Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Strains
2.2. Morphology and Maximum Growth Temperature
2.3. Molecular Phylogeny
3. Results
3.1. Phylogenetic Analyses
3.2. Taxonomy
3.2.1. Absidia abundans H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.
3.2.2. Absidia lobata H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.
3.2.3. Absidia radiata H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.
3.2.4. Absidia sichuanensis H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.
3.2.5. Absidia yunnanensis H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.
3.3. Key to the Species of Absidia in China
1. | Maximum growth temperature ≤ 28 °C | 2 |
1. | Maximum growth temperature > 28 °C | 6 |
2. | Sporangiospores subglobose to globose | 3 |
2. | Sporangiospores cylindrical | 4 |
3. | Maximum growth temperature 26 °C; sporangiospores subglobose to globose | A. lobata |
3. | Maximum growth temperature 28 °C; sporangiospores globose | A. globospora |
4. | Maximum growth temperature 24 °C | A. frigida |
4. | Maximum growth temperature 28 °C | 5 |
5. | Sporangiophores > 5 in whorls | A. psychrophilia |
5. | Sporangiophores ≤ 5 in whorls | A. sichuanensis |
6. | Sporangiospores two or more types | 7 |
6. | Sporangiospores one type | 12 |
7. | Sporangiospores sometimes irregular in shape | 10 |
7. | Sporangiospores never irregular in shape | A. globospora |
8. | Sporangia elliptical or elongate | A. repens |
8. | Sporangia globose to pyriform | 9 |
9. | Hyphae without swellings; sporangiophores monopodial or verticillate | A. idahoensis |
9. | Hyphae with swellings; sporangiophores sometimes unbranched | A. turgida |
10. | Columellae with projections | A. abundans |
10. | Columellae without projections | 11 |
11. | Sporangiospores globose, 3.8–7.7 µm in diameter, or cylindrical to oval | A. heterospora |
11. | Sporangiospores globose, 2.5–3.5 µm in diameter, or cylindrical | A. gemella |
12. | Sporangiospores globose | A. glauca |
12. | Sporangiospores cylindrical, oval or ellipsoid | 13 |
13. | Collars absent | 14 |
13. | Collars present | 16 |
14. | Sporangiospores cylindrical | A. longissima |
14. | Sporangiospores oval or ellipsoid | 15 |
15. | Sporangiospores oval to ellipsoid; sporangiophores 2–6 in whorls with swellings | A. ovalispora |
15. | Sporangiospores oval; sporangiophores 2–5 in whorls without swellings | A. radiata |
16. | Sporangiophores neither in pairs nor in whorls | A. panacisoli |
16. | Sporangiophores in pairs and in whorls | 17 |
17. | Sporangiophores 7–11 in whorls | 18 |
17. | Sporangiophores ≤ 6 in whorls | 20 |
18. | Rhizoids aseptate | A. spinosa |
18. | Rhizoids septate | 19 |
19. | Projections < 5 µm long, tapering at top | A. zonata |
19. | Projections > 5 µm long, rounded at top | A. pseudocylindrospora |
20. | Maximum growth temperature > 34 °C | A. cylindrospora |
20. | Maximum growth temperature ≤ 34 °C | 21 |
21. | Sporangiophores always swollen | A. yunnanensis |
21. | Sporangiophores never swollen | A. medulla |
3.4. Species Distribution and Ecological Habitat in China
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Tieghem, P. Troisième mémoire sur les Mucorinées. Ann. Sci. Nat. Bot. Ser. 1876, 4, 312–399. [Google Scholar]
- Von Arx, J. On Mucoraceae s. str. and other families of the Mucorales. Sydowia 1984, 35, 10–26. [Google Scholar]
- Voigt, K.; Cigelnik, E.; O’donnell, K. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. J. Clin. Microbiol. 1999, 37, 3957–3964. [Google Scholar] [CrossRef] [Green Version]
- Voigt, K.; Wöstemeyer, J. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. Gene 2001, 270, 113–120. [Google Scholar] [CrossRef]
