disseminated Histoplasmosis among People Living with HIV. 2020. Available online: https://iris.paho.org/bitstream/handle/10665.2/52304/9789275122495_eng.pdf?sequence=1&isAllowed=y (accessed on 10 November 2020).
- Caceres, D.H.; Gomez, B.L.; Tobon, A.M.; Chiller, T.M.; Lindsley, M.D. Evaluation of a Histoplasma antigen lateral flow assay for the rapid diagnosis of progressive disseminated histoplasmosis in Colombian patients with AIDS. Mycoses 2019, 63, 139–144. [Google Scholar] [CrossRef]
- Caceres, D.H.; Samayoa, B.E.; Medina, N.G.; Tobon, A.M.; Guzman, B.J.; Mercado, D.; Restrepo, A.; Chiller, T.; Arathoon, E.E.; Gomez, B.L. Multicenter validation of commercial antigenuria reagents to diagnose progressive disseminated histoplasmosis in people living with HIV/AIDS in two Latin American Countries. J. Clin. Microbiol. 2018, 56, e01959-17. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization [WHO]. Second WHO Model List of Essential In Vitro Diagnostics. 2019. Available online: https://www.who.int/medical_devices/publications/Standalone_document_v8.pdf?ua=1 (accessed on 18 November 2020).
- Schwartz, I.S.; Kauffman, C.A. Blastomycosis. Semin. Respir. Crit. Care Med. 2020, 41, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lemos, L.B.; Baliga, M.; Guo, M. Blastomycosis: The great pretender can also be an opportunist. Initial clinical diagnosis and underlying diseases in 123 patients. Ann. Diagn. Pathol. 2002, 6, 194–203. [Google Scholar] [CrossRef]
- Ireland, M.; Klumb, C.; Smith, K.; Scheftel, J. Blastomycosis in Minnesota, USA, 1999–2018. Emerg. Infect. Dis. 2020, 26, 866–875. [Google Scholar] [CrossRef]
- McBride, J.A.; Gauthier, G.M.; Klein, B.S. Clinical manifestations and treatment of blastomycosis. Clin. Chest Med. 2017, 38, 435–449. [Google Scholar] [CrossRef]
- Anderson, J.L.; Frost, H.M.; King, J.P.; Meece, J.K. Racial differences in clinical phenotype and hospitalization of blastomycosis patients. Open Forum Infect. Dis. 2019, 6, ofz438. [Google Scholar] [CrossRef]
- Roy, M.; Benedict, K.; Deak, E.; Kirby, M.A.; McNiel, J.T.; Sickler, C.J.; Eckardt, E.; Marx, R.K.; Heffernan, R.T.; Meece, J.K.; et al. A large community outbreak of blastomycosis in Wisconsin with geographic and ethnic clustering. Clin. Infect. Dis. 2013, 57, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Cano, M.V.; Ponce-de-Leon, G.F.; Tippen, S.; Lindsley, M.D.; Warwick, M.; Hajjeh, R.A. Blastomycosis in Missouri: Epidemiology and risk factors for endemic disease. Epidemiol. Infect. 2003, 131, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, M.S.; Duckro, A.N.; Proia, L.; Semel, J.D.; Huhn, G. The epidemiology of blastomycosis in Illinois and factors associated with death. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 41, e107–e111. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Sterkel, A.K.; Brooks, E.G. Blastomycosis in Wisconsin: Beyond the outbreaks. Acad. Forensic Pathol. 2017, 7, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.D.; Meece, J.K.; Archer, J.R.; Peterson, A.T. Ecologic niche modeling of Blastomyces dermatitidis in Wisconsin. PLoS ONE 2008, 3, e2034. [Google Scholar] [CrossRef] [Green Version]