- O’donnell, K.; Lutzoni, F.M.; Ward, T.J.; Benny, G.L. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyphyly on a large scale. Mycologia 2001, 93, 286–297. [Google Scholar] [CrossRef]
- Cannon, P.F.; Kirk, P.M. Fungal Families of the World; Cabi: Wallingford, UK, 2007. [Google Scholar]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Hesseltine, C.W.; Ellis, J.J. The genus Absidia: Gongronella and cylindrical-spored species of Absidia. Mycologia 1964, 56, 568–601. [Google Scholar] [CrossRef]
- Hoffmann, K. Identification of the genus Absidia (Mucorales, Zygomycetes): A comprehensive taxonomic revision. In Molecular Identification of Fungi; Gherbawy, Y., Voigt, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 439–460. [Google Scholar] [CrossRef]
- Hoffmann, K.; Discher, S.; Voigt, K. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol. Res. 2007, 111, 1169–1183. [Google Scholar] [CrossRef]
- Hoffmann, K.; Voigt, K. Absidia parricida plays a dominant role in biotrophic fusion parasitism among mucoralean fungi (Zygomycetes): Lentamyces, a new genus for A. parricida and A. zychae. Plant Biol. 2009, 11, 537–554. [Google Scholar] [CrossRef]
- Benny, G.L.; Humber, R.A.; Morton, J.B. Zygomycota: Zygomycetes. In Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research); McLaughlin, D.J., McLaughlin, E.G., Lemke, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 7A, pp. 113–146. [Google Scholar] [CrossRef]
- Liu, X.Y. Taxonomy and Phylogeny of the Absidia (Cunninghamellaceae, Mucorales) Introducing Nine New Species and Two New Combinations from China; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, J.; Zong, T.K.; Liu, X.L.; Ren, L.Y.; Lin, Q.; Qiao, M.; Nie, Y.; Zhang, Z.D.; Liu, X.Y. Two new species in the family Cunninghamellaceae from China. Mycobiology. 2021, 49, 142–150. [Google Scholar] [CrossRef]
- Zong, T.K.; Zhao, H.; Liu, X.L.; Ren, L.Y.; Zhao, C.L.; Liu, X.Y. Taxonomy and phylogeny of four new species in Absidia (Cunninghamellaceae, Mucorales) from China. Front. Microbiol. 2021, 12, 2181. [Google Scholar] [CrossRef]
- Zhao, H.; Nie, Y.; Zong, T.K.; Dai, Y.C.; Liu, X.Y. Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity. 2022, 14, 132. [Google Scholar] [CrossRef]
- Hurdeal, V.G.; Gentekaki, E.; Lee, H.B.; Jeewon, R.; Hyde, K.D.; Tibpromma, S.; Mortimer, P.E.; Xu, J. Mucoralean fungi in Thailand: Novel species of Absidia from tropical forest soil. Cryptogam. Mycol. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Yu, Y.; Zhu, H.; Yang, S.Z.; Yang, T.M.; Zhang, M.Y.; Zhang, Y.X. Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. Int. J. Syst. Evol. Microbiol. 2018, 68, 2468–2472. [Google Scholar] [CrossRef] [PubMed]
- Kaitera, J.; Henttonen, H.M.; Müller, M.M. Fungal species associated with butt rot of mature Scots pine and Norway spruce in northern boreal forests of Northern Ostrobothnia and Kainuu in Finland. Eur. J. Plant Pathol. 2019, 154, 541–554. [Google Scholar] [CrossRef]
- Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
- Absidia glauca Hagem in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2021. Available online: https://doi.org/10.15468/39omei (accessed on 22 April 2022).
- Absidia repens Tiegh. in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2021. Available online: https://doi.org/10.15468/39omei (accessed on 22 April 2022).
- Větrovský, T.; Morais, D.; Kohout, P.; Lepinay, C.; Algora, G.C.; Awokunle, H.S.; Baldrian, P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 2020, 7, 228. [Google Scholar] [CrossRef] [PubMed]
- Absidia heterospora Y. Ling in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2021. Available online: https://doi.org/10.15468/39omei (accessed on 22 April 2022).
- Hesseltine, C.W.; Mahoney, M.K.; Peterson, S.W. A new species of Absidia from an alkali bee brood chamber. Mycologia 1990, 82, 523–526. [Google Scholar] [CrossRef]
- Vánová, M. Contribution to the taxonomy of the genus Absidia (Mucorales) I. Absidia macrospora sp. nov. Ceská Mykologie 1968, 22, 296–300. [Google Scholar]
- Zheng, R.Y.; Liu, X.Y. Species Catalogue of China, Volume 3. Fungi: Chtrid, Zygomycotan, Glomeromycotan Fungi; Science Press: Beijing, China, 2018. [Google Scholar]
- Cordeiro, L.; Lee, H.B.; Nguyen, T.T.T.; Gurgel, L.M.S.; de Azevedo, A.L.C.M. Absidia bonitoensis (Mucorales, Mucoromycota), a new species isolated from the soil of an upland Atlantic forest in Northeastern Brazil. Nova Hedwig. 2021, 112, 241–251. [Google Scholar] [CrossRef]
- Cordeiro, T.R.L.; Nguyen, T.T.T.; Lima, D.X.; da Silva, S.B.G.; de Lima, C.F.; Leitão, J.D.; Gurgel, L.M.S.; Lee, H.B.; de Santiago, A.L.M.A. Two new species of the industrially relevant genus Absidia (Mucorales) from soil of the Brazilian Atlantic Forest. Acta Bot. Bras. 2020, 34, 549–558. [Google Scholar] [CrossRef]
- Crous, P.W.; Cowan, D.A.; Maggs-Kölling, G.; Yilmaz, N.; Thangavel, R.; Wingfield, M.J.; Noordeloos, M.E.; Dima, B.; Brandrud, T.E.; Jansen, G.M.; et al. Fungal planet description sheets: 1182–1283. Pers. Mol. Phylogeny Evol. Fungi 2021, 46, 313–528. [Google Scholar] [CrossRef]
- Crous, P.W.; Luangsa-Ard, J.J.; Wingfield, M.J.; Carnegie, A.J.; Hernández-Restrepo, M.; Lombard, L.; Roux, J.; Barreto, R.W.; Baseia, I.G.; Cano-Lira, J.F.; et al. Fungal Planet description sheets: 785–867. Pers. Mol. Phylogeny Evol. Fungi 2018, 41, 238–417. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Wingfield, M.J.; Chooi, Y.H.; Gilchrist, C.L.; Lacey, E.; Pitt, J.I.; Roets, F.; Swart, W.J.; Cano-Lira, J.F.; Valenzuela-Lopez, N.; et al. Fungal planet description sheets: 1042–1111. Pers. Mol. Phylogeny Evol. Fungi 2020, 44, 301–459. [Google Scholar] [CrossRef] [PubMed]
- Leitao, J.D.; Cordeiro, T.R.; Nguyen, T.T.T.; Lee, H.B.; Gurgel, L.M.; de Santiago, A.L.D.A. Absidia aguabelensis sp. nov.: A new mucoralean fungi isolated from a semiarid region in Brazil. Phytotaxa 2021, 516, 83–91. [Google Scholar] [CrossRef]
- Lima, D.X.; Cordeiro, T.R.; de Souza, C.A.; de Oliveira, R.J.; Lee, H.B.; Souza-Motta, C.M.; de Santiago, A.L.A. Morphological and molecular evidence for two new species of Absidia from Neotropic soil. Phytotaxa 2020, 446, 61–71. [Google Scholar] [CrossRef]
- Urquhart, A.S.; Idnurm, A. Absidia healeyae: A new species of Absidia (Mucorales) isolated from Victoria, Australia. Mycoscience 2021, 62, 331–335. [Google Scholar] [CrossRef]
- Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Jones, E.G.; Tibpromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018, 89, 1–236. [Google Scholar] [CrossRef]
- Benny, G.L. Methods used by Dr. RK Benjamin, and other mycologists, to isolate zygomycetes. Aliso 2008, 26, 37–61. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Chen, G.Q.; Hu, F.M. Monosporus varieties of Syncephalastrum. Mycosystema 1988, 1, 35–52. [Google Scholar]
- Zheng, R.Y.; Liu, X.Y. Taxa of Pilaira (Mucorales, Zygomycota) from China. Nova Hedwig. 2009, 88, 255–267. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Chen, G.Q.; Huang, H.; Liu, X.Y. A monograph of Rhizopus. Sydowia 2007, 59, 273–372. [Google Scholar]