- Monaco, W.E.; Batsis, J.A. A case of disseminated blastomycosis in Vermont. Diagn. Microbiol. Infect. Dis. 2013, 75, 423–425. [Google Scholar] [CrossRef]
- Austin, A.; Tobin, E.; Judson, M.A.; Hage, C.A.; Hu, K.; Epelbaum, O.; Fantauzzi, J.; Jones, D.M.; Gilroy, S.; Chopra, A. Blastomycosis in the capital district of New York State: A newly identified emerging endemic area. Am. J. Med. 2020, 134, e101–e108. [Google Scholar] [CrossRef] [PubMed]
- Bethuel, N.W.; Siddiqui, N.; Edmonds, L. Pulmonary blastomycosis in rural Upstate New York: A case series and review of literature. Ann. Thorac. Med. 2020, 15, 174–178. [Google Scholar] [CrossRef]
- Arora, K.; Dawkins, R.L.; Bauer, D.F.; Palmer, C.A.; Hackney, J.R.; Markert, J.M. Intracranial blastomycotic abscess mimicking malignant brain neoplasm: Successful treatment with voriconazole and surgery. Surg. Neurol. Int. 2015, 6, 174. [Google Scholar]
- Lohrenz, S.; Minion, J.; Pandey, M.; Karunakaran, K. Blastomycosis in Southern Saskatchewan 2000–2015: Unique presentations and disease characteristics. Med. Mycol. 2018, 56, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Alpern, J.D.; Bahr, N.C.; Vazquez-Benitez, G.; Boulware, D.R.; Sellman, J.S.; Sarosi, G.A. Diagnostic delay and antibiotic overuse in acute pulmonary blastomycosis. Open Forum Infect. Dis. 2016, 3, ofw078. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.M.; McTaggart, L.R.; Zhang, S.X.; Low, D.E.; Stevens, D.A.; Richardson, S.E. Phylogenetic analysis reveals a cryptic species Blastomyces gilchristii, sp. nov. within the human pathogenic fungus Blastomyces dermatitidis. PLoS ONE 2013, 8, e59237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meece, J.K.; Anderson, J.L.; Gruszka, S.; Sloss, B.L.; Sullivan, B.; Reed, K.D. Variation in clinical phenotype of human infection among genetic groups of Blastomyces dermatitidis. J. Infect. Dis. 2013, 207, 814–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, S.W.; Dismukes, W.E.; Proia, L.A.; Bradsher, R.W.; Pappas, P.G.; Threlkeld, M.G.; Kauffman, C.A.; Infectious Diseases Society of America. Clinical practice guidelines for the management of blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.S.; Wiederhold, N.P.; Hanson, K.E.; Patterson, T.F.; Sigler, L. Blastomyces helicus, a New Dimorphic Fungus Causing Fatal Pulmonary and Systemic Disease in Humans and Animals in Western Canada and the United States. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz-Telles, F.; Fahal, A.H.; Falci, D.R.; Caceres, D.H.; Chiller, T.; Pasqualotto, A.C. Neglected endemic mycoses. Lancet Infect. Dis. 2017, 17, e367–e377. [Google Scholar] [CrossRef]
- Brummer, E.; Castaneda, E.; Restrepo, A. Paracoccidioidomycosis: An update. Clin. Microbiol. Rev. 1993, 6, 89–117. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; Tobon, A.; Restrepo, A.; Queiroz-Telles, F.; Nucci, M. Epidemiology of endemic systemic fungal infections in Latin America. Med. Mycol. 2011, 49, 785–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restrepo, A.; Salazar, M.E.; Cano, L.E.; Stover, E.P.; Feldman, D.; Stevens, D.A. Estrogens inhibit mycelium-to-yeast transformation in the fungus Paracoccidioides brasiliensis: Implications for resistance of females to paracoccidioidomycosis. Infect. Immun. 