- Zheng, R.Y.; Liu, X.Y.; Li, R.Y. More Rhizomucor causing human mucormycosis from China: R. chlamydosporus sp. nov. Sydowia 2009, 61, 135–147. [Google Scholar]
- Nie, Y.; Cai, Y.; Gao, Y.; Yu, D.S.; Wang, Z.M.; Liu, X.Y.; Huang, B. Three new species of Conidiobolus sensu stricto from plant debris in eastern China. MycoKeys 2020, 73, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Wang, Z.M.; Zhao, H.; Liu, X.Y.; Huang, B. Complete mitochondrial genome of Neoconidiobolus thromboides (Entomophthorales: Ancylistaceae). Mitochondrial DNA Part B. 2021, 6, 1840–1841. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Yu, D.S.; Wang, C.F.; Liu, X.Y.; Huang, B. A taxonomic revision of the genus Conidiobolus (Ancylistaceae, Entomophthorales): Four clades including three new genera. MycoKeys 2020, 66, 55–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. PAUP*: Phylogenetic analysis using parsimony (* and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.M.; Chuang, S.C.; Chen, S.J. Notes on zygomycetes of Taiwan (IV): Three Absidia species (Mucoraceae). Fungal Sci. 2004, 19, 125–131. [Google Scholar]
- Hsu, T.H.; Ho, H.M. Notes on Zygomycetes of Taiwan VIII: Three new records of Absidia in Taiwan. Fungal Sci. 2010, 25, 5–11. [Google Scholar] [CrossRef]
- Hsu, T.H.; Ho, H.M.; Chien, C.Y. Taxonomic Study of Absidia sensu lato in Taiwan. Asian Mycological Congress and 11th International Marine and Freshwater Mycology Symposium Abstract Book; Walter de Gruyter: Berlin, Germany, 2009; p. 42. [Google Scholar]
- Ellis, J.J.; Hesseltine, C.W. The genus Absidia: Globose-spored species. Mycologia 1965, 57, 222–235. [Google Scholar] [CrossRef]
- Mehrotra, B.S.; Nand, K. An interesting new species of Absidia. Can. J. Bot. 1967, 45, 2223–2224. [Google Scholar] [CrossRef]
- Ellis, J.J.; Hesseltine, C.W. Species of Absidia with ovoid sporangiospores. II. Sabouraudia 1967, 5, 59–77. [Google Scholar] [CrossRef]
- Vanova, M. Contribution to the taxonomy of the genus Absidia (Mucorales). III. Absidia fassatiae spec. nov. Ceska Mykol. 1971, 25, 173–176. [Google Scholar]
- Subrahmanyam, A. Bat guano fungi. India J. Bot. 1990, 13, 154–158. [Google Scholar]
- Davoust, N.; Persson, A. Effects of growth morphology and time of harvesting on the chitosan yield of Absidia repens. Appl. Microbiol. Biotechnol. 1992, 37, 572–575. [Google Scholar] [CrossRef]
- Kitahata, S.; Ishikawa, H.; Miyata, T.; Tanaka, O. Production of rubusoside derivatives by transgalactosylation of various α-galactosidases. Agric. Biol. Chem. 1989, 53, 2929–2934. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Zubir, M.M.F.A.; Hadibarata, T. Biotransformation studies of cresol red by Absidia spinosa M15. J. Environ. Manag. 2016, 172, 107–111. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, M.L.; Liu, Z.; Zhang, M.Z.; Wang, Y.N.; Ju, X.; Song, Z.; Ren, L.Y.; Jia, B.S.; Qiao, M.; et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. BioEnerg Res. 2021, 14, 1196–1206. [Google Scholar] [CrossRef]
- Wu, F.; Yuan, H.S.; Zhou, L.W.; Yuan, Y.; Cui, B.K.; Dai, Y.C. Polypore diversity in South China. Mycosystema 2020, 39, 653–682. [Google Scholar] [CrossRef]