1984, 46, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Shankar, J.; Restrepo, A.; Clemons, K.V.; Stevens, D.A. Hormones and the resistance of women to paracoccidioidomycosis. Clin. Microbiol. Rev. 2011, 24, 296–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restrepo, A.; Robledo, M.; Ospina, S.; Restrepo, M.; Correa, A. Distribution of paracoccidioidin sensitivity in Colombia. Am. J. Trop. Med. Hyg. 1968, 17, 25–37. [Google Scholar]
- Griffiths, J.; Lopes Colombo, A.; Denning, D.W. The case for paracoccidioidomycosis to be accepted as a neglected tropical (fungal) disease. PLoS Negl. Trop. Dis. 2019, 13, e0007195. [Google Scholar] [CrossRef]
- Ajello, L.; Polonelli, L. Imported paracoccidioidomycosis: A public health problem in non-endemic areas. Eur. J. Epidemiol. 1985, 1, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Bethlem, E.P.; Capone, D.; Maranhao, B.; Carvalho, C.R.; Wanke, B. Paracoccidioidomycosis. Curr. Opin. Pulm. Med. 1999, 5, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Calle, D.; Rosero, D.S.; Orozco, L.C.; Camargo, D.; Castaneda, E.; Restrepo, A. Paracoccidioidomycosis in Colombia: An ecological study. Epidemiol. Infect. 2001, 126, 309–315. [Google Scholar] [CrossRef]
- Restrepo, A.; McEwen, J.G.; Castaneda, E. The habitat of Paracoccidioides brasiliensis: How far from solving the riddle? Med. Mycol. 2001, 39, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, R. New trends in paracoccidioidomycosis epidemiology. J. Fungi 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrozo, L.V.; Benard, G.; Silva, M.E.; Bagagli, E.; Marques, S.A.; Mendes, R.P. First description of a cluster of acute/subacute paracoccidioidomycosis cases and its association with a climatic anomaly. PLoS Negl. Trop. Dis. 2010, 4, e643. [Google Scholar] [CrossRef]
- Barrozo, L.V.; Mendes, R.P.; Marques, S.A.; Benard, G.; Silva, M.E.; Bagagli, E. Climate and acute/subacute paracoccidioidomycosis in a hyper-endemic area in Brazil. Int. J. Epidemiol. 2009, 38, 1642–1649. [Google Scholar] [CrossRef] [Green Version]
- Giusiano, G.; Aguirre, C.; Vratnica, C.; Rojas, F.; Corallo, T.; Cattana, M.E.; Fernandez, M.; Mussin, J.; de Los Angeles Sosa, M. Emergence of acute/subacute infant-juvenile paracoccidioidomycosis in Northeast Argentina: Effect of climatic and anthropogenic changes? Med. Mycol. 2019, 57, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.M.; Theodoro, R.C.; Oliveira, F.F.; Machado, G.C.; Hahn, R.C.; Bagagli, E.; San-Blas, G.; Soares Felipe, M.S. Paracoccidioides lutzii sp. nov.: Biological and clinical implications. Med. Mycol. 2014, 52, 19–28. [Google Scholar]
- Turissini, D.A.; Gomez, O.M.; Teixeira, M.M.; McEwen, J.G.; Matute, D.R. Species boundaries in the human pathogen Paracoccidioides. Fungal Genet. Biol. FG B 2017, 106, 9–25. [Google Scholar] [CrossRef]
- Index Fungorum Paracoccidioides venezuelensis. Available online: http://www.indexfungorum.org/names/NamesRecord.asp?RecordID=816862 (accessed on 18 November 2020).