- Zheng, H.D.; Zhuang, W.Y.; Wang, X.C.; Zeng, Z.Q.; Wei, S.L. Ascomycetes from the Qilian Mountains, China—Pezizomycetes and Leotiomycetes. Mycosystema 2020, 39, 1823–1845. [Google Scholar] [CrossRef]
- Dai, Y.C.; Yang, Z.L.; Cui, B.K.; Wu, G.; Yuan, H.S.; Zhou, L.W.; He, S.H.; Ge, Z.W.; Wu, F.; Wei, Y.L.; et al. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 2021, 40, 770–805. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, L.W.; Vlasák, J.; Dai, Y.C. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Divers. 2022, 113, 1–192. [Google Scholar] [CrossRef]
Country | Type | Percentage (%) | Country | Type | Percentage (%) |
---|---|---|---|---|---|
China | 9 | 19.6 | Canada | 1 | 2.2 |
Brazil | 8 | 17.4 | Cuba | 1 | 2.2 |
USA | 4 | 8.7 | Egypt | 1 | 2.2 |
France | 3 | 6.5 | Netherland | 1 | 2.2 |
Korea | 3 | 6.5 | Mexico | 1 | 2.2 |
Czechia | 2 | 4.3 | Pakistan | 1 | 2.2 |
India | 2 | 4.3 | Switzerland | 1 | 2.2 |
Thailand | 2 | 4.3 | Tanzania | 1 | 2.2 |
Australia | 1 | 2.2 | Unknown | 4 | 8.7 |
Species | Strain | GenBank Accession Nos. | |
---|---|---|---|
ITS | LSU rDNA | ||
Absidia abundans | CGMCC 3.16255,T | ON074695 | ON074683 |
A. abundans | XY09265 | ON074697 | ON074681 |
A. abundans | XY09274 | ON074696 | ON074682 |
A. aguabelensis | URM 2813, T | MW763074 | MW762874 |
A. anomala | CBS 125.68, T | NR_103626 | NG_058562 |
A. bonitoensis | URM 7889, T | MN977786 | MN977805 |
A. caatingaensis | URM 7156, T | KT308169 | KT308171 |
A. caerulea | CBS 101.36 | MH855718 | MH867230 |
A. caerulea | FSU 767 | AY944870 | AF113443 |
A. californica | CBS 314.78 | MH861141 | MH872902 |
A. californica | FSU 4747 | AY944872 | EU736300 |
A. californica | FSU 4748 | AY944873 | EU736301 |
A. cornuta | URM 6100 | MN625256 | MN625255 |
A. cuneospora | CBS 101.59, T | NR_159602 | NG058559 |
A. cylindrospora | CBS 100.08 | JN205822 | JN206588 |
A. edaphica | MFLU 20-0416 | MT396372 | MT393987 |
A. frigida | CGMCC 3.16201, T | OM108487 | OM030223 |
A. fusca | CBS 102.35 | NR103625 | NG058552 |
A. gemella | CGMCC 3.16202, T | OM108488 | OM030224 |
A. glauca | CBS 129233 | MH865253 | MH876693 |
A. glauca | CBS 101.08, T | NR_111658 | NG_058550 |
A. glauca | FSU 660 | AY944879 | EU736302 |
A. globospora | CGMCC 3.16031, T | MW671537 | MW671544 |
A. globospora | CGMCC 3.16035 | MW671538 | MW671545 |
A. globospora | CGMCC 3.16036 | MW671539 | MW671546 |
A. healeyae | UoMAU1, T | − | MT436027 |
A. heterospora | SHTH021 | JN942683 | JN982936 |
A. idahoensis | CBS 103.91, T | − | NG_058545 |
A. inflata | NRRL 6591 | − | YES |
A. jindoensis | CNUFC-PTI1-1, T | MF926622 | MF926616 |
A. koreana | EML-IFS45-1, T | KR030062 | KR030056 |
A. lobata | CGMCC 3.16256, T | ON074690 | ON074679 |
A. lobata | XY08832-1 | ON074691 | ON074680 |
A. longissima | CGMCC 3.16203, T | OM108489 | OM030225 |
A. macrospora | FSU 4746 | AY944882 | EU736303 |
A. medulla | CGMCC 3.16034, T | MW671542 | MW671549 |
A. montepascoalis | URM 2818, T | NR_172995 | − |
A. multispora | URM 8210, T | MN953780 | MN953782 |
A. ovalispora | CGMCC 3.16018, T | MW264071 | MW264130 |
A. panacisoli | SYPF 7183, T | MF522181 | MF522180 |
A. pararepens | CCF 6352 | MT193669 | MT192308 |
A. pernambucoensis | URM 7219, T | MN635568 | MN635569 |
A. pseudocylindrospora | CBS 100.62, T | NR_145276 | NG_058561 |