- Lopes-Bezerra, L.M.; Mora-Montes, H.M.; Zhang, Y.; Nino-Vega, G.; Rodrigues, A.M.; de Camargo, Z.P.; de Hoog, S. Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med. Mycol. 2018, 56, 126–143. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B. Sporotrichosis cases in commercial insurance data, United States, 2012–2018. Emerg. Infect. Dis. J. 2020, 26, 2783. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.A.; Derado, G.; Mody, R.K.; Benedict, K. Sporotrichosis-Associated hospitalizations, United States, 2000–2013. Emerg. Infect. Dis. 2016, 22, 1817–1820. [Google Scholar] [CrossRef] [Green Version]
- Hajjeh, R.; McDonnell, S.; Reef, S.; Licitra, C.; Hankins, M.; Toth, B.; Padhye, A.; Kaufman, L.; Pasarell, L.; Cooper, C.; et al. Outbreak of sporotrichosis among tree nursery workers. J. Infect. Dis. 1997, 176, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, F.B.; Schuchat, A.; Hibbs, J.R.; Kondracki, S.F.; Salkin, I.F.; Dixon, D.M.; Chang, H.G.; Duncan, R.A.; Hurd, N.J.; Morse, D.L. A multistate outbreak of sporotrichosis associated with sphagnum moss. Am. J. Epidemiol. 1992, 136, 475–487. [Google Scholar] [CrossRef]
- Dooley, D.P.; Bostic, P.S.; Beckius, M.L. Spook house sporotrichosis. A point-source outbreak of sporotrichosis associated with hay bale props in a Halloween haunted-house. Arch. Intern. Med. 1997, 157, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- CDC. Multistate outbreak of sporotrichosis in seedling handlers, 1988. MMWR Morb. Mortal. Wkly. Rep. 1988, 37, 652–653. [Google Scholar]
- Dahl, B.A.; Silberfarb, P.M.; Sarosi, G.A.; Weeks, R.J.; Tosh, F.E. Sporotrichosis in children. Report of an epidemic. JAMA 1971, 215, 1980–1982. [Google Scholar] [CrossRef]
- Rossow, J.A.; Queiroz-Telles, F.; Caceres, D.H.; Beer, K.D.; Jackson, B.R.; Pereira, J.G.; Ferreira Gremião, I.D.; Pereira, S.A. one health approach to combatting Sporothrix brasiliensis: Narrative review of an emerging zoonotic fungal pathogen in South America. J. Fungi 2020, 6, 247. [Google Scholar] [CrossRef]
- Silva, M.B.; Costa, M.M.; Torres, C.C.; Galhardo, M.C.; Valle, A.C.; Magalhães, A.; Sabroza, P.C.; Magalhães de Oliveira, R. Urban sporotrichosis: A neglected epidemic in Rio de Janeiro, Brazil. Cad. Saude Publica 2012, 28, 1867–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gremião, I.D.; Miranda, L.H.; Reis, E.G.; Rodrigues, A.M.; Pereira, S.A. Zoonotic epidemic of sporotrichosis: Cat to human Transmission. PLoS Pathog. 2017, 13, e1006077. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix species causing outbreaks in animals and humans driven by animal-animal transmission. PLoS Pathog. 2016, 12, e1005638. [Google Scholar] [CrossRef]
- Córdoba, S.; Isla, G.; Szusz, W.; Vivot, W.; Hevia, A.; Davel, G.; Canteros, C.E. Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses 2018, 61, 441–448. [Google Scholar] [CrossRef]
- Etchecopaz, A.; Scarpa, M.; Mas, J.; Cuestas, M.L. Sporothrix brasiliensis: A growing hazard in the Northern area of Buenos Aires Province? Rev. Argent. Microbiol. 2020, 52, 350–351. [Google Scholar] [CrossRef] [PubMed]
- García Duarte, J.M.; Wattiez Acosta, V.R.; Fornerón Viera, P.M.L.; Aldama Caballero, A.; Gorostiaga Matiauda, G.A.; Rivelli de Oddone, V.B. Esporotricosis trasmitida por gato doméstico. Reporte de un caso familiar. Rev. Nac. (Itauguá) 2017, 9, 67–76. [Google Scholar] [CrossRef]
- PAHO. Sporothrix brasiliensis, an emerging fungal pathogen, notable for its zoonotic transmission and epidemic potential for human and animal health in the Americas. PLoS Pathogen. 2019, 13, e1006077. [Google Scholar]
Coccidioidomycosis | Histoplasmosis | Blastomycosis | Paracoccidioidomycosis | Sporotrichosis | |
---|---|---|---|---|---|