A. pseudocylindrospora | EML-FSDY6-2 | KU923817 | KU923814 |
A. psychrophilia | FSU 4745 | AY944874 | EU736306 |
A. radiata | CGMCC 3.16257, T | ON074698 | ON074684 |
A. radiata | XY09330-1 | ON074699 | ON074685 |
A. repens | CBS 115583, T | NR103624 | HM849706 |
A. saloaensis | URM 8209, T | MN953781 | MN953783 |
A. sichuanensis | CGMCC 3.16258, T | ON074692 | ON074688 |
A. sichuanensis | XY09119 | ON074693 | − |
A. sichuanensis | XY09633 | ON074694 | ON074689 |
A. soli | MFLU 20-0414, T | MT396373 | MT393988 |
A. spinosa | FSU 551 | AY944887 | EU736307 |
A. stercoraria | EML-DG8-1, T | NR_148090 | KT921998 |
A. terrestris | FMR 14989 | LT795003 | LT795005 |
A. turgida | CGMCC 3.16032, T | MW671540 | MW671547 |
A. yunnanensis | CGMCC 3.16259, T | ON074700 | ON074687 |
A. yunnanensis | XY09528 | ON074701 | ON074686 |
A. zonata | CGMCC 3.16033, T | MW671541 | MW671548 |
Cunninghamella blakesleeana | CBS 782.68 | JN205869 | MH870950 |
C. elegans | CBS 167.53 | JN205882 | HM849700 |
Species | Location | Habitat | References |
---|---|---|---|
A. abundans | Yunnan | forest soil | This study |
A. cylindrospora | Jilin, Taiwan, and Xinjiang | Soil and leaf litter | [27,50] |
A. frigida | Xinjiang | soil | [16] |
A. gemella | Xinjiang | soil | [16] |
A. glauca | Beijing, Fujian, Hebei, Hubei, Inner Mongolia, Jilin, Liaoning, Shaanxi, Sichuan, Taiwan, Xinjiang, and Yunnan | soil, forest soil, air, rhizosphere soil of Populus and Pinus, and leaf litter | [27,50] |
A. globospora | Hubei and Shaanxi | soil | [15] |
A. heterospora | Guizhou, Sichuan, and Taiwan | soil | [27,50] |
A. idahoensis | Yunnan | Soil and bee | [24] |
A. lobata | Yunnan | rhizosphere soil of Pinus yunnanensis | This study |
A. longissima | Yunnan | soil | [16] |
A. medulla | Fujian, Jiangxi, and Yunnan | soil | [15] |
A. ovalispora | Yunnan | soil | [14] |
A. panacisoli | Yunnan | rhizosphere soil of Panax notoginseng | [16] |
A. pseudocylindrospora | Taiwan | soil | [27,51] |
A. psychrophilia | Heilongjiang and Taiwan | soil, leaf litter, rhizosphere soil of Pinus, and gland of Ambrosia beetle | [27,51] |
A. radiata | Yunnan | forest soil | This study |
A. repens | Xinjiang and Yunnan | soil, dung, paper, rhizosphere soil of Ambrosia artemisiifolia, and cave depositions | [27] |
A. sichuanensis | Sichuan and Tibet | grassland soil, rhizosphere soil of Picea asperata, and rhizosphere soil of Pinus yunnanensis | This study |
A. spinosa | Heilongjiang and Taiwan | soil, air, and leaf of Comandra pallida | [27,51] |
A. turgida | Xinjiang | soil | [15] |
A. yunnanensis | Yunnan | forest soil | This study |
A. zonata | Beijing, Chongqing, Fujian, Shaanxi, and Yunnan | soil | [15] |
Species | Colonies | Sporangiophore | Sporangia | Collars | Columellae | Projections | Sporangiospores | Zygospores | Temperature | References |
---|---|---|---|---|---|---|---|---|---|---|
Absidia abundans | on MEA at 27 °C for 7 days, 65 mm in diameter | unbranched, or simple if branched, monopodial, or sympodial | oval to subglobose, 8.0–16.5 × 8.5–16.0 µm | absent or present | subglobose or oval, 4.5–10.0 × 3.5–8.0 µm | single if present | cylindrical, oval or subglobose, 2.5–3.5 × 2.0–3.5 µm | unknown | mesophilic | This study |