Taxonomy | C. immitis and C. posadasii | H. capsulatum New species proposed, but classification currently not validated | In North America: B. dermatitidis, B. gilchristii and B. helicus | P. brasiliensis and P. lutzii New species proposed, but classification currently not validated | Sporothrix species complex (S. schenckii, S. brasiliensis, S. globosa, S. mexicana, S. luriei, and S. pallida) |
Ecology | Hot arid regions, with prolonged dry season and short monsoon rainy season | Soil contaminated with Histoplasma, particularly soil contained bird or bat guano | Moist soil and decomposing organic matter such as wood and leaves | Unknown. Environmental characteristics include altitude from 1000 to 1499 m ASL, high annual rainfall, and presence of humid forests | Saprophytic of soil and plants. Found on a variety of mammals (especially cats) |
Known geographic range | Western United States, northern regions of Mexico, Guatemala, Honduras, Venezuela, Brazil, Paraguay, and Argentina | Most countries in the Americas and the major islands in the Caribbean, except the western half of Mexico, the western coast of Peru, and most of Chile | In the Americas, primarily in North America (United States and Canada), especially areas surrounding the Ohio and Mississippi River valleys and the Great Lakes region | Restricted to Latin American countries, from Mexico to Argentina. Most cases from Brazil. Extremely rare in the Caribbean | Worldwide distribution, especially in tropical and subtropical regions. S. brasiliensis has been reported mostly in eastern Brazil, Argentina, and Paraguay |
Clinical features | Pulmonary disease: acute respiratory infection, pulmonary nodules and cavities, and chronic fibrocavitary pneumonia Extrapulmonary disease: bones, joints, central nervous system | Acute and subacute pulmonary disease Disseminated disease (including acute, subacute, and chronic stages) Chronic pulmonary disease Disease sequelae * | Pulmonary disease: acute and chronic infection, and acute respiratory distress syndrome Extrapulmonary disease: skin, genitourinary, osseous, and central nervous system | Subclinical infection Residual form Acute/subacute disease Chronic progressive disease >90% of cases occur in males | Lymphocutaneous disease Multifocal extracutaneous disease Pulmonary disease (rare) |
Epidemiology | Approximately 15,000 cases reported per year in the United States, mainly from Arizona and California | Approximately 1000 cases reported from 12 U.S. states annually, but the true burden is unknown. In PLHIV from LATAM was estimated 6710–15,657 cases (2020) | In U.S. states where disease is reportable, incidence rates 1 to 2 cases per 100,000 population. Hyperendemic regions rates ranging from 10 to 40 cases per 100,000 persons | Most cases reported in Brazil (~80%). In endemic countries, estimated prevalence ranges from 0.3–3 cases per 100,000 population | Estimated 2 cases per million population in the United States |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockhart, S.R.; Toda, M.; Benedict, K.; Caceres, D.H.; Litvintseva, A.P. Endemic and Other Dimorphic Mycoses in The Americas. J. Fungi 2021, 7, 151. https://doi.org/10.3390/jof7020151
Lockhart SR, Toda M, Benedict K, Caceres DH, Litvintseva AP. Endemic and Other Dimorphic Mycoses in The Americas. Journal of Fungi. 2021; 7(2):151. https://doi.org/10.3390/jof7020151
Chicago/Turabian StyleLockhart, Shawn R., Mitsuru Toda, Kaitlin Benedict, Diego H. Caceres, and Anastasia P. Litvintseva. 2021. "Endemic and Other Dimorphic Mycoses in The Americas" Journal of Fungi 7, no. 2: 151. https://doi.org/10.3390/jof7020151
APA StyleLockhart, S. R., Toda, M., Benedict, K., Caceres, D. H., & Litvintseva, A. P. (2021). Endemic and Other Dimorphic Mycoses in The Americas. Journal of Fungi, 7(2), 151. https://doi.org/10.3390/jof7020151