A. clavata | on MEA rapid growing | 2–8 in whorls | pyriform to globose, 10.5–33.0 µm in diameter | globose to subglobose, 9.0–22.5 µm length | present, single | globose to oval, 2.0–5.0 × 1.8–3.2 µm | unknown | − | [53] | |
A. dubia | − | branched with a whorls | − | − | ovoid to nearly spatulate | − | oval, 2.2–4.2 × 2.2 µm | present | − | [54] |
A. egyptiaca | − | − | usually globose, 25.3 µm | − | 11.5–20.75 µm | − | ovoid to elliptical, 4.6–4.85 µm | heterozygotes, globose, up to 65 µm | − | MycoBank |
A. fassatiae | on MEA for 6 days, 55 mm in diameter | 3–9 in whorls | globose, 15–31 µm in diameter | − | hemispherical to coniform, 9–22 µm in diameter | − | cylindrical, 4.7–7.3 × 1.9–3.1 µm | unknown | − | [55] |
A. lobata | on MEA at 20 °C for 7 days, 70 mm in diameter | in pairs, unbranched | pyriform, 22.0–43.5 × 18.5–31.0 µm | absent | subglobose to depressed globose, 12.0–26.5 × 11.0–25.0 µm | always present, single | mostly globose, occasionally subglobose, 2.5–3.0 µm in diameter | unknown | mesophilic | This study |
A. narayanae | on SMA at 37 °C for 2 days, 75 mm in diameter | in group, up to 8 | globose to subglobose,19.5–41.5 × 24.0–41.0 µm | absent or present | globose, hemispherical to mammiform, 14.5–34.0 × 12.0–34.0 µm | − | globose to ovate, 3.0–4.0 µm | unknown | Thermophilic or thermotolerant | [56] |
A. radiata | on MEA at 27 °C for 7 days, 65 mm in diameter | 1–5 in whorls, unbranched | pyriform or subglobose, 17.5–33.5 × 18.5–30.0 µm | absent | mostly oval, depressed globose, occasionally subglobose to globose, 13.5–22.5 × 14.0–24.0 µm | single if present | oval, 3.0–5.0 × 2.0–3.5 µm | unknown | mesophilic | This study |
A. reflexa | − | singly from the stolons | pyriform | present | conical | one or several projections | spherical, 6 p. in diameter | unknown | − | [52] |
A. sichuanensis | on MEA at 20 °C for 7 days, 75 mm in diameter | 1–5 in whorls, unbranched | pyriform, 18.0–23.0 × 17.0–21.5 µm | absent or present | mostly subglobose, occasionally globose, 7.5–13.0 × 8.0–15.5 µm | single if present | cylindrical, 3.0–4.5× 2.0–2.5 µm | unknown | mesophilic | This study |
A. yunnanensis | on MEA at 27 °C for 7 days, 65 mm in diameter | unbranched, monopodially branched, 2–5 in whorls | pyriform to subglobose, 16.0–27.5 × 16.5–27.0 µm | absent or present | oval, depressed globose, or occasionally globose, 6.5–18.5 × 7.5–22.0 µm | single if present | cylindrical, 3.5–5.0 × 2.0–4.0 µm | unknown | mesophilic | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Nie, Y.; Zong, T.-K.; Wang, Y.-J.; Wang, M.; Dai, Y.-C.; Liu, X.-Y. Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China. J. Fungi 2022, 8, 471. https://doi.org/10.3390/jof8050471
Zhao H, Nie Y, Zong T-K, Wang Y-J, Wang M, Dai Y-C, Liu X-Y. Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China. Journal of Fungi. 2022; 8(5):471. https://doi.org/10.3390/jof8050471
Chicago/Turabian StyleZhao, Heng, Yong Nie, Tong-Kai Zong, Yu-Jie Wang, Mu Wang, Yu-Cheng Dai, and Xiao-Yong Liu. 2022. "Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China" Journal of Fungi 8, no. 5: 471. https://doi.org/10.3390/jof8050471
APA StyleZhao, H., Nie, Y., Zong, T.-K., Wang, Y.-J., Wang, M., Dai, Y.-C., & Liu, X.-Y. (2022). Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China. Journal of Fungi, 8(5), 471. https://doi.org/10.3390/jof8050471